

eXtensible Host Controller Interface for

Universal Serial Bus

(xHCI)

Requirements Specification

November 2017

Revision 1.1

2

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

DOCUMENT. CONTACT INTEL ON FURTHER LICENSING AGREEMENTS AND REQUIREMENTS.

INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE

OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or

characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2008-2017 Intel Corporation. All rights reserved.

3

Contents

1 Preface ... 22

1.1 Objective of Specification ... 22
1.2 Scope of Document ... 22
1.3 Document Organization .. 22
1.4 References ... 23
1.5 Index ... 24
1.6 Terms and Abbreviations .. 26
1.7 Compliance .. 43
1.8 Documentation Conventions .. 43

1.8.1 Capitalization.. 43
1.8.2 Bold Text .. 43
1.8.3 Italic Text .. 43
1.8.4 Numbers and Number Bases .. 43
1.8.5 Implementation Notes ... 44
1.8.6 Word Usage .. 44
1.8.7 Pseudo Code .. 44
1.8.8 Other Notation ... 45

2 Introduction ... 46

2.1 Motivation .. 46
2.2 Goals ... 47
2.3 Key features... 47
2.4 xHCI Product Compliance ... 49

3 Architectural Overview ... 50

3.1 Interface Architecture ... 53
3.2 xHCI Data Structures ... 56

3.2.1 Device Context Base Address Array .. 56
3.2.2 Device Context ... 56
3.2.3 Slot Context .. 57
3.2.4 Endpoint Context ... 57
3.2.5 Input Context .. 59
3.2.6 Rings ... 60
3.2.7 Transfer Request Block ... 61
3.2.8 Scatter/Gather Transfers .. 63
3.2.9 Control Transfers ... 65
3.2.10 Bulk and Interrupt Transfers ... 66
3.2.11 Isoch Transfers .. 66

3.3 Command Interface ... 69
3.3.1 No Op ... 70
3.3.2 Enable Slot .. 70
3.3.3 Disable Slot ... 71
3.3.4 Address Device .. 71
3.3.5 Configure Endpoint ... 72

4

3.3.6 Evaluate Context ... 73
3.3.7 Reset Endpoint .. 73
3.3.8 Stop Endpoint .. 74
3.3.9 Set TR Dequeue Pointer .. 74
3.3.10 Reset Device ... 74
3.3.11 Force Event ... 74
3.3.12 Negotiate Bandwidth .. 74
3.3.13 Set Latency Tolerance Value .. 75
3.3.14 Get Port Bandwidth ... 75
3.3.15 Force Header .. 75

3.4 General Information .. 75
3.5 Root Hub Management .. 76
3.6 xHCI Device Enumeration ... 76

4 Operational Model ... 77

4.1 Command Operation .. 77
4.2 Host Controller Initialization ... 77
4.3 USB Device Initialization .. 79

4.3.1 Resetting a Root Hub Port .. 84
4.3.2 Device Slot Assignment ... 84
4.3.3 Device Slot Initialization .. 85
4.3.4 Address Assignment ... 86
4.3.5 Device Configuration .. 86
4.3.6 Setting Alternate Interfaces ... 87
4.3.7 Low-Speed/Full-Speed Device Support .. 90
4.3.8 Bandwidth Management ... 90

4.4 Device Detach ... 90
4.5 Device Slot Management .. 91

4.5.1 Device Context Index .. 92
4.5.2 Slot Context Initialization ... 93
4.5.3 Slot States .. 94
4.5.4 USB Standard Device Request to xHCI Command Mapping 99

4.6 Command Interface .. 100
4.6.1 Command Ring Operation .. 100
4.6.2 No Op .. 103
4.6.3 Enable Slot ... 104
4.6.4 Disable Slot .. 105
4.6.5 Address Device ... 107
4.6.6 Configure Endpoint .. 111
4.6.7 Evaluate Context .. 123
4.6.8 Reset Endpoint ... 125
4.6.9 Stop Endpoint ... 129
4.6.10 Set TR Dequeue Pointer ... 137
4.6.11 Reset Device .. 140
4.6.12 Force Event (Optional Normative) ... 142
4.6.13 Negotiate Bandwidth (Optional Normative) ... 144
4.6.14 Set Latency Tolerance Value (LTV) (Optional Normative) 146
4.6.15 Get Port Bandwidth .. 147
4.6.16 Force Header ... 150

4.7 Doorbells ... 151
4.8 Endpoint .. 153

 5

4.8.1 Endpoint Addressing ... 153
4.8.2 Endpoint Context Initialization ... 154
4.8.3 Endpoint Context State .. 155

4.9 TRB Ring ... 159
4.9.1 Transfer Descriptors .. 161
4.9.2 Transfer Ring Management .. 162
4.9.3 Command Ring Management .. 171
4.9.4 Event Ring Management .. 172

4.10 Host Controller TRB Handling ... 181
4.10.1 Transfer TRBs .. 181
4.10.2 Errors ... 186
4.10.3 Events ... 196
4.10.4 IOC Flag .. 199

4.11 TRBs ... 200
4.11.1 TRB Template ... 200
4.11.2 Transfer TRBs .. 202
4.11.3 Event TRBs.. 214
4.11.4 Command TRBs.. 215
4.11.5 Other TRBs ... 219
4.11.6 Vendor Defined TRB Types .. 223
4.11.7 TD Usage Rules .. 224

4.12 Streams .. 231
4.12.1 xHCI Stream Protocol .. 232
4.12.2 Stream ID Management .. 237
4.12.3 Evaluate Next TRB (ENT) .. 241

4.13 Device Notifications .. 242
4.13.1 Latency Tolerance Message Handling ... 243
4.13.2 Function Wake .. 245

4.14 Managing Transfer Rings .. 246
4.14.1 General Scheduling Model .. 247
4.14.2 Periodic Transfer Ring Scheduling .. 249
4.14.3 Interrupt Transfer Ring Scheduling .. 257
4.14.4 Asynchronous Transfer Ring Scheduling ... 260

4.15 Suspend-Resume .. 267
4.15.1 Port Suspend ... 269
4.15.2 Port Resume .. 270

4.16 Bandwidth Management .. 274
4.16.1 Bandwidth Negotiation ... 275
4.16.2 Bandwidth Domains ... 277

4.17 Interrupters... 278
4.17.1 Interrupter Mapping ... 279
4.17.2 Interrupt Moderation ... 280
4.17.3 Interrupt Pin Support .. 284
4.17.4 Interrupter Target Identification .. 285
4.17.5 Interrupt Blocking ... 286

4.18 Transfer Definition and Attributes ... 287
4.18.1 No snoop ... 287
4.18.2 No Snoop and Relaxed Ordering for USB Traffic ... 288

4.19 Root Hub .. 289
4.19.1 Root Hub Port State Machines .. 289

6

4.19.2 Port Status Change Generation .. 310
4.19.3 Connect Status Change Reporting .. 313
4.19.4 Port Power .. 314
4.19.5 Port Reset.. 318
4.19.6 Port Test Modes ... 320
4.19.7 Port Routing and Control ... 320
4.19.8 Cold Attach Status .. 322

4.20 Scratchpad Buffers ... 323
4.21 PCI Express ... 325

4.21.1 Configuration sharing among PCI functions ... 325
4.21.2 Bus Master Enable (BME) ... 326

4.22 xHCI Extended Capabilities ... 326
4.22.1 Pre-OS to OS Handoff Synchronization ... 326
4.22.2 Debug Capability Operational Model ... 329
4.22.3 Virtualization ... 329

4.23 Power Management .. 329
4.23.1 Power Wells ... 330
4.23.2 xHCI Power Management .. 331
4.23.3 PCI Power Management ... 335
4.23.4 USB Power Management ... 335
4.23.5 USB Link Power Management ... 335

4.24 Host Controller Management .. 348
4.24.1 Internal Errors ... 348
4.24.2 Port to Connector Mapping .. 348

5 Register Interface ... 353

5.1 Register Conventions ... 354
5.1.1 Attributes .. 354
5.1.2 Power Well Considerations .. 356

5.2 PCI Configuration Registers (USB) ... 356
5.2.1 Type 0 PCI Header .. 356
5.2.2 Class Code Register .. 358
5.2.3 Serial Bus Release Number Register (SBRN) ... 358
5.2.4 Frame Length Adjustment Register (FLADJ)... 359
5.2.5 Default Best Effort Service Latency (DBESL) .. 360
5.2.6 Default Best Effort Service Latency Deep (DBESLD) ... 361
5.2.7 PCI Power Management Interface ... 361
5.2.8 Message Signaled Interrupts (MSI & MSI-X) Capability ... 362
5.2.9 PCI Express Capability... 365
5.2.10 SR-IOV Extended Capability ... 365

5.3 Host Controller Capability Registers... 365
5.3.1 Capability Registers Length (CAPLENGTH) ... 366
5.3.2 Host Controller Interface Version Number (HCIVERSION) 366
5.3.3 Structural Parameters 1 (HCSPARAMS1) ... 367
5.3.4 Structural Parameters 2 (HCSPARAMS2) ... 368
5.3.5 Structural Parameters 3 (HCSPARAMS3) ... 369
5.3.6 Capability Parameters 1 (HCCPARAMS1) ... 370
5.3.7 Doorbell Offset (DBOFF) .. 372
5.3.8 Runtime Register Space Offset (RTSOFF) .. 373
5.3.9 Capability Parameters 2 (HCCPARAMS2) ... 374

 7

5.4 Host Controller Operational Registers... 375
5.4.1 USB Command Register (USBCMD) .. 377
5.4.2 USB Status Register (USBSTS) .. 381
5.4.3 Page Size Register (PAGESIZE) .. 383
5.4.4 Device Notification Control Register (DNCTRL) ... 384
5.4.5 Command Ring Control Register (CRCR) .. 385
5.4.6 Device Context Base Address Array Pointer Register (DCBAAP) 387
5.4.7 Configure Register (CONFIG) .. 388
5.4.8 Port Status and Control Register (PORTSC) .. 389
5.4.9 Port PM Status and Control Register (PORTPMSC) ... 399
5.4.10 Port Link Info Register (PORTLI) ... 403
5.4.11 Port Hardware LPM Control Register (PORTHLPMC) ... 404

5.5 Host Controller Runtime Registers .. 405
5.5.1 Microframe Index Register (MFINDEX) .. 406
5.5.2 Interrupter Register Set .. 407

5.6 Doorbell Registers ... 412

6 Data Structures ... 416

6.1 Device Context Base Address Array .. 418
6.2 Contexts ... 419

6.2.1 Device Context .. 419
6.2.2 Slot Context ... 421
6.2.3 Endpoint Context .. 426
6.2.4 Stream Context Array .. 434
6.2.5 Input Context ... 436
6.2.6 Port Bandwidth Context ... 439

6.3 TRB Ring ... 441
6.4 Transfer Request Block (TRB) .. 441

6.4.1 Transfer TRBs .. 441
6.4.2 Event TRBs.. 453
6.4.3 Command TRBs.. 464
6.4.4 Other TRBs ... 478
6.4.5 TRB Completion Codes .. 481
6.4.6 TRB Types ... 485

6.5 Event Ring Segment Table .. 489
6.6 Scratchpad Buffer Array ... 490

6.6.1 PSZ ... 490

7 xHCI Extended Capabilities ... 492

7.1 USB Legacy Support Capability .. 493
7.1.1 USB Legacy Support Capability (USBLEGSUP) .. 494
7.1.2 USB Legacy Support Control/Status (USBLEGCTLSTS) .. 495

7.2 xHCI Supported Protocol Capability ... 496
7.2.1 Protocol Speed ID (PSI) .. 499
7.2.2 Supported Protocols ... 500

7.3 HCI Extended Power Management Capability ... 506
7.4 xHCI Extended Message Interrupt Capability ... 506
7.5 xHCI Message Interrupt Capability .. 507
7.6 Debug Capability (DbC) ... 507

7.6.1 Debugging Topologies .. 508

8

7.6.2 Debug Stacks ... 510
7.6.3 Memory Map .. 511
7.6.4 Operational Model .. 513
7.6.5 Port Routing and Control ... 518
7.6.6 DbC Port State Machine ... 518
7.6.7 The USB Debug Device ... 522
7.6.8 Debug Capability Structure .. 525
7.6.9 Data Structures ... 536
7.6.10 USB Descriptors for Debug Class Device ... 539

7.7 xHCI I/O Virtualization (xHCI-IOV) Capability ... 547
7.7.1 Capability Header .. 549
7.7.2 VF Interrupter Range Registers ... 550
7.7.3 VF Device Slot Assignment Registers .. 551

7.8 xHCI Local Memory Capability ... 552

8 Virtualization .. 555

8.1 Operation .. 557
8.1.1 Resource Assignment .. 557
8.1.2 Device Enumeration and Handoff ... 561

8.2 SR-IOV Extended Capability ... 566
8.2.1 SR-IOV Extended Capability Structure .. 568
8.2.2 xHCI-IOV Extended Capability Structure .. 568

8.3 Doorbell Registers and Virtualization .. 568
8.3.1 Direct-Assigned Device Slot ... 569
8.3.2 Emulated Device Slot .. 569

8.4 Interrupter Mapping ... 569
8.5 Register Space Emulation .. 569

A.1 PCI Power Management Register Interface ... 572

Appendix B High Bandwidth Isochronous Rules .. 576

B.1 High-speed.. 576

Appendix C Stream Usage Models .. 582

Appendix D Port to Connector Mapping... 584

D.1 Example .. 584

Appendix E State Machine Notation... 593

Appendix F SS Bus Access Constraints ... 595

F.1 Bulk Transfer Bus Access Constraints .. 596

F.2 Interrupt Transfer Bus Access Constraints .. 597

F.3 Isochronous Transfer Bus Access Constraints ... 598

Appendix G 0.96 Exceptions .. 601

G.1 Skip Link TRB IOC flag ... 601

G.2 Force Stopped Event Optional .. 601

G.3 Secondary Bandwidth Domain Reporting Optional .. 601

 9

G.4 USB2 L1 Capability Optional .. 602

Appendix H Release 1.1 Notes .. 603

H.1 Required 1.0 Capabilities/Features ... 603

H.2 New 1.1 Features .. 604

Figures

Figure 3-1: Universal Serial Bus, Revision 3.x System Block Diagram .. 50
Figure 3-2: USB 3 EXtensible Host Controller ... 53
Figure 3-3: General Architecture of the eXtensible Host Controller Interface ... 54
Figure 3-4: Transfer Ring ... 61
Figure 3-5: Transfer Request Block .. 62
Figure 3-6: Simple Transfer Example .. 63
Figure 3-7: Scatter/Gather Transfer Example .. 64
Figure 3-8: Control Transfer Descriptor Example .. 66
Figure 3-9: Isochronous Transfer Example ... 68
Figure 4-1: Device Context ... 91
Figure 4-2: Slot State Diagram .. 94
Figure 4-3: Example Configure Endpoint Command .. 118
Figure 4-4: Endpoint Context Addressing .. 153
Figure 4-5: Endpoint State Diagram .. 156
Figure 4-6: Index Management .. 164
Figure 4-7: Segmented Ring Example .. 166
Figure 4-8: Enqueue Pointer Advancement .. 167
Figure 4-9: Initial State of Transfer Ring ... 169
Figure 4-10: Final State of Transfer Ring .. 170
Figure 4-11: Segmented Event Ring Example .. 173
Figure 4-12: Event Ring State Machine .. 174
Figure 4-13: TRB Template ... 200
Figure 4-14: SETUP Data, the Parameter Component of Setup Stage TRB ... 203
Figure 4-15: Link TRB Example ... 220
Figure 4-16: TRB Packet Boundary Example .. 228
Figure 4-17: TD Fragment Examples .. 229
Figure 4-18: Non-aligned TD Fragment Example ... 230
Figure 4-19: xHC Stream Protocol State Machine (xSPSM).. 233
Figure 4-20: Stream Context Data Structures .. 237
Figure 4-21: Microframe Index (MFINDEX) Register Mapping .. 251
Figure 4-22: Interrupt Throttle Flow Diagram .. 282
Figure 4-23: Heavy load, interrupts moderated .. 283
Figure 4-24: Light load, interrupts not moderated .. 284
Figure 4-25: USB2 Root Hub Port State Machine ... 291
Figure 4-26: USB2 Root Hub Port Enabled Substate Diagram ... 293
Figure 4-27: USB3 Root Hub Port State Machine ... 296
Figure 4-28: USB3 Root Hub Port Polling Substate Diagram .. 298
Figure 4-29: USB3 Root Hub Port DbC Substate Diagram ... 301
Figure 4-30: USB3 Root Hub Port Enabled Substate Diagram ... 304
Figure 4-31: USB3 Root Hub Port U1’ Substate Diagram ... 305

10

Figure 4-32: USB3 Root Hub Port U2’ Substate Diagram ... 307
Figure 4-33: USB3 Root Hub Port U3’ Substate Diagram ... 308
Figure 4-34: Example Port Change Bit Port Status Change Event Generation 313
Figure 4-35: Port Routing Example ... 321
Figure 4-36: BIOS Ownership State Machine ... 327
Figure 4-37: OS Ownership State Machine .. 329
Figure 4-38: Integrated Hub Example .. 351
Figure 5-1: PCI Type 00h Configuration Space Header ... 357
Figure 5-2: PCI Power Management Capability Structure .. 362
Figure 5-3: PCI MSI Configuration Capability Structure ... 363
Figure 5-4: MSI-X Configuration Capability Structure .. 363
Figure 5-5: PCI Express Capability Structure .. 365
Figure 5-6: Structural Parameters 1 Register (HCSPARAMS1) ... 367
Figure 5-7: Structural Parameters 2 Register (HCSPARAMS2) ... 368
Figure 5-8: Structural Parameters 3 Register (HCSPARAMS3) ... 369
Figure 5-9: Capability Parameters 1 Register (HCCPARAMS1) ... 370
Figure 5-10: Doorbell Offset Register (DBOFF) .. 373
Figure 5-11: Runtime Register Space Offset Register (RTSOFF) .. 373
Figure 5-12: Capability Parameters Register 2 (HCCPARAMS2) .. 374
Figure 5-13: USB Command Register (USBCMD) .. 377
Figure 5-14: USB Status Register (USBSTS) .. 381
Figure 5-15: Device Notification Control Register (DNCTRL) .. 384
Figure 5-16: Command Ring Control Register (CRCR) .. 385
Figure 5-17: Device Context Base Address Array Pointer Register (DCBAAP) 388
Figure 5-18: Configure Register (CONFIG).. 388
Figure 5-19: Port Status and Control Register (PORTSC) ... 390
Figure 5-20: USB3 Port Power Management Status and Control Register (PORTPMSC) 399
Figure 5-21: USB2 Port Power Management Status and Control Register (PORTPMSC) 401
Figure 5-22: USB3 Port Link Info Register (PORTLI) .. 403
Figure 5-23: USB2 Port Hardware LPM Control Register (PORTHLPMC) .. 404
Figure 5-24: Microframe Index Register (MFINDEX) .. 406
Figure 5-25: Interrupter Register Set .. 407
Figure 5-26: Doorbell Register .. 413
Figure 6-1: Device Context Data Structure .. 420
Figure 6-2: Slot Context Data Structure .. 421
Figure 6-3: Endpoint Context Data Structure ... 426
Figure 6-4: Stream Context Data Structure ... 434
Figure 6-5: Input Context ... 436
Figure 6-6: Input Control Context .. 437
Figure 6-7: Port Bandwidth Context ... 440
Figure 6-8: Normal TRB ... 441
Figure 6-9: Setup Stage TRB ... 444
Figure 6-10: Data Stage TRB ... 446
Figure 6-11: Status Stage TRB ... 448
Figure 6-12: Isoch TRB .. 449
Figure 6-13: No Op TRB .. 452
Figure 6-14: Transfer Event TRB ... 454
Figure 6-15: Command Completion Event TRB .. 456
Figure 6-16: Port Status Change Event TRB .. 457
Figure 6-17: Bandwidth Request Event TRB ... 459
Figure 6-18: Doorbell Event TRB .. 460
Figure 6-19: Host Controller Event TRB .. 461

 11

Figure 6-20: Device Notification Event TRB... 462
Figure 6-21: MFINDEX Wrap Event TRB .. 463
Figure 6-22: No Op Command TRB ... 465
Figure 6-23: Enable Slot Command TRB .. 465
Figure 6-24: Disable Slot Command TRB ... 466
Figure 6-25: Address Device Command TRB .. 467
Figure 6-26: Configure Endpoint Command TRB ... 468
Figure 6-27: Evaluate Context Command TRB ... 469
Figure 6-28: Reset Endpoint Command TRB .. 469
Figure 6-29: Stop Endpoint Command TRB .. 470
Figure 6-30: Set TR Dequeue Pointer Command TRB .. 471
Figure 6-31: Reset Device Command TRB ... 473
Figure 6-32: Force Event Command TRB ... 473
Figure 6-33: Set Latency Tolerance Value Command TRB .. 475
Figure 6-34: Get Port Bandwidth Command TRB ... 476
Figure 6-35: Force Header Command TRB .. 477
Figure 6-36: Link TRB ... 478
Figure 6-37: Event Data TRB ... 480
Figure 6-38: Event Ring Segment Table Entry ... 489
Figure 7-1: xHCI Supported Protocol Capability ... 497
Figure 7-2: USB3 Protocol Defined fields ... 504
Figure 7-3: USB 2.0 Protocol Defined fields .. 505
Figure 7-4: Example Debugging Topology .. 509
Figure 7-5: Example Debug Software Stacks .. 510
Figure 7-6: Debug Capability Memory Map ... 511
Figure 7-7: Debug Port Multiplexing ... 518
Figure 7-8: DbC Port State Machine .. 519
Figure 7-9: Debug Capability Register Layout .. 525
Figure 7-10: Debug Capability Context Data Structure .. 536
Figure 7-11: Debug Capability Info Context Data Structure (DbCIC) ... 537
Figure 7-12: xHCI-IOV Capability Structure ... 548
Figure 7-13: xHCI-IOV Capability Header ... 549
Figure 7-14: VF Interrupter Range Register ... 550
Figure 7-15: VF Device Slot Assignment Register .. 552
Figure 7-16: xHCI Local Memory Capability .. 552
Figure 8-1: VF MMIO Space ... 559
Figure 8-2: Emulated Hub Device Attachment Example ... 565
Figure 8-3: xHCI BAR Space Example ... 567
Figure C-1: Mass Storage Stream Usage Model... 582
Figure D-1: Root Hub Port to USB Connector Mapping Example ... 586
Figure E-1: Legend for State Machines .. 594

Tables

Table 3-1: Command TRB Summary ... 69
Table 4-1: Device Slot State Code Definitions .. 95
Table 4-2: Stop Endpoint Command TRB Handling .. 134
Table 4-3: Event Ring State Machine Definitions .. 175
Table 4-4: Summary of USB Transaction Errors ... 189

12

Table 4-5: CErr Management ... 194
Table 4-6: USB SETUP Data to Data Stage TRB and Status Stage TRB mapping 204
Table 4-7: USB2 Pipe Actions based on Endpoint Response and Residual Transfer State 261
Table 4-8: USB3 Pipe Actions based on Endpoint Response and Residual Transfer State 263
Table 4-9: Behavior During System Wake-up Events ... 273
Table 4-10: xHC Traffic Attributes ... 288
Table 4-11: LPM State Mapping .. 336
Table 4-12: BESL/HIRD Encoding .. 344
Table 5-1: eXtensible Host Controller Interface Register Sets ... 353
Table 5-2: Register Alignment Requirement Summary ... 354
Table 5-3: Register Attributes .. 355
Table 5-4: Class Code Register (CLASSC) ... 358
Table 5-5: Serial Bus Release Number Register (SBRN) ... 359
Table 5-6: Frame Length Adjustment Register (FLADJ) .. 360
Table 5-7: Default Best Effort Service Latency (DBESL) .. 361
Table 5-8: Default Best Effort Service Latency - Deep (DBESLD) .. 361
Table 5-9: eXtensible Host Controller Capability Registers... 366
Table 5-10: Host Controller Structural Parameters 1 (HCSPARAMS1) .. 367
Table 5-11: Host Controller Structural Parameters 2 (HCSPARAMS2) .. 368
Table 5-12: Host Controller Structural Parameters 3 (HCSPARAMS3) .. 370
Table 5-13: Host Controller Capability 1 Parameters (HCCPARAMS1) .. 371
Table 5-14: Doorbell Offset Register (DBOFF) ... 373
Table 5-15: Runtime Register Space Offset Register (RTSOFF) ... 373
Table 5-16: Host Controller Capability Parameters 2 (HCCPARAMS2) .. 374
Table 5-17: Host Controller Operational Registers ... 376
Table 5-18: Host Controller USB Port Register Set ... 377
Table 5-19: USB Command Register Bit Definitions (USBCMD) .. 378
Table 5-20: USB Status Register Bit Definitions (USBSTS) ... 381
Table 5-21: Page Size Register Bit Definitions (PAGESIZE) .. 384
Table 5-22: Device Notification Register Bit Definitions (DNCTRL) .. 385
Table 5-23: Command Ring Control Register Bit Definitions (CRCR) .. 386
Table 5-24: Device Context Base Address Array Pointer Register Bit Definitions (DCBAAP) 388
Table 5-25: Configure Register Bit Definitions (CONFIG) .. 388
Table 5-26: Port Status and Control Register Bit Definitions (PORTSC) .. 390
Table 5-27: USB2 to USB3 Port Link State Mapping .. 398
Table 5-28: USB3 Port Power Management Status and Control Register Bit Definitions

(PORTPMSC) .. 400
Table 5-29: USB2 Port Power Management Status and Control Register Bit Definitions

(PORTPMSC) .. 401
Table 5-30: USB3 Port Link Info Register Bit Definitions (PORTLI) .. 403
Table 5-31: USB2 Port Hardware LPM Control Register Bit Definitions (PORTHLPMC) 405
Table 5-32: Host Controller Runtime Registers ... 406
Table 5-33: Microframe Index Register Bit Definitions (MFINDEX) ... 407
Table 5-34: Interrupter Registers ... 407
Table 5-35: Interrupter Management Register Bit Definitions (IMAN) .. 408
Table 5-36: Interrupter Moderation Register (IMOD) .. 409
Table 5-37: Event Ring Segment Table Size Register Bit Definitions (ERSTS 410
Table 5-38: Event Ring Segment Table Base Address Register Bit Definitions (ERSTBA) 411
Table 5-39: Event Ring Dequeue Pointer Register Bit Definitions (ERDP)... 411
Table 5-40: Doorbell Register Bit Field Definitions (DB) ... 413
Table 6-1: Data Structure Max Size, Boundary, and Alignment Requirement Summary 417
Table 6-2: Device Context Base Address Array Element 1-n Field Bit Definitions 419

 13

Table 6-3: Device Context Base Address Array Element 0 Field Bit Definitions 419
Table 6-4: Offset 00h – Slot Context Field Definitions... 421
Table 6-5: Offset 04h – Slot Context Field Definitions... 422
Table 6-6: Offset 08h – Slot Context Field Definitions... 423
Table 6-7: Offset 0Ch – Slot Context Field Definitions .. 424
Table 6-8: Offset 00h – Endpoint Context Field Definitions .. 427
Table 6-9: Offset 04h – Endpoint Context Field Definitions .. 428
Table 6-10: Offset 08h – Endpoint Context Field Definitions ... 430
Table 6-11: Offset 10h – Endpoint Context Field Definition ... 430
Table 6-12: Endpoint Type vs. Interval Calculation ... 433
Table 6-13: Offset 00h and 04h – Stream Context Field Definitions .. 435
Table 6-14: Offset 08h and 0Ch – Stream Context Field Definitions .. 435
Table 6-15: Offset 00h – Input Control Context Field Definitions .. 437
Table 6-16: Offset 04h – Input Control Context Field Definitions .. 438
Table 6-17: Offset 1Ch – Input Control Context Field Definitions .. 438
Table 6-18: Offset 00h – Port Bandwidth Context Field Definitions ... 440
Table 6-19: Offset n-03h – Port Bandwidth Context Field Definitions ... 440
Table 6-20: Offset 00h and 04h – Normal TRB Field Definitions .. 442
Table 6-21: Offset 08h – Normal TRB Field Definitions .. 442
Table 6-22: Offset 0Ch – Normal TRB Field Definitions .. 442
Table 6-23: Offset 00h – Setup Stage TRB Field Definitions ... 444
Table 6-24: Offset 04h – Setup Stage TRB Field Definitions ... 444
Table 6-25: Offset 08h – Setup Stage TRB Field Definitions ... 445
Table 6-26: Offset 0Ch – Setup Stage TRB Field Definitions .. 445
Table 6-27: Offset 00h and 04h – Data Stage TRB Field Definitions ... 446
Table 6-28: Offset 08h – Data Stage TRB Field Definitions ... 446
Table 6-29: Offset 0Ch – Data Stage TRB Field Definitions ... 447
Table 6-30: Offset 08h – Status Stage TRB Field Definitions .. 448
Table 6-31: Offset 0Ch – Status Stage TRB Field Definitions ... 448
Table 6-32: Offset 00h and 04h – Isoch TRB Field Definitions .. 450
Table 6-33: Offset 08h – Isoch TRB Field Definitions ... 450
Table 6-34: Offset 0Ch – Isoch TRB Field Definitions ... 450
Table 6-35: Offset 08h – No Op TRB Field Definitions ... 452
Table 6-36: Offset 0Ch – No Op TRB Field Definitions .. 453
Table 6-37: Offset 00h and 04h – Transfer Event TRB Field Definitions ... 454
Table 6-38: Offset 08h – Transfer Event TRB Field Definitions ... 454
Table 6-39: Offset 0Ch – Transfer Event TRB Field Definitions ... 455
Table 6-40: Offset 00h and 04h – Command Completion Event TRB Field Definition 456
Table 6-41: Offset 08h – Command Completion Event TRB Field Definitions 456
Table 6-42: Offset 0Ch – Command Completion Event TRB Field Definitions 456
Table 6-43: Offset 00h – Port Status Change Event TRB Field Definitions .. 458
Table 6-44: Offset 08h – Port Status Change Event TRB Field Definitions .. 458
Table 6-45: Offset 0Ch – Port Status Change Event TRB Field Definitions .. 458
Table 6-46: Offset 08h – Bandwidth Request Event TRB Field Definitions .. 459
Table 6-47: Offset 0Ch – Bandwidth Request Event TRB Field Definitions .. 459
Table 6-48: Offset 00h – Doorbell Event TRB Field Definitions ... 460
Table 6-49: Offset 08h – Doorbell Event TRB Field Definitions ... 460
Table 6-50: Offset 0Ch – Doorbell Event TRB Field Definitions .. 460
Table 6-51: Offset 08h – Host Controller Event TRB Field Definitions... 461
Table 6-52: Offset 0Ch – Host Controller Event TRB Field Definitions .. 461
Table 6-53: Offset 00h and 04h – Device Notification Event TRB Field Definitions........................... 462
Table 6-54: Offset 08h – Device Notification Event TRB Field Definitions ... 463

14

Table 6-55: Offset 0Ch – Device Notification Event TRB Field Definitions ... 463
Table 6-56: Offset 08h – MFINDEX Wrap Event TRB Field Definitions .. 464
Table 6-57: Offset 0Ch – MFINDEX Wrap Event TRB Field Definitions .. 464
Table 6-58: Offset 0Ch – No Op Command TRB Field Definitions ... 465
Table 6-59: Offset 0Ch – Enable Slot Command TRB Field Definitions ... 465
Table 6-60: Offset 0Ch – Disable Slot Command TRB Field Definitions.. 466
Table 6-61: Offset 00h and 04h – Address Device Command TRB Field Definitions 467
Table 6-62: Offset 0Ch – Address Device Command TRB Field Definitions .. 467
Table 6-63: Offset 00h and 04h – Configure Endpoint Command TRB Field Definitions 468
Table 6-64: Offset 0Ch – Configure Endpoint Command TRB Field Definitions.................................. 468
Table 6-65: Offset 0Ch – Reset Endpoint Command TRB Field Definitions... 469
Table 6-66: Offset 0Ch – Stop Endpoint Command TRB Field Definitions .. 470
Table 6-67: Offset 00h and 04h – Set TR Dequeue Pointer Command TRB Field Definitions 471
Table 6-68: Offset 08h – Set TR Dequeue Pointer Command TRB Field Definitions 472
Table 6-69: Offset 0Ch – Set TR Dequeue Pointer Command TRB Field Definitions 472
Table 6-70: Offset 0Ch – Reset Device Command TRB Field Definitions .. 473
Table 6-71: Offset 00h and 04h – Force Event Command TRB Field Definitions 473
Table 6-72: Offset 08h – Force Event Command TRB Field Definitions .. 474
Table 6-73: Offset 0Ch – Force Event Command TRB Field Definitions .. 474
Table 6-74: Offset 0Ch – Set Latency Tolerance Value Command TRB Field Definitions 475
Table 6-75: Offset 00h and 04h – Get Port Bandwidth Command TRB Field Definitions 476
Table 6-76: Offset 0Ch – Get Port Bandwidth Command TRB Field Definitions 476
Table 6-77: Offset 00h, 04h, and 08h – Force Header Command TRB Field Definitions................. 477
Table 6-78: Offset 0Ch – Force Header Command TRB Field Definitions .. 477
Table 6-79: Offset 00h and 04h – Link TRB Field Definitions ... 478
Table 6-80: Offset 08h – Link TRB Field Definitions ... 478
Table 6-81: Offset 0Ch – Link TRB Field Definitions ... 479
Table 6-82: Offset 00h and 04h – Event Data TRB Field Definitions ... 480
Table 6-83: Offset 08h – Event Data TRB Field Definitions ... 480
Table 6-84: Offset 0Ch – Event Data TRB Field Definitions ... 480
Table 6-85: TRB Completion Code Definitions .. 481
Table 6-86: TRB Type Definitions .. 485
Table 6-87: Allowed TRB Type as function of Endpoint Type .. 488
Table 6-88: Allowed TRB Types as function of Transfer Descriptor Type .. 488
Table 6-89: Offset 00 and 04 – Event Ring Segment Table Entry Field Definitions 489
Table 6-90: Offset 08 – Event Ring Segment Table Entry Field Definitions ... 489
Table 6-91: Scratchpad Buffer Array Element Field Bit Definitions ... 490
Table 7-1: Format of xHCI Extended Capability Pointer Register ... 492
Table 7-2: xHCI Extended Capability Codes .. 492
Table 7-3: HC Extended Capability Registers ... 494
Table 7-4: USB Legacy Support Extended Capability (USBLEGSUP)... 494
Table 7-5: USB Legacy Support Control/Status (USBLEGCTLSTS) .. 495
Table 7-6: Offset 00h - xHCI Supported Protocol Capability Field Definitions 497
Table 7-7: Offset 04h - xHCI Supported Protocol Capability Field Definitions 497
Table 7-8: Offset 08h - xHCI Supported Protocol Capability Field Definitions 498
Table 7-9: Offset 0Ch - xHCI Supported Protocol Capability Field Definitions 498
Table 7-10: Offset 10h to (PSIC*4)+10h - xHCI Supported Protocol Capability Field

Definitions ... 499
Table 7-11: xHCI Supported Protocols .. 500
Table 7-12: Example SSIC PSI Dword values.. 502
Table 7-13: Default USB Speed ID Mapping ... 502
Table 7-14: USB3 Protocol Defined Field Definitions .. 504

 15

Table 7-15: USB 2.0 Protocol Defined Field Definitions ... 505
Table 7-16: Debug Capability Structure .. 526
Table 7-17: Offset 00h - Debug Capability Field Definitions (DCID) .. 527
Table 7-18: Offset 04h - Debug Capability Field Definitions (DCDB) .. 527
Table 7-19: Offset 08h - Debug Capability Bit Definitions (DCERSTSZ) .. 528
Table 7-20: Offset 10h - Debug Capability Bit Definitions (DCERSTBA) .. 528
Table 7-21: Offset 18h - Debug Capability Bit Definitions (DCERDP) ... 529
Table 7-22: Offset 20h - Debug Capability Field Definitions (DCCTRL) ... 530
Table 7-23: Offset 24h - Debug Capability Field Definitions (DCST) ... 531
Table 7-24: Offset 28h - Debug Capability Field Definitions (DCPORTSC) .. 532
Table 7-25: Offset 30h - Debug Capability Context Pointer Field Definitions (DCCP) 534
Table 7-26: Offset 38h - Debug Capability Device Descriptor Info Field Definitions (DCDDI1) 535
Table 7-27: Offset 3Ch - Debug Capability Device Descriptor Info Field Definitions (DCDDI2).... 536
Table 7-28: Offset 00h - Debug Capability Info Context Field Definitions (DbCIC) 537
Table 7-29: Offset 08h - Debug Capability Info Context Field Definitions (DbCIC) 538
Table 7-30: Offset 10h - Debug Capability Info Context Field Definitions (DbCIC) 538
Table 7-31: Offset 18h - Debug Capability Info Context Field Definitions (DbCIC) 538
Table 7-32: Offset 20h - Debug Capability Info Context Field Definitions (DbCIC) 539
Table 7-33: DbC Device Descriptor ... 540
Table 7-34: DbC Configuration Descriptor .. 541
Table 7-35: DbC Interface Descriptor .. 542
Table 7-36: DbC Endpoint Descriptor 1 OUT ... 543
Table 7-37: DbC SuperSpeed Endpoint Companion Descriptor 1 OUT .. 544
Table 7-38: DbC Endpoint Descriptor 2 IN .. 544
Table 7-39: DbC SuperSpeed Endpoint Companion Descriptor 2 IN ... 545
Table 7-40: BOS Descriptor .. 546
Table 7-41: BOS SS Device Capability Descriptor .. 546
Table 7-42: xHCI_IOV Capability Header Field Definitions .. 549
Table 7-43: VM Interrupter Range Register Field Definitions ... 551
Table 7-44: VF Device Slot Assignment Register Field Definitions .. 552
Table 7-45: Offset 00h - xHCI Local Memory Capability Field Definitions ... 553
Table 7-46: Offset 04h - xHCI Local Capability Field Definitions .. 553
Table 7-47: Offset 08h - xHCI Local Capability Field Definitions .. 553
Table A-1: xHCI Support for Power Management States .. 571
Table A-2: xHCI Power State Summary ... 574
Table B-1: HS High-Bandwidth Behavior for OUT Transactions ... 577
Table B-2: HS High-Bandwidth Behavior for IN Transactions ... 579
Table F-1: SuperSpeed Bulk OUT Transaction Limits .. 596
Table F-2: SuperSpeed Interrupt Transaction Limits.. 598
Table F-3: SuperSpeed Isoch Transaction Limits ... 599
Table G-1: Forced Stopped Event (FSE) Option Flag .. 601
Table G-2: Secondary Bandwidth Domain Reporting (SBD) Option Flag .. 602
Table G-3: L1 Capability (L1C) Option Flag .. 602

16

Revision History

Revision Issue Date Comments

0.96 5/8/2009

1.0 5/21/10 Refer to xHCI 0_96 errata files.

1.1 12/20/13 Refer to xHCI 1_0 errata files 1-21.

1.1 11/7/17 xHCI Revision 1.1 with all changes up to errata
4

Please send comments via electronic mail to: xhcisupport@intel.com

 17

Contributors

Randy Aull Microsoft Corporation

Paul Baleme Intel Corporation

Marcin Behrendt Cadence Design Systems, Inc.

Dustin Bingham Intel Corporation

Martin Borve Microsoft Corporation

Jeanne Cai Marvell Technology Group Ltd.

Brent Chartrand Intel Corporation

Huimin Chen Intel Corporation

Binuthankakumar Chinnathankam Larsen & Toubro Infotech Ltd.

Brian Collins Fresco Logic Inc.

John Couillard Intel Corporation

Eric DeHaemer Intel Corporation

Vidyadhari Dharmaraju Intel Corporation

Paul Diefenbaugh Intel Corporation

Bob Dunstan Intel Corporation

Kurt Fankhauser Fresco Logic Inc.

Nobuo Furuya NEC Corporation

John Garney MCCI Corporation

Charlie Guy Avsys Corporation

Vivek Gupta Microsoft Corporation

Raul Gutierrez Intel Corporation

Chip Haldane Intel Corporation

Dave Harriman Intel Corporation

Will Harris Texas Instruments Incorporated

18

David Hines Intel Corporation

Yu Hong Marvell Technology Group Ltd.

Amanda Hosler Specwerkz LLC

Brad Hosler Intel Corporation

John S. Howard Intel Corporation

Ching Lin Hsu Faraday Technology Corporation

Rahman Ismail Intel Corporation

Jaya Jeyaseelan Intel Corporation

Surya Kareenahalli Intel Corporation

Michael Kentley High Desert Design Center

Chien-cheng Kuo Etron Technology, Inc.

Dian Kurniawan Fresco Logic, Inc.

Piotr Kwidzinski Intel Corporation

Luke Lai NVIDIA Corporation

Philip Lantz Intel Corporation

Hogan Lee ASMedia Technology Inc.

Brian Lounsbery Intel Corporation

Baolu Lu Intel Corporation

Ben Lunt Forever Young Software

Alberto Martinez Intel Corporation

Mark Maszak Microsoft Corporation

Steve McGowan Intel Corporation

Chintan Mehta Sibridge Technologies

Chris Meyers Fresco Logic, Inc.

Lukasz Mielicki Intel Corporation

Nobuyuki Mizukoshi NEC Corporation

Saleem Mohammad Synopsys, Inc.

 19

Anoop Mukker Intel Corporation

Jie Ni Fresco Logic, Inc.

Hajime Nozaki NEC Corporation

Jake Oshins Microsoft Corporation

Sanket Patel Microsoft Corporation

Fizal Peermohamed Microsoft Corporation

Tomaz Pielaszkiewicz Intel Corporation

Georg Potthast Independent contractor

CH Ramakrishna Larsen & Toubro Infotech Ltd.

Diane Rose Specwerkz LLC

Hiro Sakamoto NEC Corporation

Nitin Sarangdhar Intel Corporation

Makoto Sato NEC Corporation

Joe Scanlon Advanced Micro Devices

Joe Schaefer Intel Corporation

Vasudevan Shanmugasundaram Intel Corporation

Sarah Sharp Intel Corporation

Wei Sheng Corigine Inc.

Eyal Skulsky Qualcomm, Inc.

Glen Slick Microsoft Corporation

Gary Solomon Intel Corporation

Raja Subramanian Larsen & Toubro Infotech Ltd.

Kevin Beow Ee Tan Intel Corporation

Yuliang Tao Marvell Technology Group Ltd.

“Peter” Chu Tin Teng NEC Corporation

Qunzhao Tian Marvell Technology Group Ltd.

Jay Tseng VIA Technologies, Inc.

20

Karthi Vadivelu Intel Corporation

Cedric Villat Intel Corporation

Luke Valenty Intel Corporation

Venkatarama Larsen & Toubro Infotech Ltd.

Krishnan Venkataraman Moschip Semiconductor Tech. Ltd.

Sue Vining Texas Instruments Incorporated

Jim Walsh Intel Corporation

Jennifer Wang Intel Corporation

Qiangwen Wang Synopsys, Inc.

Y.W. Wang Faraday Technology Corporation

Rafal Wielicki Intel Corporation

Eric Wittmayer Fresco Logic, Inc.

Jun Xu Fresco Logic, Inc.

Steven E. Zawid Intel Corporation

Hefei Zhu Marvell Technology Group Ltd.

Kevin Zhenyu Zhu Intel Corporation

High Bandwidth Isochronous Rules

21

Dedication

The xHCI Specification is dedicated to the memory of Brad Hosler, a good friend and the impact

of whose accomplishments have made the Universal Serial Bus one of the most successful

technology innovations of the Personal Computer era.

- The xHCI Architecture Team

22

1 Preface

1.1 Objective of Specification

The eXtensible Host Controller Interface (xHCI) specification describes the register-level host

controller interface for Universal Serial Bus (0) Revision 2.0 and above. The specification includes

a description of the hardware/software interface between system software and the host

controller hardware.

This specification is intended for hardware component designers, system builders and device

driver (software) developers. The reader is expected to be familiar with the current Universal

Serial Bus Specification revisions. In spite of due diligence, there may exist conflicts between this

specification and the USB Specification. The USB Specifications take precedence on all issues of

conflict.

1.2 Scope of Document

The specification is primarily targeted to host controller developers and system OEMs, but

provides valuable information for platform operating system and BIOS device driver developers,

adapter IHVs/ISVs, and platform/adapter controller vendors. This specification can be used for

developing new products and associated software.

1.3 Document Organization

This specification presents a view of the overall architecture and detailed description of the

operational model requirements of the host controller, using the defined registers and interface

data structures.

The architecture (3) and operational (4) sections are followed by two sections of pure structural

definitions that detail the register space (5) and interface data structures (6). These definition

chapters contain little or no operational requirements or usage models. The final sections

describe the xHCI Extended Capabilities (7), and the virtualization operational model (8). The

Appendix covers useful information not included elsewhere in the specification.

 23

1.4 References

The following documents are referenced throughout this specification. The Spec Reference

defines a shorthand mnemonic used in this specification for the respective document listed

below.

Spec

Reference
Title

Revision Location

ACPI Advanced
Configuration and
Power Interface

Specification

3.0b1
October 10,
2006

www.acpi.info

BCS Battery Charging

Specification

1.1

April 15,
2009

www.usb.org

EHCI Enhanced Host

Controller Interface
Specification

1.0

March 12,
2002

www.intel.com/technology/usb

EHCI Enhanced Host
Controller Interface
Specification

1.0
March 12,
2002

www.intel.com/technology/usb

EHCI1_1Add EHCI v1.1 Addendum 1.1

August,
2008

www.intel.com/technology/usb

iASL iASL - ACPI Source
Language Compiler,

Table Compiler, and
AML Disassembler

20120111-
32

January, 11
2012

www.acpica.org/downloads/binary_tools.php

MUCC Universal Serial Bus

Micro-USB Cables and
Connectors
Specification

1.01

April 4,
2007

www.usb.org

OTG On-The-Go and
Embedded Host

Supplement to the USB
Revision 2.0
Specification

2.0
May 8, 2009

www.usb.org

PCI PCI Local Bus
Specification

3.0
February 3,
2004

www.pcisig.com

PCIe PCI Express Base
Specification

3.0
November

10, 2010

www.pcisig.com

1Revisions 3.0b and beyond of the ACPI specification define the _UPC (USB3 Connector Type) and _PLD (Group)
extensions referenced in Appendix D.1.1. The ACPI extensions required to support USB Power Delivery are going
to be defined in an upcoming of the ACPI specification.

24

PCI PM PCI Bus Power
Management Interface

Specification

1.2
March 3,

2004

www.pcisig.com

SR-IOV PCI Single Root I/O
Virtualization

1.0
Sept. 11,

2007

www.pcisig.com

SSIC Inter-Chip Supplement

to the Revision 3.0
Specification

0.9

Dec. 11,
2011

www.usb.org

USB2 Universal Serial Bus

Specification

2.0

April 27,
2000

www.usb.org

USB2 LPM USB 2.0 Link Power
Management
Addendum and

Errata for USB 2.0 ECN:
Link Power
Management - 7/2007

Final

July 16,
2007

5/13/11

www.usb.org

USB3 Universal Serial Bus 3.1
Specification

1.0

www.usb.org

USB PD Universal Serial Bus
Power Delivery
Specification

Rev. 1.0,
Version 1.2

June 26,

2013

www.usb.org

xHCI Extensible Host
Controller Interface

Specification for
Universal Serial Bus

1.0
May 21,

2010

www.intel.com/technology/usb/spec.htm

Note: Rather than enumerating the full specification name every time one of the above

specs are referenced in this document, the abbreviation listed in the Spec

Reference column shall be used.

1.5 Index

This document does not include an index. An effective substitute when viewing

with a Adobe® Reader® is to use the Search dialog box to locate all references to

a specific xHCI feature or field.

To facilitate indexing, all references to register and data fields may be

automatically located using their mnemonic, acronym, or name. There was also

an effort to maintain consistent naming and phrasing throughout the spec.

 For example: To find all references to the Port Power (PP) field of the

PORTSC register, in Reader® open the Search dialog box, and since this

field has a acronym, enter the string “PP” in the ‘What word of phrase

would you like to search for?’ text box. Check the ‘Whole words only’ and

‘Case-sensitive’ check boxes, and press the ‘Search’ button to list all

 25

references to the Port Power flag in this specification in the ‘Results’

window.

 To find all references to the Frame ID field, for which no mnemonic or

acronym is defined, simply enter “Frame ID” into the ‘What word of

phrase would you like to search for?’ text box.

 Often it is useful to cut and paste a phrase into the ‘What word of phrase

would you like to search for?’ text box. If you search on the phrase

"advance to the next TD" you will get about 12 hits, "zero length" about 9

hits, etc.

After pressing the ‘Search’ button, the results of the search are displayed in the

‘Results:’ window of the Search dialog box. Clicking on any tree entry in the

Results: window will jump you to the selected text in the spec. Using the Up and

Down Arrow keys while the Search dialog box has focus will allow you to quickly

view all the search results in the document.

The Search dialog box has been supported by Adobe® Reader® and Acrobat® for

quite a while, but how it is accessed may vary from one version to another. With

most versions of Adobe® products Shift+Ctrl+F will bring up the Search dialog

box, or...

In Reader® 8 to open the Search dialog box, select “Edit” then “Search” from the

menu.

In Reader® 10 open the Search dialog box, by clicking on the Tool Bar icon that

looks like a pair of binoculars. If the Search icon is not visible in the Tool Bar,

then right click on the Tool Bar, mouse over ‘Edit’ then click on ‘Advanced Find’.

In Acrobat® 9 open the Search dialog box, next to the Search text box there is a

small "down arrow". Click on the arrow and select "Open Full Acrobat Search...".

If the Search text box is not visible in the Tool Bar, then right click on the Tool

Bar, and click on ‘Find’.

26

1.6 Terms and Abbreviations

ACK Handshake packet indicating a positive acknowledgment.

Alternate Interface An optional Interface setting provided by a USB device.

Alternate Interface settings may be used to define a range

of payload sizes for USB endpoints.

Async Pipe A “Best Effort” Pipe defined by a Control or Bulk endpoint.

attached This specification makes a distinction between the words

“attach” and “connect”.

A USB2 downstream device is considered to be “attached”

to an upstream port if the upstream port has detected

either the D+ or D- data line pulled high through a 1.5 kΩ

resistor.

A USB3 downstream device is considered to be “attached”

to an upstream port if the upstream port has detected

SuperSpeed far-end receiver terminations.

Aux Power The xHCI supports split power “wells”; the Core Power well

and the Aux Power well (or Auxiliary Power well). The Aux

Power well is optional. For example, Aux Power well voltage

may be present whenever AC or battery power is applied to

the system. For more information refer to section 4.23.1.

Base The beginning of the host controller’s MMIO address space

is referred to as “Base”.

Best Effort Service Latency (BESL) BESL indicates the best effort to resumption of service to a

device after the initiation of a resume event by a device.

Best Effort Latency Tolerance

(BELT)

Best Effort Latency Tolerance (BELT) messages are

supported by USB3 devices (excluding hubs) using an

optional USB3 “Device Notification (DEV_NOTIFICATION)”

Transaction Packet (TP) with a Notification_Type =

LATENCY_TOLERANCE_MESSAGE (LTM). This message is

also referred to as a Latency Tolerance Message (LTM) TP.

This TP contains a specific value known as the Best Effort

Latency Tolerance (BELT) value that indicates the current

tolerable service latency for that device.

bInterval Interval value defined by a USB Endpoint Descriptor.

 27

Burst The transmission of multiple back-to-back data packets on

the USB.

Bus Error Counter The Bus Error Counter is an internal counter that the xHC

maintains, which determines the number of consecutive

Errors allowed while executing a USB Transaction.

Bus Instance

(BI)

A Bus Instance represents a “unit” bus bandwidth at the

speed that the BI supports. e.g. A SuperSpeed BI represents

5Gb/s of bandwidth. A High-speed BI represents 480Mb/s

of bandwidth, Low-/Full-speed BI represents 12Mb/s of

bandwidth. Multiple Root Hub ports may share the

bandwidth of a single BI. Note that the bit rates are

maximums for the respective buses.

Capability Registers The Capability Registers specify read-only limits,

restrictions and capabilities of the host controller

implementation. These values are used as parameters to

the host controller driver.

Chip Hardware Reset A Chip Hardware Reset may be either a PCI reset input or an

optional power-on reset input to the xHC, e.g. the initial

power-up of the Aux Power well.

clear When used in reference to a flag or field of a data structure

or register, the flag or field shall be cleared to ‘0’.

Composite Device A USB composite device has only a single USB device

address, and exposes multiple interfaces that are

controlled independently of each other.

connected A USB2 downstream device is considered to be

“connected” to an upstream port if, 1) device has pulled

either the D+ or D- data line high through a 1.5 kΩ resistor,

and 2) if the device is high-speed or full-speed it has been

reset and the Chirp signaling has determined its speed.

A USB3 downstream device is considered to be

“connected” to an upstream port if, 1) SuperSpeed far-end

receiver terminations have been detected, 2) training was

successful, and 3) the Port Capability/Configuration LMP

exchanges are successful.

28

Control Endpoint As defined by the USB specification, a pair of device

endpoints with the same endpoint number that are used by

a control pipe. Control endpoints transfer data in both

directions and, therefore, use both endpoint directions of a

device address and endpoint number combination. Thus,

each control endpoint consumes two endpoint addresses.

Core Power The xHCI supports split power “wells”; the Core Power well

and Aux Power well. The xHCI Core Power well is required

and may be switched on or off to manage xHC power

consumption. For more information refer to section 4.23.1.

D0 PCI controller power “On” state. Refer to PCI PM

specification.

D1 or D2 PCI controller intermediate power states. Refer to PCI PM

specification.

D3 PCI controller power “Off” state. Refer to PCI PM

specification.

Default Control Endpoint The Default Control Endpoint always exists once a USB

device is powered, in order to provide access to the device's

configuration, status, and control information. The Default

Control Endpoint is always endpoint number '0'.

Device Context Base Address

Array

The Device Context Base Address Array contains 256

entries and supports up to 255 USB devices or hubs, where

each element in the array is a 64-bit pointer to the base

address of a Device Context. Entry 0 is reserved.

Device Context A Device Context is a data structure that describes an

individual USB device attached to the host controller. A

Device Context is organized as an array of up to 32 context

data structures, consisting of 1 Slot Context and up to 31

Endpoint Context data structures.

DCI The Device Context Index (DCI) is a value used to reference

the respective element of the Device Context data

structure. Refer to section 4.5.1.

 29

Dequeue Pointer The Dequeue Pointer is a pointer into a TRB Ring. It

references the next TRB in a TRB Ring to be processed by

the consumer of TRB Ring work items. The Dequeue

Pointer for Transfer and Command Rings is NOT defined as

a physical xHC register. A facsimile of this pointer is

maintained internally by the xHC and system software to

manage a respective ring.

Device Endpoint A uniquely addressable portion of a USB device that is the

source or sink of information in a communication flow

between the host and device. Also see Endpoint Address.

Device Resources Resources provided by USB devices, such as buffer space

and endpoints. Also see Host Resources and Universal

Serial Bus Resources.

Device Slot Device Slot refers to the xHC interface associated with an

individual USB device, e.g. the associated Device Context

Base Address Array entry, a Doorbell Array register, and its

Device Context.

Device Software Software that is responsible for managing a USB device.

This software may or may not also be responsible for

configuring the device for use.

Direct-Assignment Direct-Assignment is a term used with virtualization to

describe a hardware device interface that is Directly

Assigned to a Virtual Machine. Direct-Assigned devices do

not suffer from the overhead incurred by device whose

hardware register-level interface is emulated in software by

a virtual environment.

Doorbell Array The Doorbell Array is an array of 256 Doorbell Registers,

which supports up to 255 USB devices or hubs. Doorbell

Register 0 is allocated to the Host Controller, the remaining

registers are allocated to individual Device Slots.

Doorbell Register A Doorbell Register provides system software with a

mechanism for notifying the xHC if it has Slot, or Endpoint

related work to perform. A DB Target field in the Doorbell

Register is written with a Reason Code to “ring” the

doorbell.

30

Downstream The direction of data flow from the host or away from the

host. A downstream port is the port on a hub electrically

farthest from the host that generates downstream data

traffic from the hub. Downstream ports receive upstream

data traffic.

DPH Error A DPH Error may be due to one or more of the following

conditions: an incorrect Device Address, the Endpoint

Number and Direction does not refer to an endpoint that is

part of the current configuration, or the DPH does not have

an expected sequence number.

DPP Error A DPP Error may be due to one or more of the following

conditions: CRC incorrect, DPP aborted, DPP missing, ACK

TP with the Retry Data Packet (rty) bit set, or the data

length in the DPH does not match the actual data payload

length.

DSP DownStream Port an SSIC term that “refers to the port of a

host to which a peripheral is connected”.

Dword A data element that is four bytes (32 bits) in size.

EDTLA Event Data Transfer Length Accumulator. Refer to section

4.11.5.2 for more information.

EHCI Enhanced Host Controller Interface. Intel defined USB host

controller specification for High-speed devices.

Embedded hub A USB 2.0 or 3.x hub that is located on the system board,

and between the xHC device and the system board USB

connector or non-removable USB device.

Endpoint A uniquely addressable portion of a USB device that is the

source or sink of information in a communication flow

between the host and device.

Endpoint Address The xHCI defines an Endpoint Address as 5-bit value that is

a combination of an Endpoint Number (bits 4-1) and an

Endpoint Direction (bit 0). For Control Endpoints, the

Direction (bit 0) is set to ‘1’ to form its Endpoint Address.

Note that xHCI encoding of an Endpoint Address is not the

same as the Endpoint Descriptor bEndpointAddress field

defined by the USB specification.

 31

Endpoint Context An Endpoint Context data structure defines a Transfer Ring

which is used to manage transfers associated with the

respective endpoint. An Endpoint Context exists for each

endpoint of a device.

Endpoint Direction The direction of data transfer on the USB. The direction can

be either IN or OUT. IN refers to transfers to the host; OUT

refers to transfers from the host. When computing the

Endpoint Address an IN endpoint is represented by a ‘1’

and an OUT endpoint is represented by a ‘0’.

Endpoint ID Identical to the Device Context Index (DCI). Refer to section

4.5.1.

Endpoint Number A four-bit value between 0h and Fh, inclusive, associated

with an endpoint on a USB device.

Enhanced SuperSpeed A collection of features or requirements that apply to both

USB 3.0 and USB 3.1 bus operation. may also be referred to

as “Enhanced SS”.

Enqueue Pointer The Enqueue Pointer is a pointer into a TRB Ring. It

references the next TRB location available to producer for

scheduling work items to the Ring. The Enqueue Pointer is

NOT defined as a physical xHC register. A facsimile of this

pointer is maintained internally by the xHC and system

software to manage a respective ring.

ERDY Handshake acknowledgment packet indicating an Endpoint

is Ready to move data.

Endpoint Service Interval Time

(ESIT)

The service period of an Interrupt or an Isochronous

Endpoint. An ESIT defines a period of one or more

microframes.

Event Data TD A TD that consists of just one Event Data TRB.

Event Data TRB A Normal Transfer TRB with its Event Data (ED) flag equal

to ‘1’. Refer to section 4.11.5.2.

Frame A 1 millisecond time base established on full-/low-speed

USB buses.

32

Fine-grain scatter/gather The xHCI TRBs support byte granularity for the TRB Data

Buffer Pointer and TRB Transfer Length fields, which

enables “fine-grain” scatter/gather operations.

FS See Full-speed.

Full-speed USB operation at 12 Mb/s. Also see low-speed, high-speed,

SuperSpeed and SuperSpeedPlus.

Handshake Packet A USB packet that acknowledges or rejects a specific

condition. For examples, see ACK and NAK.

High-bandwidth endpoint A high-speed USB device endpoint that transfers more than

1024 bytes and less than 3073 bytes per microframe.

High-speed USB operation at 480 Mb/s. Also see low-speed, full-speed,

SuperSpeed, and SuperSpeedPlus.

High-Touch High touch registers are referenced regularly during the

normal operation of the xHC by system software, e.g.

Ringing doorbells to queue work, managing interrupts, etc.

Host The host computer system where the USB Host Controller

is installed. This includes the host hardware platform (CPU,

bus, etc.) and the operating system in use.

Host Controller The host’s USB interface.

Host Controller Driver

(xHCD)

This software entity is the interface between the xHC and

the USB Driver (USBD). It translates system software

requests for USB operations to TRBs scheduled on pipes to

USB devices.

Host Controller Driver

Enumeration Component

(xHCDe)

This software entity is a component of the xHCD that

manages the enumeration of USB devices at power up,

when they are attached, and when they are detached.

Host Initiated Resume Duration

(HIRD)

HIRD is the minimum time the xHC will drive resume

signaling on a USB2 port when it initiates an exit from L1.

HS See High-speed.

Hub A USB device that provides additional connections to the

USB.

 33

Hub Tier One plus the number of USB links in a communication path

between the host and a peripheral device.

Input Device Context The Device Context component (Slot and Endpoint

Contexts) of an Input Context. An Input Context data

structure pointed to by a Command TRB.

Input Endpoint Context An Endpoint Context contained in an Input Context. An

Input Context data structure pointed to by a Command

TRB.

Input Slot Context A Slot Context contained in an Input Context. An Input

Context data structure pointed to by a Command TRB.

Integrated hub A Tier 2 USB 2.0 hub that is integrated into an xHC device.

Interval The time delay between scheduling periodic transfers.

Intervals are defined in frames (1ms.) for LS/FS devices,

microframes (125µs.) for HS and SS devices.

Isoch TD An Isoch Transfer Descriptor consists of an Isoch TRB

chained to 0 or more Normal TRBs, and describes a work

item for an isochronous endpoint. Isoch TDs are only found

on the Transfer Rings associated with Isoch Endpoints.

Isoch TRB An Isochronous Transfer Request Block that is always the

first TRB of an Isoch TD. They are only found on the

Transfer Rings associated with Isoch Endpoints. Refer to

section 4.11.2.3.

ISR The Interrupt Service Routine is the software invoked by an

interrupt.

L0 USB2 “On” power state.

L1 USB2 Link Power Managed (LPM) state.

L2 USB2 Suspend state.

L3 USB2 “Off” power state.

Lane A Lane is a point-to-point serial connection, typically

implemented as a differential signal pair.

34

Latency Tolerance Messaging

(LTM)

Latency Tolerance Messaging (LTM) adds the capability for

attached devices to provide information that can improve

the host platform's ability to select when and how long to

sleep. This is accomplished by an attached device sending

an LTM, informing the host of its acceptable service latency

between accesses, i.e. the device's latency tolerance.

LFPS Low Frequency Periodic Signal. Refer to USB3 spec.

Link A USB physical interconnect between two connected ports.

A dual-simplex Link consists of a pair of receive and

transmit Sublinks. A simplex Link consists of a single bi-

directional Sublink. The Sublinks of a dual-simplex Link

may be asymmetric in the number of Lanes that they

support and Sublink properties for the two directions.

link connection A “USB3 link connection” refers to the SuperSpeed Rx and

Tx signal pairs.

A “USB2 link connection” refers to the D+/D- signal pair.

Link Management Packet

(LMP)

A type of SuperSpeed header packet used to communicate

information between a pair of links.

Link TD A TD that consists of just one Link TRB.

Link TRB A Transfer Request Block that is always the last TRB of a

TRB Ring Segment. Link TRBs are used to form large, non-

contiguous Transfer Rings that cross Page boundaries.

Refer to section 4.11.5.1.

Low-speed USB operation at 1.5 Mb/s. Also see full-speed, high-speed,

SuperSpeed, and SuperSpeedPlus.

Low-Touch Low touch registers are referenced infrequently by system

software, e.g. only at initialization time, only when a USB

device is enumerated, etc.

LS See Low-speed.

Message Pipe A bi-directional pipe that transfers data using a

request/data/status paradigm. The data has an imposed

structure that allows requests to be reliably identified and

communicated, e.g. a Control endpoint.

 35

Microframe A 125 microsecond time base established on USB buses by

the xHC. Full-speed USB buses utilize an 8 microframe time

base.

LTM See Latency Tolerance Messaging.

MMIO Memory Mapped I/O

MOD The Modulus function "dividend MOD divisor" is the

remainder of the Euclidean division of the dividend by the

divisor.

MSI Message Signaled Interrupts. PCI feature that provides

vectored interrupts to a single interrupt controller.

MSI-X Extended Message Signaled Interrupts. PCI feature that

provides vectored interrupts to multiple interrupt

controllers.

NAK Handshake packet indicating a negative acknowledgment.

Normal TRB A Normal Transfer Request Block that is used on transfer

Rings to define a single contiguous buffer for a data

transfer. Normal TRBs may be “chained” to support

scatter/gather or buffer concatenation operations. Refer to

section 4.11.2.1.

NRDY Handshake acknowledgment packet indicating an endpoint

is Not Ready to move data.

OHCI Open Host Controller Interface. Industry defined USB host

controller specification for Low-speed and Full-Speed

devices.

Optional Normative If an Optional Normative feature is implemented, it shall

comply with the requirements specified for that optional

normative feature. The optional normative approach

assures interoperability between multiple vendors, by

definition, when implementing the same xHCI extensions.

Operational Registers The Operational Registers specify host controller

configuration and runtime modifiable state. And are used

by system software to control and monitor the operational

state of the host controller.

36

OSI An Operating System Instance is the software operating

environment that runs in a Virtual Machine. Virtualization

allows multiple Operating System Instances to concurrently

run within a platform.

Output Device Context A Device Context data structure pointed to by a Device

Context Base Address Array entry.

Output Endpoint Context An Endpoint Context contained in the Device Context data

structure pointed to by a Device Context Base Address

Array entry.

Output Slot Context A Slot Context contained in the Device Context data

structure pointed to by a Device Context Base Address

Array entry.

Page A Page refers to the smallest possible size of a block of

contiguous physical memory used by a processor

architecture that supports paged memory.

0 Peripheral Component Interconnect. Refer to the 0

specification.

PCI Config Space PCI Configuration Space. A segregated address space that

provides a means of identifying and enumerating the host

controller by system software.

PCIe PCI Express. Refer to the PCIe specification.

Periodic Pipe A “Guaranteed Bandwidth” Pipe defined by an Isoch or

Interrupt endpoint.

Pipe A logical abstraction representing the association between

an endpoint on a device and software on the host. A pipe

has several attributes; for example, a pipe may transfer data

as streams (stream pipe) or messages (message pipe).

Throughout this document, term “pipe” is used to

generically refer to an endpoint.

Pipe Schedule An internal xHC construct that identifies the endpoints that

currently have work items scheduled for USB.

POST Power On Self Test - Code executed during a computer's

pre-boot sequence.

 37

Power well Refer to Aux Power or Core Power.

PSCEG Port Status Change Event Generation. Refer to section

4.19.3.

Qword A data element that is eight bytes (64 bits) in size.

Register Space The Register Space represents the hardware registers

presented by the xHC to system software that reside in the

Memory Address Space.

Root Hub A (tier 1) Root Hub is always presented by the xHC. Refer to

section 4.19 for more information.

Root Hub Port The downstream port on a Root Hub.

Scatter/Gather Scatter/Gather mechanisms are used in Virtual Memory

environments to gather the non-contiguous physical

memory Pages into a contiguous data stream, or to scatter

a contiguous data stream to non-contiguous physical

memory Pages.

Service Interval The period specified by the bInterval field of the USB

Endpoint Descriptor. Service Intervals are always a multiple

of microframes (125µs.).

Service Interval Boundary The point in time defined by the beginning of the first

(micro)frame of a Service Interval.

Service Opportunity (SO) A Service Opportunity is a block of time that the xHC

allocates for moving packets on USB, for a specific

endpoint. An individual Service Opportunity is limited to

the number of packets defined by the Endpoint Context

Max Burst Size and Mult fields, however less packets may

be moved in a Service Opportunity.

Service Opportunity Packet Count

(SOPC)

The number of packets that the xHC shall schedule during

one Service Opportunity. The default value of the SOPC =

Endpoint Context (Max Burst Size x Mult.

set When used in reference to a flag or field of a data structure

or register, a flag shall be set to ‘1’ and field shall be set to a

specified value, which may include ‘0’.

38

SET_CONFIGURATION Refers to a standard USB Set Configuration request defined

in section 9.4.7 of the USB2 spec.

SET_INTERFACE Refers to a standard USB Set Interface request defined in

section 9.4.10 of the USB2 spec.

Setup Stage TD A Setup Stage Transfer Descriptor consists of a single

Setup Stage TRB. It describes a work item for a control

endpoint. Setup Stage TDs are only found on the Transfer

Rings associated with Control Endpoints.

Setup Stage TRB A Setup Stage Transfer Request Block that is always the

first TRB of a Setup Stage TD. They are only found on the

Transfer Rings associated with Control Endpoints. Refer to

section 4.11.2.2.

Slot Context The Slot Context data structure defines information that

applies to the slot, the device as whole, or to all Endpoint

Contexts.

Slot ID Refers to the index of a Device Slot. The Slot Identifier

defines a value that is used to index into the Doorbell Array

and Device Context Base Address Array. It is a logical

Device Address that is used for all system software

references to a physical USB device attached to the xHC.

SO See Service Opportunity.

SOF See Start-of-Frame.

SOPC See Service Opportunity Packet Count.

SS See SuperSpeed.

SSIC SuperSpeed Inter-Chip, refer to the SSIC spec.

SSP See SuperSpeedPlus.

Start-of-Frame

(SOF)

The first transaction in each USB2 (micro)frame. A SOF

allows endpoints to identify the start of the (micro)frame

and synchronize internal endpoint clocks to the host.

 39

Stream Pipe A pipe that transfers data as a stream of samples with no

defined USB structure, e.g. an Interrupt, Isoch, or Bulk

endpoint.

SR-IOV PCIe Single Root – I/O Virtualization. Refer to SR-IOV

specification.

Sublink A Sublink consists of one or more Lanes. A simplex Sublink

only supports a single bidirectional Lane. A dual-simplex

Sublink supports one or more unidirectional Lanes. All

Lanes of a multi-lane Sublink are the same speed.

SuperSpeed USB operation at Gen 1 speed (5 Gb/s). Also see

SuperSpeedPlus, low-speed, high-speed and full-speed.

Refer to the USB3 spec.

SuperSpeedPlus (SSP) USB operation at Gen 2 speed (10 Gb/s). Also see

SuperSpeed, low-speed, high-speed and full-speed.

However, where specific differences exist between the USB

3.0 and USB 3.1 definition of SuperSpeed features or

requirements, those differences will be uniquely identified

as SuperSpeedPlus (or SSP) features or requirements.Refer

to the USB3 spec.

System Software A general reference to the software that is responsible for

managing the xHCI.

TD See Transfer Descriptor.

TD Transfer Size The TD Transfer Size is defined by the sum of the Length

fields in all TRBs that comprise the TD.

Token Packet A type of packet that identifies what transaction is to be

performed on the bus.

Total Available Bandwidth The Total Available Bandwidth identifies a Bus Instance’s

ability to move real data. As rule of thumb, the Total

Available Bandwidth will be at least 20% lower than the

cited bit rate of a Bus Instance, or more depending on the

mix of packet sizes. Also note that multiple Root Hub ports

may share the bandwidth of a single Bus Instance.

Transaction The delivery of service to a USB endpoint; consists of a

token packet, optional data packet, and optional handshake

40

packet. Specific packets are allowed/required based on the

transaction type.

Transaction Packet

(TP)

Transaction Packets (TPs) are SuperSpeed packets that

traverse a path between the host and device. TPs are used

to control data flow between devices and the host as well

as to manage the end to end connection.

Transaction Translator A functional component of a USB hub. The Transaction

Translator responds to special high-speed transactions and

translates them to full/low-speed transactions with

full/low-speed devices attached on downstream facing

ports.

Transfer One or more bus transactions to move information

between a software client and its function.

Transfer Descriptor

(TD)

A Transfer Descriptor defines a single Transfer to a USB

device. A TD consists of one or more Transfer Request

Blocks. The TRBs of a Multiple-TRB Transfer Descriptor are

tied together using the Chain flag in the TRB Control

component.

Transfer Request Block

(TRB)

A TRB is a small, flexible data structure in memory that

defines the characteristics of a single DMA operation

executed by the xHC.

Transfer Ring A Transfer Ring is a TRB Ring associated with an Endpoint

Context. Each Transfer Ring describes the scheduled work

items for a single USB Endpoint.

Transfer Type Determines the characteristics of the data flow between a

software client and its function. Four standard transfer

types are defined: control, interrupt, bulk, and isochronous.

TRB See Transfer Request Block.

TRB Ring A TRB Ring is defined by three parameters: a pointer to the

TRB Ring data structure base address, and Enqueue and

Dequeue Pointers that define the “active” TRBs in the ring.

TT See Transaction Translator.

 41

U0 Maximum power USB3 link state. The USB3 link is in its full

power state and USB 3 device in the “On” power state.

U1, U2 Intermediate USB3 link power state. The link is in an

intermediate USB3 Link Power Managed (LPM) state and

the USB 3 device in “On” power state.

U3 Lowest USB3 link power state. USB3 device in Suspend

state.

UHCI Universal Host Controller Interface. Intel defined USB host

controller specification for Low-speed and Full-Speed

devices.

Universal Serial Bus Driver (USBD) The host resident software entity responsible for providing

common services to clients that are manipulating one or

more functions on one or more Host Controllers.

Universal Serial Bus Resources Resources provided by the USB, such as bandwidth and

power. Also see Device Resources and Host Resources.

Upstream The direction of data flow towards the host. An upstream

port is the port on a device electrically closest to the host

that generates upstream data traffic from the hub.

Upstream ports receive downstream data traffic.

USBD See Universal Serial Bus Driver.

USP UpStream Port - an SSIC term that “refers to the port of a

peripheral to which a host is connected”.

Virtual Intermediary

(VI)

A Virtual Intermediaries (VIsUS) describes a mechanism

that runs in the VMM, Service VM, or other software entity

for sharing devices between virtual platforms. It is assumed

that the mechanism shall be invoked and executed on

every IO transaction, i.e. generates VM_Enter and VM_Exit

events.

Virtualized Environment A platform software environment that includes a VMM

which manages VMs.

VM Virtual Machine. A Virtual Machine manages a single

Operating System Instance (OSI).

42

VMM Virtual Machine Manager. A Virtual Machine Manager

manages Virtual Machine instances in a virtualized

environment.

wMaxPacketSize Maximum Packet Size value defined by a USB Endpoint

Descriptor.

Word A data element that is two bytes (16 bits) in size.

XactErr A USB Transaction Error. May be due to a CRC error, a

timeout, etc.

xHCI Extended Capabilities The xHCI Extended Capabilities specify optional features of

a xHC implementation, as well as providing the ability to

add new capabilities to implementations after the

publication of this specification.

xHC instance A xHC instance is either the physical or virtual version of

the xHC presented as a PCIe SR-IOV Physical Function (PF0)

or Virtual Function (VF1-n). A xHC implementation that

does not support virtualization only presents a single xHC

instance to the platform.

Zero-based Value If a maximum is defined for a range of working values (e.g.

32), a Zero-based Value is a value where the legal range of

values is 0 to maximum-1 (e.g. 0 to 31).

 43

1.7 Compliance

Adopters can demonstrate compliance of their product(s) with this specification

through the xHCI compliance testing program provided by Intel ®. For details on

the xHCI compliance testing program, please send email to

ssusbcompliance@usb.org.

The xHCI Compliance Test Suite provides an excellent reference of software

expectations when communicating with the xHCI and a concise list of the test

validation assertions associated with this specification.

1.8 Documentation Conventions

1.8.1 Capitalization

Some terms are capitalized to distinguish their definition in the context of this

document from their common English meaning. Words not capitalized have their

common English meaning. When terms such as “memory write” or “memory

read” appear completely in lower case, they include all transactions of that type.

Register names and the names of fields and bits in registers and headers are

presented with the first letter capitalized and the remainder in lower case.

1.8.2 Bold Text

Terms or names in bold text indicate the sentence provides a basic xHCI

definition of the respective term/name. All other references to an xHCI defined

term/name use the exact same text string as the definition so that you can

search on it easily. Refer to section 1.5 for more information on searching.

1.8.3 Italic Text

Italic text is used to identify Capitalized names that are explicitly named xHCI;

registers, register fields, or flags in registers.

1.8.4 Numbers and Number Bases

Hexadecimal numbers are written with a lower case “h” suffix, e.g., FFFFh and

80h. Hexadecimal numbers larger than four digits are represented with a space

dividing each group of four digits, as in 1E FFFF FFFFh. Binary numbers are

written with a lower case “b” suffix, e.g., 1001b and 10b. Binary numbers larger

than four digits are written with a space dividing each group of four digits, as in

1000 0101 0010b.

All other numbers are decimal.

44

1.8.5 Implementation Notes

Implementation Notes should not be considered to be part of this specification.

They are included for clarification and illustration only. Implementation Notes

within this document are enclosed in a box and set apart from other text.

1.8.6 Word Usage

The word shall is used to indicate mandatory requirements strictly to be

followed in order to conform to the xHCI specification and from which no

deviation is permitted (shall equals is required to).

The use of the word must is deprecated and shall not be used when stating

mandatory requirements; must is used only to describe unavoidable situations.

The use of the word will is deprecated and shall not be used when stating

mandatory requirements; will is only used in statements of fact.

The word should is used to indicate that among several possibilities one is

recommended as particularly suitable, without mentioning or excluding others;

or that a certain course of action is preferred but not necessarily required; or

that (in the negative form) a certain course of action is deprecated but not

prohibited (should equals is recommended that).

The word may is used to indicate a course of action permissible within the limits

of the standard (may equals is permitted).

The word can is used for statements of possibility and capability, whether

material, physical, or causal (can equals is able to).

The abbreviation i.e. is for the Latin phrase id est which means that is.

The abbreviation e.g. is for the Latin phrase exempli gratia which means for

example.

1.8.7 Pseudo Code

Throughout this document pseudo code is used to illustrate operating

principals.

Comments are demarcated by the double forward slashes “//”.

The pseudo code conventions include:

If/else condition statements:

If conditions:

// true operations

 45

else

// false operations

And For loops:

For conditions:

// operations

1.8.8 Other Notation

The symbol combination “=>” shall be read as “transitions to”. e.g. OCA => ‘1’

means the value of OCA transitions to ‘1’.

§ §

46

2 Introduction

2.1 Motivation

The development of the eXtensible Host Controller Interface was driven by 3

key factors; Speed, Power Efficiency , and Virtualization.

Speed The storage capacities of portable devices have been increasing with

Moore’s Law. Vendors of these devices need high performance

interfaces so that these high capacity devices can be loaded in

reasonable amounts of time. The SuperSpeed support of the xHCI

addresses this need.

Power Efficiency When USB was originally developed, it was targeted at desktop

platforms and performance was the primary objective, which meant

that host power consumption was not an important consideration.

Since then, mobile platforms have become the platform of choice,

and their batteries have made host power consumption and idle

time efficiency key considerations. The xHCI elimination of the host

memory based transaction schedules and its support for the

advanced USB3 power management features are key to providing

more power efficient platforms without sacrificing performance.

Virtualization Virtualization is beginning to play a key role in system architectures

and the legacy USB host controller architectures exhibit some

serious shortcomings when applied to virtualized environments.

Legacy USB host controller interfaces define a data pump; where

critical state related to overall bus management (Bandwidth

allocation, Address assignment, etc.) reside in the software driver.

Trying to apply the standard hardware IO virtualization technique, of

replicating IO interface registers, to the legacy USB host controller

interface is problematic because critical state that must be managed

across Virtual Machines (VMs) is not available to hardware. The xHCI

architecture moves the control of this critical state into hardware,

enabling USB resource management across VMs. The xHCI

virtualization features also provide for: 1) Direct-Assignment of

individual USB devices (irrespective of their location in the bus

topology) to any VM, 2) minimizing run-time inter-VM

communications, and 3) support for native USB device sharing.

The eXtensible Host Controller Interface addresses these factors. In addition,

the xHCI architecture provides a new industry standard means for interfacing to

USB devices that delivers the extensibility necessary to meet future needs.

 47

2.2 Goals

The goal of xHCI architecture is to define a USB host controller to ultimately

replace UHCI/OHCI/EHCI, to provide highly power efficient operation, higher

performance, and extensibility to new USB specifications, such as USB3 and

beyond. Key xHCI architectural goals are:

 Efficient operation – idle power and performance better than current

USB host controller architectures.

 A device level programming model that is fully consistent with the

existing USB software model

 Decouple the host controller interface presented to software from the

underlying USB protocols

 Minimize host memory accesses, fully eliminating them when USB

devices are idle

 Eliminate the “Companion Controller” model

 Enable hardware “fail-over” modes in system resource constrained

situations so devices are still accessible, but perhaps at less optimal

power/performance point

 Provide the ability for different markets to differentiate hardware

capabilities, e.g. target host controller power, performance and cost

trade-offs for specific markets

 Define an extensible architecture that provides an easy path for new USB

specifications and technologies, such as higher bandwidth interfaces,

optical transmission medium, etc., without requiring the definition of yet

another USB host controller interface

2.3 Key features

Robust Support for all USB 3.x Features. This specification describes a host

controller architecture that is capable of supporting compliant USB 3.x

SuperSpeedPlus and SuperSpeed devices. This includes new USB 3.x features

such as asynchronous transactions and other extensions to the protocol.

Support for all USB device speeds. The xHCI specification defines support for

all USB device speeds including; USB 2.0 Low-, Full-, and High-speed devices,

and USB 1.1 Low- and Full-speed.

System Power Management. Current PC architectures are providing ubiquitous

support for aggressive power management. The USB3 architecture focuses on

power conservation to improve battery life in mobile, battery powered

applications. USB2 LPM (Link Power Management) extensions are also

48

supported by the xHCI. Special attention has been paid to minimizing power

consumption when the system is Idle. USB is a critical component in delivering a

consistent, coherent and robust user experience. If the implementation includes

PCI configuration registers, then the host controller is required to implement a

PCI Power Management Interface (PCI PM).

Provides simple, robust solutions for legacy USB host controller issues. The

xHCI specification enables solutions to a myriad of issues, which have proven to

be problematic for USB host controllers. Some of the issues resolved in the xHCI

specification include: Memory thrashing, Memory access efficiency, and conflicts

with CPU power management. The xHCI architecture provides both new specific

features and optimizations to its architecture to solve the legacy issues.

Optimized for Best Memory Access Efficiency. The xHCI’s data transfer model

eliminates the memory based transaction schedules that existed in previous

host controller architectures. It utilizes Transfer level operations to decrease the

average number of memory accesses required to execute USB operations.

Minimized Hardware Interface Complexity. The xHCI provides a simple

interface for software to provide the host controller with parameterized Transfer

Requests that the host controller uses to execute transactions on the USB. The

interface allows software to asynchronously add work to the interface while the

host controller is executing, without requiring the use of software

synchronization primitives.

Support for 32 and 64-bit Addressing. Over the implementation lifetime of this

specification, it is expected that xHCI controllers will be used increasingly in

architectures that support more than 32-bits of addressable memory space. The

xHCI inherently supports up to 64-bits of addressing.

Support for Virtual Memory. All xHCI register and data structures are designed

to support the “coarse-grain” Scatter/Gather requirements of page based virtual

memory architectures.

Support for “fine-grain” Scatter/Gather. The interface supports a hardware

scatter/gather method for all data transfers that may be used for accessing

memory. The EHCI scatter/gather mechanism was an example of Coarse Grain

scatter/gather. It was tailored specifically to work with page based virtual

memory, specifying a Start Offset, a Transfer Length and a list of Page aligned

addresses. The xHCI scatter/gather mechanism is not constrained by memory

page boundary or size limitations. xHCI scatter/gather lists may be comprised of

buffers starting on any byte boundary and any byte length. This feature allows

the xHCI scatter/gather mechanism to be used for accessing page aligned data,

as well as at the application level to minimize software data copies.

Support for Virtualization. Through use of the PCIe SR-IOV specification, the

xHCI provides a Virtual Machine Manager with the ability to enable Virtual xHCs

 49

(VxHCs) controllers, and assign any USB Device to any VxHC instance.

Virtualization support is an optional normative xHCI feature.

2.4 xHCI Product Compliance

Adopters and Contributors of the eXtensible Host Controller Interface

Specification for Universal Serial Bus (xHCI) have signed the eXtensible Host

Controller Interface (xHCI) Specification Contributor Agreement in order to be

licensed to use and implement this Specification. This Contributors Agreement

provides Contributors and Adopters with a reciprocal, royalty-free license to

certain intellectual property rights from Intel and other Adopters and

Contributors for their products that are compliant with the xHCI specification.

Adopters and Contributors can demonstrate compliance with the Specification

through the testing program as defined by Intel.

50

3 Architectural Overview

A USB Host System is composed of a number of hardware and software layers.

Figure 3-1 illustrates a conceptual block diagram of the building block layers in

a host system that work in concert to support USB 3.x.

Figure 3-1: Universal Serial Bus, Revision 3.x System Block Diagram

Class Driver

Hardware

Universal Serial Bus Driver (USBD)

eXtensible Host Controller Driver (xHCD)

P0 PnP1 ...

...

Dev

Hub

Dev

Dev

Hub

Dev

DevDev

Software

Scope of

xHCI

Application

Software

Class Driver

Application

Software

...

Application

Software

eXtensible Host

Controller (xHC)

USBDI

The component layers are:

 Application Software. This software uses the services provided by one

or more USB devices. Application software interfaces with USB devices

through standardized interfaces provided by the Class Drivers.

 51

 Class Driver Software. This software executes on the host PC

corresponding to a particular “class” of USB device (Mass Storage,

Human Interface, Audio, etc.). Class Driver software is typically part of

the operating system or provided with the USB device.

 USB Driver (USBD). The USBD is a system software Bus Driver that

abstracts the details of the particular Host Controller Driver for a

particular operating system. The generic USB interface presented to the

system by USBD is referred to as the USB Driver Interface or the USBDI.

 Host Controller Driver (xHCD). xHCD provides the software layer

between the Host Controller hardware and the USBD. The details of the

host controller driver depend on the host controller hardware register

interface definition.

 Host Controller (xHC). The host controller is the specific hardware

implementation of the host controller architecture. There is one host

controller specification for the USB 3 host controller, which enables

support for Low-, Full-, High-, SuperSpeed, and SuperSpeedPlus devices.

The interface presented by the xHC to the system is referred to as the

eXtensible Host Controller Interface or the xHCI.

 USB Device. This is a hardware device that expands the bus topology

(hub) or performs a useful end-user function. Interactions with USB

devices flow from the applications through the software and hardware

layers to the USB devices.

A key feature of the USB architecture is the Device Framework that it presents.

The Device Framework defines the interface between a USB device and a Class

Driver, which is independent of the particular host controller interface that a

system employs to communicate with the USB. This interface consists of a

Default Pipe, and zero or more additional class defined Pipes. The Default Pipe

(also referred to as the Default Control Endpoint) is used to enumerate and

manage a USB device. It can also be used to provide access to application

specific features of the device. The class defined Pipes provide specialized

Quality-of-Service requirements to perform device class specific functions.

The Device Framework allows the USB architecture to separate the details of the

“Bus” interface from that of the application specific (“Device”) interface,

resulting in a split driver model (xHCD/Class Driver). Note that in this context,

Device Class refers to the portion of a USB device that performs some useful

end user application specific function (e.g. Mass Storage, Audio, Human

Interface, etc.).

The USB bus driver (USBD) provides a standard method of interfacing to the

transport mechanisms (USB Framework) defined by the USB architecture (Isoch,

Interrupt, Control, and Bulk Pipes) and the Device Class driver is where all the

application specific knowledge resides. A Class Driver will also include any

52

“value add” that a vendor may provide. As long as the USB Framework presented

through the USBDI remains unchanged, the USB Class Drivers do not have to

change because the USB bus driver does (e.g. to support the xHCI).

Working groups in the USB-IF have defined several standard USB Device Classes

(Mass Storage, Audio, etc.). A USB device vendor may choose to define a

proprietary Device Class for their product or utilize part or all of an appropriate

USB-IF defined Device Class. The USB-IF defined Device Classes provide a

baseline set of features, for their respective class. Several USB Device Classes

are supported natively by today’s Operating Systems.

Native OS support for Device Classes allows a compliant device to provide a

user with basic functionality if the vendor Device Class drivers are not available,

however a vendor can define their own Class Driver to add value. Many

commodity USB device vendors (mice, keyboard, etc.) take advantage of those

provided by OS vendors and don’t bother to offer their own Class Drivers. If a

vendor offers a USB device that does not fall under one of the standard USB

defined Device Classes supported by an OS then they shall offer their own Class

Driver.

The xHCI is used for all communications to devices connected through the Root

Hub ports of the USB 3 host controller.

The xHCI architecture allows the USB 3 host controller to provide USB

functionality for all speed devices without requiring, as in previous generations,

companion controllers along with the associated software support for their

respective drivers. The enhanced features of the xHCI architecture are key to

delivering this simplified operating environment.

Note that Figure 3-2 does not imply a particular xHC implementation, however

the functional partitioning that it illustrates is useful for this discussion. The

Host Interface Logic manages the Registers and DMA associated with the xHC.

 53

Figure 3-2: USB 3 EXtensible Host Controller

xHC

Port 0 Port 1 Port n...

Host Interface

Control Dev nDev 0 ...Dev 1

Port 2 Port 3

LS/FS

Bus

Instance

HS

Bus

Instance

SS

Bus

Instance

Port Routing

The xHC always manages the respective speed USB devices connected to its

Root Hub ports. Depending on the implementation, the resources of a USB bus

instance (bandwidth, device addressability, etc.) may be presented on each root

hub port, shared across multiple root hub ports, or a combination of allocations.

This specification defines the registers and interfaces for the eXtensible Host

Controller Interface.

3.1 Interface Architecture

The xHCI interface defines three interface spaces (refer to Figure 3-3):

 Host Configuration Space. Every xHC implementation shall include a

means of identifying and enumerating the host controller by system

software. This specification provides a PCI example of the Host

Configuration Space, which is referred to as PCI Config Space. The PCI

Config Space definition provides a working example of configuration

space use for system xHC enumeration and resource (interrupt, power,

virtualization, etc.) management.

 MMIO Space. The Register Space represents the hardware registers

presented by the xHC to system software that reside in the Memory

Address Space. The Register Space provides for the implementation-

specific parameters defined in the xHCI normal and Extended

Capabilities registers, the Operational and Runtime control and status

registers, and the Doorbell Array used to flag accesses to individual USB

devices. This space, normally referred to as I/O space, is implemented as

Memory-Mapped I/O (MMIO) space.

54

 Host Memory. This space is defined by the control data structures

(Device Context Base Address Array, Device Contexts, Transfer Rings,

etc.) and data buffers that are allocated and managed by the xHC Driver

to enable the endpoint traffic of individual devices. This space is

allocated in the Kernel and User areas of the Memory Address Space.

Figure 3-3: General Architecture of the eXtensible Host Controller Interface

PCI Class

Code, etc.

Base Address

Registers

PCI Power

Management

Interface

PCI Extended

Capabilities

xHCI

Extended

Capabilities

Operational

Registers

Capability

Registers

Transfer

Ring

Trans

fer

Ring

Transfer

Ring

Transfer

Ring

Event

Ring

Cmd

Ring

Dev

Context

Base

Address

Array

Runtime

Registers

Doorbell

Array

PCI Extended

Capabilities

Event Ring

Segment

Table

Data

Buffer

Data

Buffer

Data

Buffer

Data

Buffer

Memory Address SpacePCI Config Space

MMIO Space Host Memory

Device

Contexts

The xHCI provides support for two categories of USB transfer types:

asynchronous and periodic. Isochronous and Interrupt transfers are Periodic

transfer types. Asynchronous transfer types include Control and Bulk. Figure 3-3

illustrates that the xHCI provides a homogeneous mechanism (Transfer Rings)

for each category of transfer type.

The USB Base Address Register (BAR) in the PCI Config Space points to the base

address of the xHC register interface. The xHC register interface consists of 4

major components: Capability Registers, Operational Registers, Runtime

Registers, and the Doorbell Array. The Operational and Capability Registers are

concatenated in MMIO space. The Runtime Registers are actually just an

extension of the Operational Registers. Their partitioning allows the xHC to

better support virtualization, by allowing the Runtime Registers to reside on a

separate page boundary. A xHCI Capabilities Pointer mechanism (similar to that

defined by PCI) is presented in the Capability Registers to point to new or

optional capabilities of an xHC implementation.

The Capability Registers specify read-only limits, restrictions and capabilities of

the host controller implementation. These values are used as parameters to the

host controller driver.

 55

The Runtime and Operational Registers specify host controller configuration

and runtime modifiable state, and are used by system software to control and

monitor the operational state of the host controller. These registers are

partitioned as a function of those that are heavily accessed dur ing runtime and

those that are accessed only at initialization time or only lightly during runtime

to better support virtualization of the xHCI.

The xHCI Extended Capabilities specify optional features of an xHC

implementation, as well as providing the ability to add new capabilities to

implementations after the publication of this specification.

The Doorbell Array is an array of up to 256 Doorbell Registers, which supports

up to 255 USB devices or hubs. Each Doorbell Register provides system

software with a mechanism for notifying the xHC if it has Slot or Endpoint

related work to perform. A DB Target field in the Doorbell Register is written

with a value that identifies the reason for “ringing” the doorbell. Doorbell

Register 0 is allocated to the Host Controller for Command Ring management.

The term Device Slot is used as a generic reference to a set of xHCI data

structures associated with an individual USB device. Each device is represented

by an entry in the Device Context Base Address Array , a register in the Doorbell

Array register, and a device’s Device Context . The term Slot ID refers to the

index used to identify a specific Device Slot. For example the value of Slot ID will

be used as an index to identify a specific entry in the Device Context Base

Address Array.

The Device Context Base Address Array supports up to 255 USB devices or

hubs, where each element in the array is a pointer to a Device Context data

structure.

The Command Ring is used by software to pass device and host controller

related commands to the xHC. The Command Ring shall be treated as read-only

by the xHC. Refer to section 4.9.3 for a discussion of Command Ring

Management.

The Event Ring is used by the xHC to pass command completion and

asynchronous events to software. The Event Ring shall be treated as read-only

by system software. Refer to section 4.9.4 for a discussion of Event Ring

Management.

A Transfer Ring is used by software to schedule work items for a single USB

Endpoint. A Transfer Ring is organized as a circular queue of Transfer

Descriptor (TD) data structures, where each Transfer Descriptor defines one or

more Data Buffers that will be moved to or from the USB. Transfer Rings are

treated as read-only by the xHC. Refer to section 4.9.2 for a discussion of

Transfer Ring Management.

56

All three types of rings support the ability for system software to grow or shrink

them while they are active. Special TDs written to the Transfer and Command

rings allow software to change their size, however since the Event Ring is read-

only to software, the Event Ring Segment Table is provided so that software

may modify its size.

3.2 xHCI Data Structures

The xHC is expected to run in virtual memory environments where the size of a

contiguous block of physical memory will be limited by the Page size of the

system. The data structures that the xHC uses to manage devices and endpoints

are designed to accommodate this limitation, by either keeping the data

structure under 4K Bytes (the minimum Page size supported), or providing

mechanisms to link non-contiguous blocks of physical memory to form larger,

logically contiguous data structures, e.g. circular queues of data structures that

point to the data buffers used for transferring USB data to or from the host. The

data buffers referenced by these data structures may be byte aligned and

reference from 1 to 64K bytes of contiguous physical data.

3.2.1 Device Context Base Address Array

The Device Context Base Address Array (DCBAA) provides the xHC with a Slot ID

based lookup table for accessing the Device Context data structure associated

with each slot. This data structure consists of an array of pointers to Device

Context data structures. When a device attach is detected: system software

initializes a Device Context data structure, requests a Slot ID from the xHC, and

inserts a pointer to the newly created Device Context into the DCBAA at the

location indicated by the Slot ID.

Note that the first entry (Slot ID = ‘0’) in the Device Context Base Address Array

is utilized by the xHCI Scratchpad mechanism. Refer to section 4.20 for more

information.

3.2.2 Device Context

The Device Context data structure is managed by the xHC and used to report

device configuration and state information to system software. The Device

Context data structure consists of an array of 32 data structures. The first

context data structure (index = ‘0’) is a Slot Context data structure (6.2.2). The

remaining context data structures (indices 1-31) are Endpoint Context data

structures (6.2.3).

As part of the process of enumerating a USB device, system software allocates a

Device Context data structure for the device in host memory and initializes it to

‘0’. Ownership of the data structure is then passed to the xHC with an Address

Device Command. The xHC maintains ownership of the Device Context until the

device slot is disabled with a Disable Slot Command. The Device Context data

 57

structure shall be treated as read-only by system software while it is owned by

the xHC.

3.2.3 Slot Context

The Slot Context data structure contains information that relates to the device

as a whole, or affects all endpoints of a USB device. This data structure is

defined as a member of the Device Context and Input Context data structures.

Refer to section 3.2.5 for information on the Input Context data structure.

The information provided by the Slot Context includes; control, state,

addressing, and power management. The Slot States reported by the xHC

identify the current state of a device and map closely to the USB Device States

described in the USB specification. The addressing information is used for a

variety of purposes; The USB Device Address, assigned by the xHC, is available

for developers to trace device related USB activity with a bus analyzer. The

Route String is used by the xHC to target SuperSpeed packets. And the Speed,

TT Port Number, and TT Hub Slot ID fields allow the xHC to execute the split

transactions necessary to address low- and full-speed devices attached to high-

speed hubs. The power management information includes the Max Exit Latency,

used by the xHC to determine the scheduling of Isoch packets on the bus.

As a Device Context member, the Slot Context data structure is used by the xHC

to report the current values of device parameters to system software. The Slot

Context data structure of a Device Context is also referred to as “Output Slot

Context”.

As an Input Context member, the Slot Context data structure is used by system

software to pass command parameters to the host controller. The Slot Context

data structure of an Input Context is also referred to as “Input Slot Context”. If a

command targeted at a Device Slot is successful, the xHC will update the Output

Slot Context to reflect the parameter values that it is actively using to manage

the device prior to generating a Command Completion Event .

An xHCI Reserved area of the Slot Context is available as an xHC implementation

defined scratchpad.

All Reserved fields in the Slot Context are for the exclusive use of the xHC and

shall not be modified by system software except when the Slot is in the Disabled

state.

3.2.4 Endpoint Context

The Endpoint Context data structure defines the configuration and state of a

specific USB endpoint. This data structure is defined as a member of the Device

Context and Input Context data structures. Refer to section 3.2.5 for information

on the Input Context data structure.

58

Most of the fields of the Endpoint Context contain endpoint related type,

control, state, and bandwidth information, that correspond to the information in

the associated endpoint related descriptors reported by the device. An Endpoint

Context also defines a TR Dequeue Pointer field, which normally provides a

pointer to the Transfer Ring associated with the pipe. There is a special case for

USB3 Bulk endpoints where Streams may be associated with an endpoint.

Streams allow the data stream of an endpoint to be multiplexed between

Transfer Rings by the device (refer to section 4.12 for more information on

Streams). In this case, a level of indirection is introduced to access the Transfer

Rings associated with the endpoint, and the Endpoint Context TR Dequeue

Pointer field contains a pointer to a Stream Context Array data structure

(commonly referred to as a Stream Array), where each Stream Context data

structure in the array may contain a NULL pointer (if the Stream ID is not

assigned) or point to the Transfer Ring or another Stream Context Array

associated with the respective Stream.

Note that the Device Context and Input Context data structures provide for all

possible (31) endpoints that can be declared by a USB device. Most devices

declare only a small number of endpoints, which means that many of the

Endpoint Context data structures in a Device Context or Input Context may be

unused.

The Endpoint Context also contains some fields that are helpful in debugging

the transfer operations associated with the pipe. An Error Counter (CErr) may be

used to force unlimited retries of USB transactions.

As a Device Context member, the Endpoint Context data structure is used by the

xHC to report the current values of endpoint related parameters to system

software. In this document the Endpoint Context data structure of a Device

Context is also referred to as “Output Endpoint Context”.

As an Input Context member, the Endpoint Context data structure is used by

system software to pass endpoint related command parameters to the host

controller. In this document the Endpoint Context data structure of an Input

Context is also referred to as “Input Endpoint Context”. If a command

referencing an Input Context is successful, the xHC will update the Output

Endpoint Context to reflect the parameter values that it is actively using to

manage the endpoint prior to generating a Command Completion Event.

An xHCI Reserved area of the Endpoint Context is available as an xHC

implementation defined scratchpad.

3.2.4.1 Stream Context Array

A Stream Context Array is employed to define the Transfer Rings of a USB3

endpoint that supports Streams. A Stream Context Array consists of Stream

Context data structures. The number of Stream Context data structures in a

 59

Primary Stream Context Array and its location are defined by fields in the parent

Endpoint Context.

Figure 4-20 illustrates how a Stream Context Array may be used to extend the

number of Transfer Rings that are supported by an endpoint.

3.2.4.1.1 Stream Context

The Stream Context data structure provides a pointer to the Stream’s Transfer

Ring and provides some opaque (scratchpad) space for the xHC.

3.2.5 Input Context

The Input Context data structure is used by system software to define device

configuration and state information that will be passed to the xHC by an Address

Device, Configure Endpoint, or Evaluate Context Command . It consists of an

Input Control Context data structure, followed by a Slot Context, and 1-31

Endpoint Context data structures. The Input Control Context data structure

qualifies which of the remaining contexts are affected by the command. After a

command is complete, software may reuse or free the Input Context data

structure.

Throughout this document Slot Context or Endpoint Contexts contained in an

Input Context are also referred to as “Input” Slot or Endpoint Contexts.

Refer to section 6.2.5 for more information on the Input Context.

3.2.5.1 Input Control Context

The Input Control Context data structure contains two groups of flags (Drop and

Add) organized as bit vectors. The interpretation of these flags is command

dependent, but generally they are used to indicate which endpoints are affected

by the command and how.

For example: to set up the xHC to support a particular USB device configuration,

software will initialize the Endpoint Context data structures of an Input Context

with the target endpoint configuration information, insert a Configure Endpoint

Command on the Command Ring that points to the Input Context, and ring the

Host Controller Doorbell. The Input Endpoint Context information would include:

type, Max Packet Size, Interval, etc. The Add flags in the Input Control Context

indicate which endpoints software wants to be added to the xHC’s list of valid

endpoints, i.e. which Input Endpoint Contexts are valid. If the command is

successful, the endpoint information in the Input Context is copied by the xHC to

the respective contexts in the Device Context and the xHC will set the state of

those endpoints to Running and begin listening to their doorbells.

Refer to section 6.2.5.1 for more information on the Input Control Context.

60

3.2.6 Rings

A Ring is a circular queue of data structures. Three types of Rings are used by

the xHC to communicate and execute USB operations:

 Command Ring

o One for the xHC

 Event Ring

o One for each Interrupter (refer to section 4.17)

 Transfer Ring

o One for each Endpoint or Stream

The Command Ring is used by system software to issue commands to the xHC.

The Event Ring is used by the xHC to return status and results of commands and

transfers to system software.

Transfer Rings are used to move data between system memory buffers and

device endpoints.

Below is a description of the operation of a Transfer Ring. All ring types employ

the same basic mechanisms to transfer information between the xHC and host

memory.

3.2.6.1 Transfer Ring Example

Transfers to and from the Endpoint of a USB device are defined using a Transfer

Descriptor (TD), which consists of one or more Transfer Request Blocks (TRBs,

refer to sections 4.11 and 6.4). Transfer Descriptors are managed through

Transfer Rings that reside in host memory. A Chain flag in the TRB is used to

identify the TRBs that comprise a TD. Therefore, a TD refers to a conse cutive set

of TRB data structures on a Transfer Ring, where the Chain flag is set in all but

the last TRB of a TD. Note that a TD may consist of a single TRB, whose Chain

flag shall not be set.

A Transfer Ring exists for each active endpoint or Stream declared by a USB

device. Transfer Rings contain “Transfer” specific TRBs. Section 4.11.2 for more

information on Transfer TRBs.

 61

Figure 3-4: Transfer Ring2

TRB

TRB

TRB

TRB

TRB

TRB

TRB

TRB

Dequeue Pointer

Enqueue Pointer
Transfer

Descriptors

Transfer Ring

Example TRB Ring Values:

 Enqueue Pointer = 7

 Dequeue Pointer = 1

 Ring Size = 8

TRB

Execution

xHCI

Endpoint

Information
0

In the simplest case, software defines a Transfer Ring by allocating and

initializing a memory buffer for it, then setting the Enqueue and Dequeue

Pointers to the address of this memory buffer and writing it into the TR Dequeue

Pointer field of the associated Endpoint or Stream Context. Each memory buffer

that comprises a Transfer Ring is called a Segment. Multiple Segments may be

linked together to form large rings, and Segments may be added or removed

from a ring during runtime. A Transfer Ring is empty when the Enqueue Pointer

equals the Dequeue Pointer.

Note: The Transfer Ring Enqueue and Dequeue Pointers are not accessible through

physical xHC registers. They are logical entities, maintained internally by both

system software and the xHC. Refer to section 4.9.2 for more information on

Enqueue and Dequeue Pointers.

After a Transfer Ring is initialized Transfer Descriptors (comprised of one or more

TRBs) may be placed on it.

A “ring” is formed by the placement of a special Link TRB at the end of a

Transfer Ring which jumps the TRB execution back to its beginning.

3.2.7 Transfer Request Block

2When the Dequeue and Enqueue Pointers are equal the Transfer Ring is empty. The Dequeue Pointer identifies
the address of the next TRB to be executed by the xHC. The Enqueue Pointer identifies the address of the next
TRB location available to software for queuing a TD. TRBs between the Dequeue and Enqueue Pointers are
owned by the xHC.

62

Figure 3-5: Transfer Request Block

Transfer Request

Block

Data Buffer Pointer (64)
(63:0) Address

or (63:0) Immediate Data

Status (32)

Control (32)

A Transfer Request Block (TRB) is a data structure constructed in memory by

software to transfer a single physically contiguous block of data between host

memory and the xHC. TRBs contain a single Data Buffer Pointer, the size of the

buffer, and some additional control information.

3.2.7.1 Operation

For small, single buffer operations (of which many are required in the USB

protocol) a TD will be composed of a single TRB. For large multi-buffer

operations (e.g. Scatter/Gather), TRBs can be chained to form a complex TD. The

small size of the TRB data structure allows up to 256 individual buffers to be

defined in a 4K Segment (page of memory).

The longer a system is running, the harder it is to find contiguous pages in

physical memory. If due to runtime changes in workload demands, hot-plug

events, etc., the host needs to increase the size of an existing Transfer Ring or

allocate a multi-page Transfer Ring, then a special Link TRB may be used to

extend a ring to include additional non-physically contiguous Segments.

The Data Buffer Pointer field of a TRB provides byte granularity for data

addressing.

The Length field, which resides in the Status Dword, identifies the size of the

buffer referenced by the Data Buffer Pointer. The maximum value the Length

field may contain is 64K. When Length bytes are transferred, the next TRB in the

ring is automatically accessed by the xHC. It is system software’s responsibility

to ensure that the Length field is consistent with any Page crossings that may be

encountered.

The Control Dword in the TRB shall contain a TRB Type field and may contain

one or more of the following fields: Chain (CH), Interrupt On Completion (IOC),

Immediate Data (IDT), No-Snoop (NS), Interrupt-on Short Packet (ISP), Start

Isoch ASAP (SIA), and Frame ID. Refer to section 6.4.1 for more information on

the contents and use of the Transfer TRB Control Dword.

 63

Figure 3-6: Simple Transfer Example

Dequeue Pointer

TRB

TRB

TRB

TRB

TRB

TRB

TRB

TRB

Pointer

Rsvd Length

Ctrl (Normal)

Data

Buffer

Page

Empty TRB

Pending TRB

Data

Data

Buffer

Page
Enqueue Pointer

TRB

Single TRB

Transfer Description (TD)

Pending

TDs

Transfer Ring

Execution

Key

Length

Page

Offset

Figure 3-6 illustrates a Transfer TRB Ring with multiple pending TDs. The

Enqueue Pointer identifies the next TRB location available to system software

for scheduling work (TDs) to the Ring. The Dequeue Pointer identifies the next

TRB in the Transfer Ring to be executed by the xHC. Upon completion of a

Transfer TRB, the Length and Status of the transfer may optionally be reported

in a Transfer Event TRB. Refer to section 6.4.2.1 for more information on the

Transfer Event TRB.

Note: A Transfer Ring may include an Event Data TRB. Rather than pointing to a Data

buffer this TRB contains a 64-bit value which software may use to tag a TD and

generate a special Transfer Event to pass that tag back to software when the TD

is complete. Refer to section 4.11.5.2 for more information.

3.2.7.2 Other Rings

In addition to the Transfer Ring, the xHCI utilizes a Command and Event Rings.

These rings are described later in this document. All xHCI ring types support the

ability of software to grow or shrink them while the xHC is actively using them.

3.2.8 Scatter/Gather Transfers

Virtual Memory environments divide physical memory into Pages, and use Page

Tables to make non-contiguous physical memory appear contiguous in User

“virtual” address space. Scatter/Gather mechanisms are typically used to

concatenate the non-contiguous physical memory Pages into a contiguous data

stream to present to a device. In this case, the host builds a Multi -TRB TD to

define the contiguous virtual memory seen by the User. Because the block of

User memory to be transferred often does not start on a Page boundary, the

Data Buffer Pointer of the first TRB of a Multi-TRB TD may not point to a Page

boundary (and the Length field of that TRB will be less than a Page Size).

Subsequent TRBs of the TD will point to Page boundaries and be Page Size in

length, respectively, defining full Pages of data, except for the last TRB, whose

Data Buffer Pointer will point to a Page boundary but may have a Length value

less than the Page Size.

Transfers that are comprised of non-contiguous data (e.g. cross memory Page

boundaries) are referred to as Scatter/Gather Transfers. Chained TRBs are used

64

to provide the additional pointers that are required to define a Scatter/Gather

Transfer. A sequence of “chained” TRBs form a Multi-TRB Transfer Descriptor.

The Chained bit in the TRB Control word is set in all TRBs, except the last one of

a Multi-TRB TD. Chained TRBs are always contiguous in a Transfer Ring.

Software shall never update the Enqueue Pointer (that is, toggle the Cycle bit of

a TRB) until all TRBs between the previous and the new Enqueue Pointer

location are fully formed. It is the responsibility of system software to ensure

that the TDs are correctly formed, i.e. the TRBs of a TD are contiguous in the

Transfer Ring and correctly chained.

The size of a Scatter/Gather Transfer is equal to the sum of the Length fields all

the TRBs of a TD.

Figure 3-7: Scatter/Gather Transfer Example

Data

Data

TRB

TRB

TRB

TRB

TRB

TRB

TRB

TRB

Pointer

Rsvd Length

Ctrl (Normal, Chain)

Transfer

Descriptor
(3 TRBs)

1 Transfer

Descriptor

Pointer

Rsvd Length

Ctrl (Normal, Chain)

Pointer

Rsvd Length

Ctrl (Normal)

Dequeue Pointer

Enqueue Pointer

Transfer Ring

Execution

The total TD transfer

length equals the sum

of its TRB Lengths

Length

Initial Page

Offset

Data

In the figure above note that the Chain bit (CH) is set in all but the last TRB of

the Multi-TRB TD. The xHC parses the TRBs in the Multi-TRB TD from the

Dequeue Pointer towards the Enqueue Pointer (top to bottom in this figure) to

form a concatenated data buffer from separate buffers that reside in memory. If

the Transfer Ring was associated with an OUT Endpoint then the concatenated

data buffer would be sent to the USB Device as single transfer.

Note that no constraints are placed on the TRB Length fields in a Scatter/Gather

list. Classically all the buffers pointed to by a scatter gather list were required to

be “page size” in length except for the first and last (as illustrated by the

example above). The xHCI does not require this constraint. Any buffer pointed to

by a Normal, Data Stage, or Isoch TRB in a TD may be any size between 0 and

64K bytes in size. For instance, if when an OS translates a virtual memory buffer

into a list of physical pages, some of the entries in the list reference multiple

contiguous pages, the flexible Length fields of TRBs allow a 1:1 mapping of list

entries to TRBs, i.e. a multi-page list entry does not need to be defined as

multiple page sized TRBs.

 65

3.2.9 Control Transfers

Several features of a Control Endpoint require that it be handled differently than

other USB endpoint types. In particular a Control Endpoint defines a Message

Pipe, while all other endpoint types are Stream Pipes.

A USB Message Pipe is bidirectional and transfers data using the USB

setup/data/status stage paradigm. The data has an imposed structure that

allows requests to be reliably identified and communicated. A USB Stream Pipe

(Isoch, Interrupt, and Bulk endpoint) transfers data as a stream of samples with

no defined USB structure.

USB Control transfers minimally require two transaction stages on the bus:

Setup and Status. A control transfer may optionally contain a Data stage

between the Setup and Status stages. The xHCI defines three types of TDs:

Setup Stage, Data Stage, and Status Stage TDs, which correspond to respective

USB control transfer stages, to support control transfers. Software “constructs”

a control transfer by placing either two (Setup Stage and Status Stage), or three

(Setup Stage, Data Stage, and Status Stage) TDs on the Transfer Ring before

ringing the doorbell.

A Setup Stage TD generates a USB SETUP transaction, which is used to transmit

information to the control endpoint of a USB device. A Setup Stage TD always

consists of a single Setup Stage TRB which contains the 8 byte Setup Data

described in section 9.3 of the USB2 spec.

Software is responsible for the amount of data that is transferred with a Data

Stage TD and its direction are consistent with the length and direction specified

by the Setup Data in the Setup Stage TRB . A Data Stage TD consists of a Data

Stage TRB followed by zero or more Normal TRBs. If the data is not physically

contiguous, Normal TRBs may be chained to the Data Stage TRB. All the TRBs in

the Data Stage TD transfer data in the same direction (i.e., all INs or all OUTs), as

defined by the Data Stage TRB.

A Status Stage TD is required to complete a control transfer by retrieving the

completion status of the USB SETUP transaction from the USB device. The

Status Stage TD is always the last TD in a control transfer sequence. A Status

Stage TD always consists of a single Status Stage TRB and may include an Event

Data TRB. Refer to section 8.5.3.1 of the USB2 specification and section 8.12.2.1

of the USB3 specification for more information on status reporting.

66

Figure 3-8: Control Transfer Descriptor Example

TRB

TRB

TRB

TRB

TRB

TRB

TRB

TRB

Transfer Descriptors

Dequeue Pointer

Enqueue Pointer

Transfer Ring

Execution

IN Data Length

Initial Page

Offset

Setup Transfer with

no Data Stage

Setup Transfer with

an IN Data Stage

Data Buffer Pointer

(Setup Data)

Rsvd Length = 8

Ctrl (Setup, Immediate)

Data Buffer Pointer

(Not Used)

Rsvd Length = 0

Ctrl (Status Stage, IN)

Data Buffer Pointer

(Setup Data)

Rsvd Length = 8

Ctrl (Setup Stage, Immediate)

Data Buffer Pointer

Rsvd Length

Ctrl (Data Stage, IN)

Data Buffer Pointer

(Not Used)

Rsvd Length = 0

Ctrl (Status Stage, OUT)

Figure 3-8 is an example of the contents of a Control Endpoint Transfer Ring.

This example illustrates two control transfers: 1) a Setup stage transfer with no

Data stage (top TD) is followed by 2) a Setup stage transfer with an IN Data

stage. Note that the Status Stage TRBs define ‘0’ length transfers, and that the

direction of the Data Stage and Status Stage TRBs depends on the Control

transfer direction identified in the Setup Stage TRB, and whether a Data Stage is

required. Refer to section 4.11.2.2 for more information on Setup Stage

transfers.

3.2.10 Bulk and Interrupt Transfers

Bulk and Interrupt Transfer Descriptors use Normal TRBs and depending on the

data buffering requirements can use one or more chained Normal TRBs to form a

TD. Multi-TRB Bulk or Interrupt TDs may define a Scatter/Gather operation as

described in section 3.2.8.

3.2.11 Isoch Transfers

The Transfer Ring associated with an Isochronous Endpoint works as follows:

 Each Isoch Transfer Descriptor (TD) consists of an Isoch TRB chained to

zero or more Normal TRBs.

 The TRB Type field in the Control field of the first TRB of an Isoch TD is

set to Isoch TRB.

 One Isoch TD is “consumed” every Interval (defined by bInterval in the

USB Endpoint Descriptor).

 67

 If the data required by an Isoch TD is not physically contiguous (e.g.

crosses a page boundary), then one or more additional Normal TRBs shall

be chained to the Isoch TRB by the host.

 The size of an Isoch Transfer in bytes shall be limited to either Max

Packet Size * Max Burst Size * Mult (defined in the Endpoint Context), or

the sum of the Length fields defined by the Isoch TRB and all Normal

TRBs chained to it.

 For Isoch Out transfers, the xHC shall generate a Ring Underrun Transfer

Event if the Transfer Ring is empty when an active interval boundary is

reached.

 For Isoch IN transfers, the xHC shall generate a Ring Overrun Transfer

Event if the Transfer Ring is empty when an active interval boundary is

reached.

 IMPLEMENTATION NOTE

Fractional Isoch Transfers

To relax the real-time demands on the system, an Isoch Transfer scheduled by

an application may define the data for many frames3. Also in order to hit a

precise data rate the size of the Isoch transfers may have to vary from frame to

frame. For instance, system software may define 10ms. of 44.1 KHz 16-bit stereo

data to be transferred to a set of USB headphones. To minimize latency and the

buffering requirements of the USB headphones, the driver will schedule the

minimum amount of data to be sent every millisecond. That is, 176 bytes (44 4 -

byte/sample (16-bits/channel)) are moved every millisecond for 9ms. and 180

bytes are moved in the 10th ms. (to cover the “.1”). Assuming that the 10ms. of

audio data is stored contiguously on a single page in memory, then a set of 10

TDs shall be posted to the Transfer Ring each containing a single Isoch TRB, with

the Length of the last TRB being 4 bytes larger than the rest.

If the audio data buffer is not physically contiguous (e.g. crosses a Page

boundary), then an additional Normal TRB will be chained to the Isoch TD that

crossed the Page boundary.

3The period between isochronous transfers is often referred to as a “Frame”, however strictly speaking the
period is defined by the Endpoint Descriptor bInterval field. The value of bInterval is in Frames (1ms.) or
Microframes (125μs.) depending on whether the device is LS/FS or HS/SS. In this document, references to
“frame” or “interval” in isochronous discussions should be interpreted as “the period between isochronous
transfers”.

68

Figure 3-9: Isochronous Transfer Example

TRB

TRB

TRB

TRB

TRB

TRB

TRB

TRB

Multi-TRB

Transfer Descriptor

Pointer

Rsvd Length

Ctrl (Isoch)

Dequeue Pointer

Enqueue Pointer

0

Execution

Last TRB of Data Page

First TRB of next Data Page

Frame A

Frame D

Frame C (Hi)

Frame C (Lo)

Frame B

Frame ATransfer

Ring

4 Isoch Transfer

Descriptors
(5 TRBs)

Pointer

Rsvd Length

Ctrl (Isoch)

Frame B

Pointer

Rsvd Length

Ctrl (Isoch, Chain)

Pointer

Rsvd Length

Ctrl (Normal)

Frame C (Hi)

Frame C (Lo)

Pointer

Rsvd Length

Ctrl (Isoch)

Frame D

4 Transaction

Buffers,

where Frame C

crosses a Page

Boundary

Initial Page

Offset

In Figure 3-9 above note:

 Four Isoch TDs are defined, representing the Isoch data scheduled for 4

consecutive frames.

 The Isoch data transferred in Frames A, B and D are all contiguous blocks

(i.e. no page boundary crossings).

 The Isoch data to be transferred in Frame C crosses a Page boundary.

The Pointer of the Isoch TRB (Frame C Lo) is used to access the first

bytes of Isoch data in memory. A Normal TRB is chained to the Frame C

Isoch TRB, and the Pointer of the Normal TRB (Frame C Hi) is used to

access the remaining Isoch data for the frame on the next Page of

memory.

 The number of bytes that will be transmitted in single USB Frame is

defined by sum of the Length fields of all TRBs in an Isoch TD.

This example illustrates a case where the Isoch data buffers for multiple

Intervals are physically contiguous. The xHCI Isoch mechanism also supports

cases where multiple data buffers are transferred in a single Isoch Interval. In

this latter case, one or more Normal TRBs may be chained to the initial Isoch

TRB. It is the responsibility of system software to ensure that the Length and

 69

Pointer fields of all TRBs in an Isoch TD are correct. An Isoch TD is terminated by

a TRB with the Chain flag cleared to ‘0’.

3.3 Command Interface

To manage the xHC and the devices attached to it, the xHC provides an

independent Command Ring interface. A work item on a Command Ring is called

a Command Descriptor (CD). Command Ring operation is very similar to that of

Transfer Rings, software issues a command to the xHC by placing a CD on the

Command Ring then rings the Host Controller doorbell. The size of the

Command Ring can be modified using the same Link TRB mechanism that

Transfer Rings use.

All commands result in a Command Completion Event being placed on the Event

Ring, which reports the completion status of the command.

Commands are executed by the xHC in the order that they are placed on the

Command Ring. System software may add CDs to the Command Ring while it is

running, however the execution of CDs should be stopped if software wants to

delete or reorder (i.e. raise the priority of) scheduled CDs. Special Command

Ring controls allow commands to be stopped or aborted.

The table below provides a summary of the xHCI command set. The remainder

of this section provides a high level description of each of the commands.

Table 3-1: Command TRB Summary

Name Description

No Op Tests TRB Ring mechanism

Enable Slot Returns a Device Slot ID and transitions the Device Slot from the

Disabled to the Default state.

Disable Slot Transitions the selected Device Slot from any state to the Disabled

state. Any pending transfers are terminated and the slot is made

available again.

Address Device Enables the Default Control Endpoint, optionally issues a

SET_ADDRESS request to the USB device, and transitions the

Device Slot to the Addressed state.

Configure

Endpoint

Enables and/or Disables selected endpoints for the device.

70

Evaluate

Context

Informs xHC that software has modified selected Context

parameters.

Reset Endpoint Resets selected Endpoint. This command is used to recover from a

halted endpoint.

Stop Endpoint Stops or aborts operation on selected Endpoint.

Set TR

Dequeue

Pointer

Updates the Transfer Ring Dequeue Pointer of an enabled

endpoint.

Reset Device Resets selected Device Slot. This command is used to synchronize

the state of a Device Slot when resetting a USB device.

Force Event Used with virtualization by a VMM to force a TRB on to an Event

Ring owned by a VM.

Negotiate

Bandwidth

Initiates Bandwidth Request Events.

Set Latency

Tolerance

Used by software to set the Best Effort Latency Tolerance (BELT)

value for the xHC.

Get Port

Bandwidth

Provides a means for software to identify the periodic bandwidth

available on xHC Root Hub Ports.

Force Header Allows software to generate SS LMPs or TPs to a Root Hub Port.

Refer to Table 6-86 for the TRB Type IDs associated with Commands.

3.3.1 No Op

The No Op Command may be issued by software to exercise the TRB Ring

mechanism of the xHC without affecting any xHC or USB Device state, or to

report the current value of the Command Ring Dequeue Pointer.

Refer to section 4.6.2 for more information on the No Op Command.

3.3.2 Enable Slot

The Enable Slot Command is issued by software to obtain an ID for an available

Device Slot. System software uses the Slot ID returned by the command as an

index into the Device Context Base Address Array to link a Device Context data

structure for the USB device to a xHC Device Slot.

 71

Refer to section 4.9.3 for more information on the Enable Slot Command.

3.3.3 Disable Slot

The Disable Slot Command is issued by software to inform the xHCI that a

Device Slot is no longer needed, and that any resources assigned to the slot can

be released. This command would be issued when a device is detached from the

USB. A disabled Device Slot is available for assignment by the Enable Slot

Command.

Refer to section 4.9.4 for more information on the Disable Slot Command.

3.3.4 Address Device

This xHCI command replaces the USB SET_ADDRESS request normally

generated by a system enumerator when enumerating USB devices through the

xHC. All USB devices use the default address (‘0’) after the device has been

reset. Execution of the Address Device Command (BSR = ‘0’) causes the xHC to

issue a SET_ADDRESS request to the USB device, assigning a unique address to

it. This operation causes a USB device that is in the Default state to transition to

the Address state.

This command, which is issued immediately after an Enable Slot Command, also

informs the xHC that the pointer in the Device Context Base Address Array

references a Device Context data structure.

The Address Device Command TRB points to an Input Context data structure.

The Input Slot Context and Endpoint 0 Context define the information needed by

the xHC to communicate with the control endpoint of the device. If the

SET_ADDRESS request issued by the xHC is successful, the contents of the Input

Slot and Endpoint 0 Context data structures are copied to the respective Device

Context data structures, and the Transfer Ring associated with endpoint 0 is set

to the Running state.

Note that the xHC, not software, selects the address that is assigned to the USB

device. This approach ensures that addresses will not be overloaded when

assigned in virtualized environments.

This command is issued as part of the USB device enumeration process after a

USB device attachment or reset. Once a successful Address Device Command

has completed, system software can complete the standard USB device

enumeration process, i.e. issuing GET_DESCRIPTOR requests through the

Default Control Endpoint to retrieve the USB Device, Configuration, etc.

descriptors from the USB device. Using the information in these descriptors

system software may then determine which Class Driver(s) to associate with the

USB device.

Refer to section 4.6.5 for more information on the Address Device Command.

72

3.3.5 Configure Endpoint

When system software issues a SET_CONFIGURATION request to a USB Device,

it enables a specific set of endpoints (pipes) in the device, which are defined by

the respective Configuration Descriptor. To simplify the xHC hardware

implementation, the xHC does not read descriptors from a device or monitor

SET_CONFIGURATION (or SET_INTERFACE) requests to a device. Instead, the

xHC depends on system software to coordinate the pipes configured in the xHC

with those configured in the device. System software uses the Configure

Endpoint Command to explicitly identify to the xHC the pipes that would be

enabled by a target configuration and the characteristics of those pipes. Not

only does the Configure Endpoint Command inform the xHC of the target USB

Device configuration, but it also gives the xHC an opportunity to reject a

configuration if the necessary USB bandwidth or xHC internal resources are not

available.

The Configure Endpoint Command points to an Input Context data structure,

which defines the target configuration parameters for the xHC. For proper

operation of the xHC, every endpoint that will be enabled by a target device

configuration shall be defined in a respective Endpoint Context data structure of

the Input Context, and the parameters of the Endpoint Contexts shall correlate

target endpoint settings (Endpoint Type, Max Packet Size, Burst Size, etc.). xHC

and device behavior will be undefined if there are any mismatches. This also

means that if the Configure Endpoint Command does not complete successfully,

software shall not issue a SET_CONFIGURATION request to the device.

System software also uses the Configure Endpoint Command to inform the xHC

of pipe changes due to selecting an Alternate Interface on a device. Typically an

Alternate Interface setting is used to modify the payload size or bandwidth

requirement of a pipe, however it may also be used to disable or enable one or

more pipes. The Input Control Context data structure of the Input Context allows

software to explicitly identify which pipes are enabled, disabled, or modified by

a target Alternate Interface setting. The parameters of the Input Endpoint

Contexts for enabled or modified pipes shall correlate target pipe settings

(Endpoint Type, Max Packet Size, etc.). If the Configure Endpoint Command does

not complete successfully, software shall not issue a SET_INTERFACE request to

the device.

Prior to issuing this command, software constructs a set of data structures

based on the Input Context in host memory that fully describe the target

configuration (or Alternate Interface setting). The Input Control Context

identifies which endpoints are affected by the command. The Endpoint Contexts

of endpoints that are either enabled or modified shall be fully specified. The

Endpoint Contexts of endpoints disabled by the command or not referenced in

the Input Control Context are ignored by the xHC. If Streams are enabled for an

endpoint, then the Endpoint Context shall point to a Primary Stream Context

Array, otherwise it points to a Transfer Ring. If declared, each Stream Context in

 73

a Primary Stream Context Array may point to a Secondary Stream Context Array

or a Transfer Ring. Stream Contexts in a Secondary Stream Context Array shall

point to a Transfer Ring or Null.

If the Configure Endpoint Command is successful, the contents of the Input

Endpoint Context data structures enabled or modified by the command are

copied to the respective Output Endpoint Context data structures in the Device

Context. And any Transfer Rings or Stream Contexts referenced by the Input

Endpoint Contexts will be used by the xHC to manage the respective pipes. In

this case, software may free the Input Context data structure, but any Stream

Context or Transfer Ring referenced by it shall remain allocated for use by the

xHC.

If the Configure Endpoint Command fails, the previous configuration defined in

the Device Context is maintained.

Refer to section 4.6.6 for more information on the Configure Endpoint

Command.

3.3.6 Evaluate Context

The Evaluate Context Command is issued by software to inform the xHC that

specific fields should be modified in the Device Context. There are several cases

during the enumeration process of a USB device where an incomplete Context is

used to communicate with the device. For instance, the default Max Packet Size

for a FS device is 8 bytes. Software will initialize the Max Packet Size field of the

Default Control Endpoint Context to ‘8’ . Then use the endpoint to issue a

GET_DESCRIPTOR(Device) request to the device, retrieving the first 8 bytes of

the Device Descriptor. Byte 7 of the Device Descriptor defines the actual Max

Packet Size for the Default Control Endpoint. This command would then be used

to update the Max Packet Size field of the Default Control Endpoint to its true

value. Other fields that may need to be updated late in the enumeration process

are the Slot Context Hub and Max Exit Latency .

The command passes a pointer to an Input Context data structure to the xHC.

The xHC evaluates specific fields of the Input Context and updates the Device

Context. The specific fields affected by the command are identified in the

respective context descriptions in section 6.2.

Upon successful completion of an Evaluate Context Command, the xHC shall

begin executing with the updated context parameters.

Refer to section 4.6.7 for more information on the Evaluate Context Command.

3.3.7 Reset Endpoint

The Reset Endpoint Command is issued by software to recover from a halted

condition on an endpoint.

74

Refer to section 4.6.8 for more information on the Reset Endpoint Command.

3.3.8 Stop Endpoint

The Stop Endpoint Command is used by system software to manage a Transfer

Ring. This command allows software to abort, reprioritize, or temporarily s top

the execution of TDs on a ring.

Refer to section 4.6.9 for more information on the Stop Endpoint Command.

3.3.9 Set TR Dequeue Pointer

The Set TR Dequeue Pointer Command complements the Stop Endpoint

Command, allowing software to modify the xHC Dequeue Pointer associated

with a pipe, and redirect the execution of TDs on its Transfer Ring.

Refer to section 4.6.10 for more information on the Set TR Dequeue Pointer

Command.

3.3.10 Reset Device

The Reset Device Command is used by software to inform the xHC that the USB

Device associated with a Device Slot has been Reset. In the Slot Context of the

selected device slot, the reset operation sets the Slot State field to the Default

state and the USB Device Address field to ‘0’. The reset operation also disables

all endpoints of the slot except for the Default Control Endpoint by setting the

Endpoint Context Slot State field to Disabled in all enabled Endpoint Contexts.

Refer to section 4.6.11 for more information on the Reset Device Command.

3.3.11 Force Event

The Force Event Command is an Optional Normative command of the xHCI, that

is only used when the virtualization features of the xHC are enabled. This

command, combined with other xHC mechanisms, allows a Virtual Machine

Manager (VMM) to emulate a USB device to a Virtual Machine. Specifically this

command is used by a VMM to insert an Event TRB on an Event Ring of a target

VM. Refer to section 8 for more details on the xHC virtualization support.

Refer to section 4.6.12 for detailed information on the use of the Force Event

Command.

3.3.12 Negotiate Bandwidth

The Negotiate Bandwidth Command is an Optional Normative command of the

xHCI, that is used to recover USB bandwidth in a running system. Refer to

section 4.16 for more information on how xHC bandwidth management works.

 75

3.3.13 Set Latency Tolerance Value

The Set Latency Tolerance Value Command may be issued by software to

provide a software defined Best Effort Latency Tolerance (BELT) value for the

xHC.

Refer to section 4.6.14 for more information on the Set Latency Tolerance Value

Command.

3.3.14 Get Port Bandwidth

The Get Port Bandwidth Command is issued by software to retrieve the

percentage of periodic bandwidth available on each Root Hub Port of the xHC.

This information can be used by system software to recommend topology

changes to the user if they were unable to enumerate a device due to a

Bandwidth Error.

Refer to section 4.6.15 for more information on the Get Port Bandwidth

Command.

3.3.15 Force Header

The Force Header Command may be issued by software to send a Link

Management (LMP) or Transaction Packet (TP) to a USB device, through a

selected Root Hub Port. For instance, it may be used to send a PING TP or a

Vendor Device Test LMP.

Refer to section 4.6.16 for more information on the Force Header Command.

3.4 General Information

The xHC manages all transfer types using a simple TRB Ring data structure. The

TRB Ring provides automatic, in-order streaming of data transfers. Software can

asynchronously add TRBs (data buffers) to a TRB Ring and maintain streaming,

without having to invoke locking schemes.

USB-defined Short Packet semantics are fully supported on all processing

boundary conditions without software intervention.

Hub TT Split transactions are automatically managed by the xHC without

software intervention.

Isochronous transfers are managed using Isoch TRBs. These data structures are

optimized for the variability per data payload and time-oriented characteristics

of the isochronous transfer type.

76

3.5 Root Hub Management

The host controller of a USB bus is required to implement Root Hub

functionality. The Operational Register space contains port registers that

provide the hardware status and control needed to manage each port within the

USB Specification. An xHC Root Hub may provide USB 2.0 and USB 3.x Root hub

ports4 to support Low-, Full-, or High-Speed as well as SuperSpeed devices. The

host controller traverses the Transfer Rings and encounters work items that

result in the host controller executing USB transactions. These transactions are

routed to the Root Hub port associated with the attached downstream USB

device.

The port registers provide system software with the control and status

information required to manipulate the port in accordance with the USB

Specification. The supported features include: detecting device connects,

disconnects, performing device resets, manipulating port power and managing

port power management capabilities.

System software should provide an abstraction to the USB system software

stack that allows the Root Hub ports to be manipulated by the system as if they

were ports on an external hub. Refer to section 5.4.8 for more information on

Root Hub Port Status and Control Registers.

3.6 xHCI Device Enumeration

Under normal operating conditions (assuming all xHCI drivers are loaded and

operational), the typical port enumeration sequence is described in section 4.3.

4Section 10.1 of the USB3 spec describes a USB 3.x hub as a “logical combination of 2 hubs: a USB 2.0 hub and an
Enhanced SuperSpeed hub”. Each logical hub has its own set of addressable ports for supporting the respective

protocol. Each downstream (A) connector of a hub connects to one port of each logical hub. This allows Low-,
Full-, or High-Speed as well as Enhanced SuperSpeed devices to be attached to any connector. The xHCI follows
this model by providing separate USB2.0 and USB3.x Root Hub ports. Refer to section 4.19.7 for details.

 77

4 Operational Model

This section describes the general operational model for the eXtensible Host

Controller Interface (xHCI) hardware and eXtensible Host Controller Driver

(xHCD) (generally referred to as system software). Each significant operational

feature of the eXtensible Host Controller (xHC) is discussed in a separate

section. Each section presents the operational model requirements for the xHC

hardware. Where appropriate, recommended system software operational

models for features are also presented.

4.1 Command Operation

There is only one Command Ring that is used for issuing xHC specific commands

or commands related to Device Slots. The Command Ring Control Register is

defined in the Operational Register space (refer to section 5.4.5).

All xHC commands are issued by placing the desired Command TRB(s) (6.4.3) on

the Command Ring, then ringing the xHC command Doorbell register, i.e. writing

the Host Controller Command code to the DB Target field of Doorbell register 0

(refer to section 5.6).

All commands result in the generation of a Command Completion Event TRB

(6.4.3) on the Event Ring. Refer to section 4.11.3 for a discussion of Event TRBs.

4.2 Host Controller Initialization

When the system boots, the host controller is enumerated, assigned a base

address for the xHC register space, and the system software sets the Frame

Length Adjustment (FLADJ) register to a system-specific value.

Refer to section 4.23.1 for a discussion of the affect of Power Wells on register

state after power-on and light resets.

Following are a review of the operations that system software would perform in

order to initialize the xHC using MSI-X as the interrupt mechanism5:

 Initialize the system I/O memory maps, if supported.

 After Chip Hardware Reset6 wait until the Controller Not Ready (CNR) flag

in the USBSTS is ‘0’ before writing any xHC Operational or Runtime

registers.

5Refer to the PCI spec for the initialization and use of MSI or PIN interrupt mechanisms

6A Chip Hardware Reset may be either a PCI reset input or an optional power-on reset input to the xHC.

78

Note: This text does not imply a specific order for the following operations, however

these operations shall be completed before setting the USBCMD register

Run/Stop (R/S) bit to ‘1’.

 Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG

register (5.4.7) to enable the device slots that system software is going to

use.

 Program the Device Context Base Address Array Pointer (DCBAAP)

register (5.4.6) with a 64-bit address pointing to where the Device

Context Base Address Array is located.

 Define the Command Ring Dequeue Pointer by programming the

Command Ring Control Register (5.4.5) with a 64-bit address pointing to

the starting address of the first TRB of the Command Ring.

 Initialize interrupts7 by:

o Allocate and initialize the MSI-X Message Table (5.2.8.3), setting

the Message Address and Message Data, and enable the vectors.

At a minimum, table vector entry 0 shall be initialized and

enabled. Refer to the PCI specification for more details.

o Allocate and initialize the MSI-X Pending Bit Array (PBA, 5.2.8.4).

o Point the Table Offset and PBA Offsets in the MSI-X Capability

Structure to the MSI-X Message Control Table and Pending Bit

Array, respectively.

o Initialize the Message Control register (5.2.8.3) of the MSI-X

Capability Structure.

o Initialize each active interrupter by:

 Defining the Event Ring: (refer to section 4.9.4 for a

discussion of Event Ring Management.)

 Allocate and initialize the Event Ring Segment(s).

 Allocate the Event Ring Segment Table (ERST)

(section 6.5). Initialize ERST table entries to point

to and to define the size (in TRBs) of the respective

Event Ring Segment.

 Program the Interrupter Event Ring Segment Table

Size (ERSTSZ) register (5.5.2.3.1) with the number

of segments described by the Event Ring Segment

Table.

 Program the Interrupter Event Ring Dequeue

Pointer (ERDP) register (5.5.2.3.3) with the starting

address of the first segment described by the

Event Ring Segment Table.

 Program the Interrupter Event Ring Segment Table

Base Address (ERSTBA) register (5.5.2.3.2) with a

64-bit address pointer to where the Event Ring

Segment Table is located.

7Interrupts are optional. The xHC may be managed by polling Event Rings.

 79

 Note that writing the ERSTBA enables the Event

Ring. Refer to section 4.9.4 for more information

on the Event Ring registers and their initialization.

 Defining the interrupts:

 Enable the MSI-X interrupt mechanism by setting

the MSI-X Enable flag in the MSI-X Capability

Structure Message Control register (5.2.8.3).

 Initializing the Interval field of the Interrupt

Moderation register (5.5.2.2) with the target

interrupt moderation rate.

 Enable system bus interrupt generation by writing

a ‘1’ to the Interrupter Enable (INTE) flag of the

USBCMD register (5.4.1).

 Enable the Interrupter by writing a ‘1’ to the

Interrupt Enable (IE) field of the Interrupter

Management register (5.5.2.1).

 Write the USBCMD (5.4.1) to turn the host controller ON via setting the

Run/Stop (R/S) bit to ‘1’. This operation allows the xHC to begin

accepting doorbell references.

At this point, the host controller is up and running and the Root Hub ports

(5.4.8) will begin reporting device connects, etc., and system software may begin

enumerating devices. System software may follow the procedures described in

section 4.3, to enumerate attached devices.

USB2 (LS/FS/HS) devices require the port reset process to advance the port to

the Enabled state. Once USB2 ports are Enabled, the port is active with SOFs

occurring on the port, but the Pipe Schedules have not yet been enabled.

SS ports automatically advance to the Enabled state if a successful device attach

is detected.

4.3 USB Device Initialization

This section describes the process of detecting and initializing a USB device

attached to an xHC Root Hub port.

The USB device initialization process is the same, whether the dev ice attached

to the port is a Function or a Hub. Once the Pipes associated with an external

hub are set up, the Hub Driver will enumerate the devices attached to the

external hub’s ports using standard Hub Class command sequences. This section

focuses on the device initialization process when a device is attached to a Root

Hub port.

After a Chip Hardware Reset, HCRST, or commanded to the PLS = RxDetect state,

all Root Hub ports shall be in Disconnected state, i.e. the port is powered on (PP

80

= ‘1’) and waiting for a device connect. Refer to section 4.19.1 for more

information on xHCI Root Hub port states.

If a USB device is attached to a port when it is in the Disconnected state:

 USB3 protocol ports shall:

o Advance to the Polling state (refer to Figure 4-30):

 If polling is successful, the port shall advance to the

Enabled state, and the Current Connect Status (CCS) and

Connect Status Change (CSC) flags are set to ‘1’.

 If polling is unsuccessful, the port shall advance to the

Disconnected state.

 USB2 protocol ports shall:

o Advance to the Disabled state (refer to Figure 4-25) and set the

Current Connect Status (CCS) and Connect Status Change (CSC)

flags to ‘1’.

Note: The “Disabled” Root Hub port state represents different conditions when

referring to USB3 or USB 2 protocol ports. For USB3 ports, the Disabled state

indicates that the port is in the DSPORT.Disabled state (refer to Figure 10-9 in

the USB3 spec.). For USB2 ports, the Disabled state indicates that the port is in

the Disabled state (refer to Figure 11-10 in the USB2 spec).

The following steps describe a typical USB Device initialization process:

1. When the xHC detects a device attach, it shall set the Current Connect

Status (CCS) and Connect Status Change (CSC) flags to ‘1’. If the

assertion of CSC results in a ‘0’ to ‘1’ transition of Port Status Change

Event Generation (PSCEG, section 4.19.2), the xHC shall generate a Port

Status Change Event .

2. Upon receipt of a Port Status Change Event system software evaluates

the Port ID field to determine the port that generated the event.

3. System software then reads the PORTSC register of the port that

generated the event.

CSC = ‘1’ if the event was due to an attach (CCS = ‘1’) or detach (CCS =

‘0’). Assuming the event was due to an attach:

a. A USB3 protocol port attempts to automatically advance to the

Enabled state as part of the attach process.

If successful, the port shall transition to the Enabled state, i.e. the

Port Enabled/Disabled (PED) flag shall be set to ‘1’, and the Port

Reset (PR) flag and Port Link State (PLS) field shall be ‘0’. The

attached USB device shall be in the Default state.

If unsuccessful, the port shall transition to the Disconnected state,

i.e. the PED and PR flags shall be cleared to ‘0’ and Port Link State

 81

(PLS) field shall be set to RxDetect (‘5’). The attached USB device

shall remain powered.

b. A USB2 protocol port requires software to reset the port to advance

the port to the Enabled state and a USB device from the Powered

state to the Default state. After an attach event, the PED and PR flags

shall be ‘0’ and the PLS field shall be ‘7’ (Polling) in the PORTSC

register.

System software shall enable the port by resetting the port (writing a

'1' to the PORTSC PR bit) then waiting for a Port Status Change Event

due to the assertion of Port Reset Change (PRC) flag. Refer to section

4.3.1 for an overview of the Root Hub port reset activities.

The completion of the port reset shall cause the PORTSC register

PRC and PED flags to be set (‘1’), the PR flag to be cleared (‘0’), and

the PLS field to be U0 (‘0’). If the assertion of PRC results in a ‘0’ to ‘1’

transition of PSCEG (4.19.2), the xHC shall generate a Port Status

Change Event as a result of the transition of PRC. The reset operation

sets the USB2 device into the Default state, preparing it for a

SET_ADDRESS request.

4. After the port successfully reaches the Enabled state, system software

shall obtain a Device Slot for the newly attached device using an Enable

Slot Command, as described in section 4.3.2.

5. After successfully obtaining a Device Slot, system software shall initialize

the data structures associated with the slot as described in section 4.3.3.

6. Once the slot related data structures are initialized, system software

shall use an Address Device Command to assign an address to the device

and enable its Default Control Endpoint, as described in section 4.3.4.

7. For LS, HS, and SS devices; 8, 64, and 512 bytes, respectively, are the

only packet sizes allowed for the Default Control Endpoint, so step a may

be skipped.

For FS devices, system software should initially read the first 8 bytes of

the USB Device Descriptor to retrieve the value of the bMaxPacketSize0

field and determine the actual Max Packet Size for the Default Control

Endpoint, by issuing a USB GET_DESCRIPTOR request to the device,

update the Default Control Endpoint Context with the actual Max Packet

Size and inform the xHC of the context change. Step a describes this

operation.

a. The USB GET_DESCRIPTOR request requires a Data Stage, so the

Setup Stage TD shall be followed by a Data Stage TD, then a Status

Stage TD. To do this software shall:

82

i) Allocate an 8 byte buffer to receive the Device Descriptor.

ii) Initialize the Setup Stage TD (a single Setup Stage TRB) on the Endpoint

0 Transfer Ring.

• TRB Type = Setup Stage TRB.

• Transfer Type (TRT) = IN Data Stage (3).

• TRB Transfer Length = 8.

• Interrupt On Completion (IOC) = 0.

• Immediate Data (IDT) = 1.

• bmRequestType = 80h. (Dir = Device-to-Host, Type = Standard,

Recipient = Device)

• bRequest = 6 (GET_DESCRIPTOR).

• wValue = 0100h. Low byte = 0 (Descriptor Index), High Byte = 1

(Descriptor type).

• wIndex = 0.

• wLength = 8.

• Cycle bit = Current Producer Cycle State.

iii) Advance the Endpoint 0 Transfer Ring Enqueue Pointer

iv) Initialize the Data Stage TD (a single Data Stage TRB) on the Endpoint 0

Transfer Ring.

• TRB Type = Data Stage TRB.

• Direction (DIR) = ‘1’.

• TRB Transfer Length = 8.

• Chain bit (CH) = 0.

• Interrupt On Completion (IOC) = 0.

• Immediate Data (IDT) = 0.

• Data Buffer Pointer = The address of the Device Descriptor receive

buffer.

• Cycle bit = Current Producer Cycle State.

v) Advance the Endpoint 0 Transfer Ring Enqueue Pointer

vi) Initialize the Status Stage TD (a Status Stage TRB) on the Endpoint 0

Transfer Ring.

• TRB Type = Status Stage TRB.

• Direction (DIR) = ‘0’.

• TRB Transfer Length = 0.

• Chain bit (CH) = 0.

• Interrupt On Completion (IOC) = 1.

• Immediate Data (IDT) = 0.

• Data Buffer Pointer = 0.

• Cycle bit = Current Producer Cycle State.

 83

vii) Advance the Endpoint 0 Transfer Ring Enqueue Pointer

viii) Ring the Device Slots’ Doorbell with DB Target = Control EP 0 Enqueue

Pointer Update.

ix) When a successful Transfer Event is returned for the GET_DESCRIPTOR

Status Stage TRB system software shall update the Endpoint 0 Context

Max Packet Size with wMaxPacketSize value returned in the Device

Descriptor buffer, if the wMaxPacketSize value is different.

x) Software shall then issue an Evaluate Context Command with Add

Context bit 1 (A1) set to ‘1’ to inform the xHC of the change to the Default

Control endpoint’s Max Packet Size parameter. After successfully

executing the Evaluate Context Command the xHC will use the updated

Max Packet Size for all subsequent Default Control Endpoint transfers.

8. Now that the Default Control Endpoint is fully operational, system

software may read the complete USB Device Descriptor and possibly the

Configuration Descriptors so that it can hand the device off to the

appropriate Class Driver(s). To read the USB descriptors, software will

issue USB GET_DESCRIPTOR requests through the devices’ Default

Control Endpoint.

9. After reading the Configuration Descriptors software may issue an

Evaluate Context Command with Add Context bit 0 (A0) set to ‘1’ to

inform the xHC of the value of the Max Exit Latency parameter. Note that

the value of the Output Slot Context Interrupter Target field may also be

modified by this command.

10. The Class Driver may then configure the Device Slot using a Configure

Endpoint Command as described in section 4.3.5, and configure the USB

Device itself by issuing a USB SET_CONFIGURATION request through the

devices’ Default Control Endpoint. The successful completion of both

operations is required to advance the state of the USB device from

Address to Configured and xHC Device Slot from Addressed to

Configured.

11. If required, system software may configure Alternate Interfaces. For each

Alternate Interface set the alternate interface as described in section

4.3.6.

12. The pipe interfaces to the USB device are now fully operational.

Note: To ensure proper operation software shall fully initialize the hubs and TTs of

each tier of the USB topology before proceeding to the next tier, starting at the

Root Hub. Failure to meet this requirement may result in undefined xHC

behavior.

84

4.3.1 Resetting a Root Hub Port

Resetting a Root Hub port, resets the attached USB device, and if successful, the

port logic reports the speed of the attached device and sets the port to the

Enabled state. Whether successful or not, the Port Reset Change (PRC) flag is set

to ‘1’. If the assertion of PRC results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a

Port Status Change Event shall be generated.

To reset a USB device attached to a Root Hub port, system software shall

perform the following operations:

1. Write the PORTSC register with the Port Reset (PR) bit set to ‘1’.

2. Wait for a successful Port Status Change Event for the port, where the

Port Reset Change (PRC) bit in the PORTSC field is set to ‘1’.

Section 4.19.5 describes the port reset operations performed by the xHC.

The next step requires system software to obtain a Device Slot (section 4.3.2),

then associate the newly attached device with the Device Slot and enable its

Default Control Endpoint.

Note: After a Root Hub port is successfully reset, the PORTSC Port Speed field shall

indicate the speed of the attached device.

4.3.2 Device Slot Assignment

The first operation that software shall perform after detecting a device attach

event and resetting the port is to obtain a Device Slot for the device by issuing

an Enable Slot Command to the xHC through the Command Ring. The Enable

Slot Command returns a Slot ID that is selected by the host controller. Refer to

section 4.6.3 for a detailed description of the Enable Slot command.

System software executes the Slot Assignment process by successfully

completing an Enable Slot Command as described in section 4.11.4.2.

System software shall wait for the Command Completion Event associated with

the Enable Slot Command before issuing any more commands to the slot. If the

command was successful, software may proceed to the Device Slot Initialization

phase (section 4.3.3).

Successful completion of the Enable Slot Command shall transition the Device

Slot to the Enabled state. Refer to section 4.5.3 for more information on Device

Slot states.

 85

4.3.3 Device Slot Initialization

Once an xHC Device Slot ID has been obtained for a USB device, software shall

initialize the data structures associated with the slot. The following steps shall

be performed by system software:

1. Allocate an Input Context data structure (6.2.5) and initialize all fields to

‘0’.

2. Initialize the Input Control Context (6.2.5.1) of the Input Context by

setting the A0 and A1 flags to ‘1’. These flags indicate that the Slot

Context and the Endpoint 0 Context of the Input Context are affected by

the command.

3. Initialize the Input Slot Context data structure (6.2.2).

• Root Hub Port Number = Topology defined.

• Route String = Topology defined8. Refer to section 8.9 in the USB3 spec. Note

that the Route String does not include the Root Hub Port Number.

• Context Entries = 1.

4. Allocate and initialize the Transfer Ring for the Default Control Endpoint.

Refer to section 4.9 for TRB Ring initialization requirements and to

section 6.4 for the formats of TRBs.

5. Initialize the Input default control Endpoint 0 Context (6.2.3).

• EP Type = Control.

• Max Packet Size = The default maximum packet size for the Default Control

Endpoint, as function of the PORTSC Port Speed field.

• Max Burst Size = 0.

• TR Dequeue Pointer = Start address of first segment of the Default Control

Endpoint Transfer Ring.

• Dequeue Cycle State (DCS) = 1. Reflects Cycle bit state for valid TRBs written

by software.

• Interval = 0.

• Max Primary Streams (MaxPStreams) = 0.

• Mult = 0.

• Error Count (CErr) = 3.

6. Allocate the Output Device Context data structure (6.2.1) and initialize it

to ‘0’.

8e.g. To access a device attached directly to a Root Hub port, the Route String shall equal ‘0’, and the
Root Hub Port Number shall indicate the specific Root Hub port to use.

86

7. Load the appropriate (Device Slot ID) entry in the Device Context Base

Address Array (5.4.6) with a pointer to the Output Device Context data

structure (6.2.1).

8. Issue an Address Device Command for the Device Slot, where the

command points to the Input Context data structure described above.

Refer to sections 3.3.4 and 6.4.3.4 for more information on the Address

Device Command.

4.3.4 Address Assignment

Typically the first operation that software performs on a USB device is to assign

an address to it, which transitions the USB device from the Default to the

Address state. To assign an address to a USB device attached to the xHC, system

software shall issue an Address Device Command with the Block Set Address

Request (BSR) flag cleared to ‘0’ to the xHC through the Command Ring. Refer to

section 4.6.5 for a detailed description of the Address Device command.

System software executes the Address Assignment process by successfully

completing an Address Device Command as described in section 4.6.5.

System software shall wait for Address Device Command completion event on

the Event Ring before issuing any more commands to the slot. If successful,

software proceeds to the Device Configuration phase (section 4.3.5).

Note: For some legacy USB devices it may be necessary to communicate with the

device when it is in the Default state, before transitioning it to the Address state.

To accomplish this system software shall issue an Address Device Command with

the BSR flag set to ‘1’. Setting the BSR flag enables the operation of the Default

Control Endpoint for the Device Slot but blocks the xHC from issuing a

SET_ADDRESS request to the device, which would transition it to the Address

state.

Successful completion of the Address Device Command with BSR = ‘0’ shall

transition the Device Slot from the Enabled to the Addressed state. Successful

completion of the Address Device Command with BSR = ‘1’ shall transition the

Device Slot from the Enabled to the Default state. Refer to section 4.5.3 for

more information on Device Slot states.

4.3.5 Device Configuration

As part of the initialization process of a USB device, the system software shall

select a configuration. A USB device presents one or more configurations to

choose from. The USB Framework requires that a SET_CONFIGURATION request

is issued to a device to set a specific configuration. Refer to section 9.4.7 of the

USB2 spec for more information on the USB SET_CONFIGURATION request.

 87

For software to successfully “configure” a USB device, the state of both the USB

Device and the xHC Device Slot assigned to the device must be synchronized.

Software shall successfully complete a SET_CONFIGURATION request (with a

Setup Stage TD on the device’s Default Control Endpoint) to select a specific

configuration, and a Configure Endpoint Command for the slot with the matching

Endpoint Context configuration information, to transition the USB device and

the xHC Device Slot to the Configured state. Refer to section 4.11.4.5 for more

information on the Configure Endpoint Command .

A USB device may declare multiple alternate interfaces, each with different

periodic bandwidth and resource requirements. If a Configure Endpoint

Command for a particular configuration is unsuccessful, software may issue

additional Configure Endpoint Commands with other interface settings in an

attempt to successfully configure the slot. If all interface settings have been

exhausted (i.e. none have been accepted by the xHC), only the Default Control

Endpoint will remain enabled.

If system software was unable to successfully complete a Configure Endpoint

Command due to a Bandwidth Error, it may optionally use the Negotiate

Bandwidth Command to cause the xHC to request bandwidth with other devices.

Refer to section 4.16.1 for more information on bandwidth negotiation.

System software executes the xHCI portion of the device configuration process

by successfully completing a Configure Endpoint Command as described in

section 4.11.4.5.

System software shall wait for the Command Completion Event associated with

the Configure Endpoint Command before issuing any more commands to the

slot.

After the Configure Endpoint Command and SET_CONFIGURATION request

complete successfully, software may schedule TDs on any enabled endpoint

Transfer Ring.

If the Configure Endpoint Command is not successful, undefined behavior will

result if software issues a SET_CONFIGURATION request to the device.

Successful completion of the Configure Endpoint Command with the

Deconfigure (DC) flag = ‘0’ shall transition the Device Slot from the Addressed to

the Configured state. Refer to section 4.5.3 for more information on how the

Configure Endpoint Command affects Device Slot states.

4.3.6 Setting Alternate Interfaces

The USB SET_INTERFACE request allows the host to select an Alternate Sett ing

for a specified interface in a USB device. A SET_INTERFACE request may disable

or modify the operation of currently enabled endpoints, or it may enable

previously unused endpoints. A SET_INTERFACE request does not affect

88

endpoints owned by another interface. Refer to section 9.4.10 of the USB2 spec.

for more information on the USB SET_INTERFACE request.

A SET_INTERFACE request provides the “Number” of the Interface that is

affected and the Alternate Setting that it will be set to. A SET_INTERFACE

request does not explicitly identify which endpoints of a device are affected or

how. This information is available in the Configuration Descriptor retrieved from

the device, hence known to host software and the device at their respective

ends.

The xHC does not keep track of relationships between USB interfaces and

endpoints, so it is system software’s responsibility to explicitly “Disable” any

endpoints that are affected in the current configuration by a USB

SET_INTERFACE request, and then explicitly “Enable” any endpoints identified in

the new Alternate Interface Setting. An xHCI endpoint (i.e. Endpoint Context) is

“Disabled” by stopping it if it is in the Running state with a Stop Endpoint

Command and freeing its Transfer Ring.

Setting an Alternate Interface is accomplished by the successful completion of a

Configure Endpoint command (refer to section 4.6.6), and a USB SET_INTERFACE

request to the USB device (with a Setup Stage TD on the Default Control

Endpoint).

Below is an example of the sequence of events that would be employed to

successfully set an alternate interface in a USB device.

System software shall wait for the Command Completion Event associated with

the Configure Endpoint Command before issuing further commands to the slot.

Prior to issuing a Configure Endpoint Command to change an Alternate Interface

setting system software should perform the following operations:

1. Stop any Running Transfer Rings affected by the Alternate Interface

setting.

2. Free9 Transfer Rings of all endpoints that will be affected by the

Alternate Interface setting.

3. Clear all the Endpoint Context fields of each endpoint that will be

disabled by the Alternate Interface setting, to ‘0’.

4. For each endpoint enabled by the Configure Endpoint Command:

a. Allocate a Transfer Ring9.

9If just the parameters of a currently defined endpoint are being changed by the Alternate Interface setting then
software may chose to reuse the Transfer Ring for the new interface setting and not free it. In this case, software

does not need to allocate a new Transfer Ring as described in step 4a).

 89

b. Initialize the Transfer Ring Segment(s) by clearing all fields of all

TRBs to ‘0’.10

c. Initialize the Endpoint Context data structure:

• EP Type = Derived from the Endpoint Descriptor:bmAttributes:Transfer

Type and Endpoint Descriptor:bEndpointAddress:Direction. Refer to

Table 6-9 for the encoding.

• Max Packet Size = Endpoint Descriptor:wMaxPacketSize & 07FFh.

• Interval = Refer to section 6.2.3.6 for the computation of the Interval

value.

• Max Burst Size = SuperSpeed Endpoint Companion

Descriptor:bMaxBurst or (Endpoint Descriptor: wMaxPacketSize &

1800h) >> 11.

• Mult = ‘0’ or SuperSpeed Endpoint Companion Descriptor:bmAttributes

Mult field.

• CErr = 3, or 0 for an Isoch endpoint.

• If Streams are supported by the endpoint (i.e. SuperSpeed Endpoint

Companion Descriptor:bmAttributes MaxStreams field > 0):

• Select a Max Primary Streams (MaxPStreams) value > 0 and <=

SuperSpeed Endpoint Companion Descriptor:bmAttributes

MaxStreams

• Update MaxPStreams.

• Allocate and clear Primary Stream Array.

• MaxPStreams = Size of Primary Stream Array.

• TR Dequeue Pointer = Start address of Primary Stream Array.

• else

• MaxPStreams = ‘0’.

• TR Dequeue Pointer = Start address of the first segment of the

previously allocated Transfer Ring.

• Dequeue Cycle State (DCS) = 1. Assuming that all TRBs in the

segment referenced by the TR Dequeue Pointer have been initialized

to ‘0’, this field reflects Cycle bit state for valid TRBs written by

software.

5. Issue and successfully complete a Configure Endpoint Command as

described in section 4.11.4.5.

10The Cycle bit (C) of all TRBs in a TR Segment shall be initialized to the inverse of the value that the Dequeue Cycle
State (DCS) field is initialized to. This pseudo code recommends initializing the all bytes in a TR Segment to ‘0’,
which also initializes the Cycle bit to ‘0’ in all TRBs of the TR Segment, and the DCS flag of the pointer that

references the TR Segment to ‘1’, however software may initialize the Cycle bit to ‘1’ in all TRBs of a newly
allocated TR Segment and the DCS flag of the pointer that references it to ‘0’. Refer to section 4.9.2 for more
information on Cycle bit (C) initialization.

90

System software shall wait for the Command Completion Event associated with

the Configure Endpoint Command before issuing any more commands to the

slot.

Note: A Configure Endpoint Command is not necessary prior to a SET_INTERFACE

request, if the SET_INTERFACE request does not change any endpoint

parameters.

4.3.7 Low-Speed/Full-Speed Device Support

Special provisions shall be made to generate the Split Transactions required for

a Low- or Full-speed device connected through a High-speed hub. A Split

Transaction token targets the downstream facing port of the hub that isolates

the High-speed signaling environment from the Full/Low-speed signaling

environment for this device. To generate the Split Transaction token, the xHC

requires parameters associated with the target hub for which this full -/low-

speed transaction is destined. This information shall be provided by system

software in the Multi-TT (MTT), TT Hub Slot ID and TT Port Number fields of the

device’s Slot Context.

The xHC uses the TT Hub Slot ID to obtain the hub’s address from the USB

Device Address field of the hub’s Slot Context.

The xHC also checks that the Hub flag in the hub’s Slot Context equals ‘1’, to

verify that the TT Hub Slot ID references a hub. A Parameter Error shall be

generated for the offending TD if the Hub flag = ‘0’.

If the device is not Low- or Full-speed or if the device is attached to a Root Hub

port, then the TT Hub Slot ID, Multi-TT (MTT), and the TT Port Number fields

shall be cleared to ‘0’.

Refer to section 8.4.2 of the USB2 spec. for more information on Split

Transaction tokens, and section 11.14 for Transaction Translator information.

4.3.8 Bandwidth Management

When a device cannot be configured because of bandwidth constraints

Bandwidth Negotiation may be performed. Refer to section 4.16.1 for more

details.

4.4 Device Detach

When the device is detached from a Root Hub port, the PORTSC Current

Connection Status (CCS) bit shall be cleared to ‘0’ and the Connect Status

Change (CSC) bit shall be set to ‘1’. If a ‘0’ to ‘1’ transition of PSCEG (4.19.2), the

xHC shall report the change through a Port Status Change Event. After the

detection of a detach, system software shall disable the Device Slot associated

 91

with the port by issuing a Disable Slot Command for the affected slot. Refer to

section 4.6.4 for a description of the Disable Slot command.

4.5 Device Slot Management

The xHCI supports up to 255 USB devices, where each USB device is assigned to

a Device Slot. Each xHC Device Slot is comprised of 3 major components: an

entry in the Device Context Base Address Array, a Device Context data structure,

and a Doorbell Register in the Doorbell Array.

The Device Context Base Address Array supports up to 25511 USB devices or

hubs, where each element in the array is a 64-bit pointer to the base address of

a Device Context data structure.

The Slot ID is the index that software uses when accessing the Device Context

Base Address Array to retrieve a pointer to the Device Context data structure or

to access the Doorbell Register associated with a device .

Figure 4-1: Device Context

Slot Context

Endpoint Context 0

(Bidirectional, Control EP)

Endpoint Context 1 OUT

Endpoint Context 1 IN

...

Endpoint Context 15 OUT

Endpoint Context 15 IN

Reserved

Page Size-1

400h

3E0h

3C0h

...

080h

060h

Offset

000h

020h

040h

31

30

...

3

DCI

0

1

2

A Device Context data structure describes the characteristics and current state

of an individual USB device attached to the host controller. The Device Context

11The total number of USB devices supported by the xHCI architecture is less than 256 (the number of Device
Context slots) because some of the Device Context slots are reserved by the xHCI for special purposes and are
not available for enumerating USB devices. e.g. If virtualization is enabled, slots allocated to one VF will appear
to be “reserved” to another VF.

92

is organized as an array of 32 context data structures, consisting of 1 Slot

Context and 31 Endpoint Context data structures. Figure 4-1 illustrates the

Device Context layout. Refer to section 6.2.1 for data structure details.

When software allocates a Device Context data structure all fields in all entries

shall be initialized to ‘0’.

The Slot ID is the index that system software uses when accessing a specific

Device Slot in the Device Context Base Address Array and the Doorbell Array.

The Slot Context data structure defines information that applies to the slot, the

device as whole, or to all Endpoint Contexts.

Each Endpoint Context data structure defines the characteristics of the

endpoint; type, direction, bandwidth requirements, etc., and points to a Transfer

Ring or a Stream Context Array. An Endpoint Context exists for each endpoint of

a device. The “enabled12” Endpoint Contexts depend on the Configuration

selected by the Device’s Class Driver. Note that Endpoint Context 0 is always

associated with the Default Control Endpoint of the device.

A 32-bit Doorbell Register exists in the Doorbell Array for each Device Slot and is

indexed by the Slot ID. The DB Target and DB Stream ID fields in the Doorbell

Register indicates the purpose of “ringing” the doorbell.

Ringing the Host Controller Doorbell (Doorbell Register 0) with the DB Target =

Host Controller Command, indicates to the xHC that software has defined a

command in the Command Ring that it wants executed.

Ringing the Device Slot’s Doorbell Register, indicates to the xHC that software

has added work to be executed on the Transfer Ring (pipe) defined by the DB

Target and DB Stream ID field values. Refer to section 5.2.

4.5.1 Device Context Index

The term Device Context Index (DCI) is used throughout this document to

reference an individual context data structure in the Device Context. The range

of DCI values is 0 to 31.

The DCI of the Slot Context is 0.

For Device Context Indices 1-31, the following rules apply:

1. For Isoch, Interrupt, or Bulk type endpoints the DCI is calculated from the

Endpoint Number and Direction with the following formula;

12An Endpoint Context is “enabled” if it is not in the Disabled state.

 93

 DCI = (Endpoint Number * 2) + Direction,

where Direction = ‘0’ for OUT endpoints and ‘1’ for IN endpoints.

2. For Control type endpoints:

 DCI = (Endpoint Number * 2) + 1.

4.5.2 Slot Context Initialization

All fields of an Input Slot Context data structure (including the Reserved fields)

shall be initialized to ‘0’ with the following exceptions:

For Address Device Command:

• Route String = Topology defined.

• Root Hub Port Number = Topology defined.

• Context Entries = ‘1’. Only the Default Control Endpoint is enabled.

• Interrupter Target = System defined.

• Speed = Defined by downstream facing port attached to the device.

• If the device is a Low-/Full-speed function or hub accessed through a High-speed

hub, then the following values are derived from the “parent” High-speed hub whose

downstream facing port isolates the High-speed signaling environment from the

Low-/Full-speed signaling environment:

• MTT = '1' if the Multi-TT Interface of the hub has been enabled with a Set

Interface request, otherwise '0'. Software shall issue a Set Interface request

to select the Multi-TT interface of the hub prior to issuing any transactions

to devices attached to the hub.

• TT Port Number = The number of the downstream facing port in the parent

High-speed hub that the device is accessed through.

• TT Hub Slot ID = The Slot ID of the parent High-speed hub.

For Evaluate Context Command:

• Max Exit Latency = Topology Defined. Refer to section 4.23.5.2.

• Interrupter Target = System defined.

For Configure Endpoint Command:

• Context Entries = Maximum DCI+1 of configured Endpoint Contexts.

• If the device is a hub:

• Hub = ‘1’.

• Number of Ports = bNbrPorts from the USB Hub Descriptor.

• If the device Speed = High-Speed (‘3’):

• TT Think Time (TTT) = Value of the TT Think Time sub-field (USB2 spec,

94

Table 11-13) in the Hub Descriptor:wHubCharacteristics field.

• Multi-TT (MTT) = '1' if the Multi-TT Interface of the hub has been enabled

with a Set Interface request, otherwise '0'.

Note: The values of the Route String and Root Hub Port Number fields shall be

initialized by the first Address Device Command issued to a Device Slot, and shall

not be modified by any other command. The Interrupter Target field may be

modified by an Address Device Command or Evaluate Context Command.

Note: After entering the Addressed state for the first time from the Enabled or Default

states, the values of the Output Slot Context hub related fields (Hub, TTT, MTT,

and Number of Ports) shall be initialized by the xHC by the first Configure

Endpoint Command to transition the Slot from the Addressed to the Configured

state. To change the Output Slot Context hub related fields, a Slot must first be

transitioned through the Enabled or Default state.

4.5.3 Slot States

The current state of a Device Slot is identified by the Slot State. A subset of the

possible Slot States are recorded in the Slot State field in the Slot Context data

structure. The xHCI commands referenced in Figure 4-2 cause a Device Slot to

transition from one state to another. Table 4-1 defines the Slot State codes.

Figure 4-2: Slot State Diagram

Default ConfiguredAddressed

Disabled

Enabled

Refer to Appendix E for state machine notation.

Note: The Enabled, Default, Addressed, and Configured states may transition to the

Disabled state due to a Disable Slot Command, as noted by the large bubble.

Note: A Device Slot may be referred to as “enabled” if it is not in the Disabled state.

 95

Note: Software shall not transition more than one Device Slot to the Default State at a

time.

Note: When system software initially allocates and initializes the Output Slot Context

data structure, it shall set the Slot State field to Disabled (‘0’). All subsequent

updates of the Slot State field shall be performed by the xHC.

Note: Unless otherwise stated, the unsuccessful completion of a command will not

cause a state transition.

4.5.3.1 Device Slot State Codes

The following Slot States are maintained by the Host Controller. Refer to section

9.1 of the USB2 specification for information on the USB Device States.

Table 4-1: Device Slot State Code Definitions

Definition USB Device
State

Default
Control EP

State

Other
EP

State

USB
Device

Address

DCBAA
Pointer

Slot Context
Slot State

value

Disabled N/A Disabled Disabled N/A Not valid Disabled

Enabled Default Disabled Disabled 0 Not valid Disabled

Default
Default Not

Disabled
Disabled 0 Valid Default

Addressed
Address Not

Disabled

Disabled Assigned Valid Addressed

Configured
Configured Not

Disabled

Any13 Assigned Valid Configured

Refer to Table 6-7 for the numeric encoding of Slot States.

Note: The Slot State field of the Slot Context data structure is used to convey a subset

of the possible Slot States maintained by the xHC. The following sections identify

the use of the Slot State field. Refer to section 6.2.2 for more information on the

Slot Context data structure.

13Whether a non-Default Control endpoint is Disabled or not is determined by the Configure Endpoint Command.

96

4.5.3.2 Disabled

In this slot state the Device Slot is disabled, i.e. the slot’s Doorbell register is

disabled and the pointer to the slot’s Output Device Context in the Device

Context Base Address Array is invalid. The only command that software is

allowed to issue for the slot in this state is the Enable Slot Command.

If the Output Slot Context is valid (i.e. an Address Device Command has been

issued for the slot), the xHC shall set the Slot State field to Disabled upon the

completion of a Disable Slot Command .

When in the Disabled state, the slot shall transition to the Enabled state due to

the successful completion of an Enable Slot Command.

Note: Software shall not write to the Doorbell register of slots that are in the Disabled

state.

Note: A Device Slot shall not generate events when it is in the Disabled state.

4.5.3.3 Enabled

In this slot state the Device Slot has been allocated to software by the Enable

Slot Command, however the Doorbell register for the slot is not enabled and the

pointer to the slot’s Output Device Context in the Device Context Base Address

Array is invalid. The only commands that software is allowed to issue for a slot

in this state are the Address Device and Disable Slot.

When in the Enabled state, the slot shall transition to the Default state due to

the successful completion of an Address Device Command with the Block Set

Address Request (BSR) flag set to ‘1’.

When in the Enabled state, the slot shall transition to the Addressed state due to

the successful completion of an Address Device Command with the Block Set

Address Request (BSR) flag cleared to ‘0’.

When in the Enabled state, the slot shall transition to the Disabled state due to a

Disable Slot Command.

Note: The Enabled state is a logical slot state that is maintained internally by the xHC.

A unique value for the Enabled state is not defined for the Slot Context Slot State

field in Table 6-7, i.e. the Slot State field value ‘0’ is overloaded for the Disabled

and Enabled states, refer to Slot Context Slot State value column in Table 4-1.

Software initializes the Device Context data structure to ‘0’, hence Slot State =

Disabled. The Device Context is then assigned to the xHC with an Address Device

Command. The Address Device Command also transitions the slot to the Default

or Addressed state, so there never is a case where the xHC would actually set the

Slot State field to Enabled.

Note: Software shall not write to the Doorbell register of slots that are in the Enabled

state.

 97

4.5.3.4 Default

In this slot state the USB device is in the Default state, the pointer to the Device

Slot’s Output Device Context in the Device Context Base Address Array is valid,

the Slot Context and Endpoint Context 0 in the Output Device Context have been

initialized by the xHC, and the Doorbell register for the slot is enabled only for

DB Target = Control EP 0 Enqueue Pointer Update . The only commands that

software is allowed to issue for the slot in this state are the Address Device (BSR

= 0), Reset Endpoint, Stop Endpoint, Evaluate Context, Set TR Dequeue Pointer,

and Disable Slot.

When in the Default state, the slot shall transition to the Addressed state due to

the successful completion of an Address Device Command with the Block Set

Address Request (BSR) flag cleared to ‘0’.

When in the Default state, the slot shall transition to the Disabled state due to a

Disable Slot Command.

Upon the completion of a Evaluate Context, Reset Endpoint, Stop Endpoint, or

Set TR Dequeue Pointer Command while in the Default state, the slot shall

remain in Default state.

The xHC shall set the Output Slot Context Slot State field to Default and the USB

Device Address field to ‘0’ when this state is entered.

Note: Software shall ensure that only one Device Slot is in the Default state at time,

otherwise undefined behavior may occur.

4.5.3.5 Addressed

In this slot state the USB device is in the Address state, the pointer to the Device

Slot’s Output Device Context in the Device Context Base Address Array is valid,

the Slot Context and Endpoint Context 0 in the Output Device Context have been

initialized by the xHC, and the Doorbell register for the slot is enabled only for

DB Target = Control EP 0 Enqueue Pointer Update . The only commands that

software is allowed to issue for the slot in this state are the Evaluate Context ,

Configure Endpoint, Reset Endpoint, Stop Endpoint, Negotiate Bandwidth, Set TR

Dequeue Pointer, Reset Device, and Disable Slot.

When in the Addressed state, the slot shall transition to the Configured state

due to the successful completion of a Configure Endpoint Command and the

Deconfigure (DC) flag = ‘0’.

When in the Addressed state, the slot shall remain in the Addressed state due to

the successful completion of a Configure Endpoint Command and the

Deconfigure (DC) flag = ‘1’, i.e. the Configure Endpoint Command is treated like a

No Op Command.

98

When in the Addressed state, the slot shall transition to the Default state due to

a Reset Device Command .

The xHC shall set the Output Slot Context Slot State field to Addressed when

this state is entered.

Upon the completion of an Evaluate Context , Stop Endpoint, or Set TR Dequeue

Pointer Command while in the Addressed state, the slot shall remain in

Addressed state.

While in the Addressed state, the Reset Device Command may be used to

transition the slot to the Default state.

When in the Addressed state, the slot shall transition to the Disabled state due

to the successful completion of a Disable Slot Command.

4.5.3.6 Configured

In this slot state the USB device is in the Configured state, the pointer to the

Device Slot’s Output Device Context in the Device Context Base Address Array is

valid, the Slot Context, Endpoint Context 0, and enabled IN and OUT Endpoint

Contexts between 1 and 15 in the Output Device Context have been initialized

by the xHC, and the Device Context doorbell for the slot is enabled for DB Target

= Control EP 0 Enqueue Pointer Update and any enabled endpoint. The only

commands that software is allowed to issue for the slot in this state are the

Configure Endpoint (DC = ‘0’ or ‘1’) , Reset Endpoint, Stop Endpoint, Set TR

Dequeue Pointer, Evaluate Context , Reset Device , Negotiate Bandwidth, and

Disable Slot.

The xHC shall set the Output Slot Context Slot State field to Configured when

this state is entered.

Upon the completion of an Evaluate Context , Configure Endpoint, Reset

Endpoint, Stop Endpoint , Negotiate Bandwidth, or Set TR Dequeue Pointer

Command while in the Configured state, the slot shall remain in Configured

state.

Upon the completion of a “deconfigure” Configure Endpoint Command (DC = ‘0’)

while in the Configured state, the slot shall transition to the Addressed state.

When in the Configured state, the Reset Device Command may be used to

transition the slot to the Default state.

When in the Configured state, the completion of a Disable Slot Command shall

transition the slot to the Disabled state.

 99

4.5.4 USB Standard Device Request to xHCI Command Mapping

The Standard Device Requests (as described in section 9.4 of the USB2 spec.)

are generated to USB devices using Setup Stage TDs on a device’s Default

Control Endpoint. This section discusses the relationship of specific Standard

Device Requests to xHCI commands. Refer to the USB or Device Class

specifications for the order and timing of all other Standard Device Requests.

4.5.4.1 SET_ADDRESS Request

During the execution of the Address Device Command with BSR = ‘0’, the xHC

shall automatically issue a SET_ADDRESS request to a device with the USB

Device Address assigned in the Output Slot Context and block any

SET_ADDRESS Requests issued by software. Therefore a Setup Stage TD with

the bmRequestType field set to Host-to-Device, Standard, and Device (0h), and

the bRequest field set to SET_ADDRESS (5h) issued by software on the Default

Control Endpoint shall not generate a Setup transaction on the USB and shall

complete with a TRB Error completion code.

4.5.4.2 SET_CONFIGURATION Request

For a USB device to be successfully configured with new endpoint settings,

system software shall complete a successful Configure Endpoint command to

the xHC and a successful SET_CONFIGURATION request to a device. Undefined

results may occur otherwise.

If software wishes to “deconfigure” a device by issuing a SET_CONFIGURATION

Setup Stage TD with the Configuration Value (wValue) = ‘0’, and issue a

Configure Endpoint Command with all Add Context flags cleared to = ‘0’, and the

Drop Context flags of all enabled endpoints set to ‘1’. After both operations are

completed successfully, the device is deconfigured.

Note: A Configure Endpoint Command is not necessary if a SET_CONFIGURATION

request does not change any Endpoint Context parameters.

Refer to section 4.6.6 for more details.

4.5.4.3 SET_INTERFACE Request

For an alternate interface of a USB device to be successfully set, system

software shall complete a successful Configure Endpoint Command and a

successful SET_INTERFACE Setup request to a USB device. Undefined results

may occur otherwise.

Note: A Configure Endpoint Command is not necessary if a SET_INTERFACE request

does not change any Endpoint Context parameters.

Refer to section 4.6.6 for more details.

100

4.6 Command Interface

The command interface of the xHC is managed through the Command Ring

Control Register (CRCR). The CRCR Command Ring Pointer field provides a

pointer to the Command Ring. Software places commands on the Command

Ring, then rings the Host Controller Doorbell Register to notify the xHC. The xHC

processes the commands and generates Command Completion Events on the

Primary Event Ring to notify software of their completion status. This section

describes the operation of the Command Ring and each of the commands.

Refer to Table 3-1 for a summary of the xHCI command set.

Note: Undefined xHC behavior may result if commands and all data structures that

they reference are not correctly formed by software. The algorithms below

define checks that xHC should perform and the error conditions that may result

when executing a command. The extent of command and data structure validity

checking performed by an xHC implementation will vary. More comprehensive

checking will ease the development and debugging process, but it is ultimately

software’s responsibility to ensure that the xHC does not receive invalid

commands.

Note: A command shall return an TRB Error code if the command (i.e. TRB Type) is not

recognized by the xHC.

Note: A command may return an Undefined Error or Vendor Defined Error codes. A

vendor should identify the possible sources of these error codes to ease

debugging and error handling.

Note: Software shall not ring the doorbell of an endpoint that has a state modifying

command pending. The Configure Endpoint, Evaluate Context, Reset Endpoint,

Stop Endpoint, and Set TR Dequeue Pointer Commands affect specific endpoints

of a device. The Address Device, Disable Slot, and Reset Device Commands affect

all endpoints of a device.

Note: Software shall be responsible for all command timeouts. If a command times out,

software may abort the command using the mechanism described in section

4.6.1.2.

4.6.1 Command Ring Operation

The Command Ring is a dedicated TRB Ring (refer to section 4.9 for a

description of TRB Ring operation), which only allows those TRB types defined in

Table 6-86. Only one Command Ring exists per xHC instance.

System software is the producer of all Command TRBs and the xHC is the

consumer.

The Command Ring Dequeue Pointer is an internal register maintained by the

xHC, which is not directly exposed to software. Its value is reported in the

Command TRB Pointer field of Command Completion Events .

 101

The initial value of the Command Ring Dequeue Pointer is defined by the

Command Ring Pointer field in the Command Ring Control Register (CRCR),

described in section 5.4.5. The Command Ring Pointer field shall be set by

system software to point to the Command Ring prior to running the xHC (i.e.

setting the Run/Stop (R/S) flag to ‘1’ and ringing the Host Controller Command

Doorbell for the first time). The Command Ring Pointer field may only be

modified by software while the Command Ring is stopped, as indicated by the

Command Ring Running (CRR) flag equal to ‘0’.

A Work Item on a Command Ring is called a Command Descriptor (CD). CDs

enable the management of Device Slots, virtualization, and the controller as a

whole. A CD shall be comprised of one Command TRB data structure. Refer to

section 4.11.4 for information on the commands supported by the xHCI and

section 6.4.3 for details of the Command TRB data structures.

Commands are issued by software to the xHC by:

1. Placing one or more Command Descriptors on the Command Ring and

2. Ringing the Host Controller Doorbell.

To ring the Host Controller Doorbell software shall write the Host Controller

Doorbell register (offset 0 in the Doorbell Register Array), asserting the Host

Controller Command value in the DB Target field and ‘0’ in the DB Stream ID

field.

The xHC, upon detecting a Host Controller Command Doorbell ring, shall

execute commands until the Command Ring is stopped or empty.

Note: If multiple commands are posted to the Command Ring, they are executed in

order, so a delay may be incurred before a particular command is executed.

The xHC shall generate a Command Completion Event for every command. The

Command TRB Pointer field of the Command Completion Event shall point to the

Command TRB that initiated the event. The Completion Code field of the

Command Completion Event shall indicate the completion status of the

command. The Slot ID and VF ID fields shall reflect the values of the respective

fields of the Command TRB that initiated the event.

The Primary Event Ring receives all Command Completion Events.

The Command Completion Events that result from processing the commands

shall be ordered with respect to their location in the Command Ring.

Command execution times are xHC implementation defined.

The standard and optional commands supported by the xHCI are listed in

Table 1.

102

xHC vendors may define proprietary commands using the Vendor Defined TRB

Type codes identified in Table 6-86. All vendor defined commands shall utilize

the Command Completion Event TRB to report completions.

4.6.1.1 Stopping the Command Ring

System software may stop the execution of commands on the Command Ring by

writing a ‘1’ to the Command Stop (CS) bit of the Command Ring Control

register. Writing a ‘1’ to the CS bit shall stop the xHC from fetching additional

CDs after the currently executing command completes, “stopping” the Command

Ring. After the Command Ring has been successfully stopped, a Command

Completion Event shall be generated with the Completion Code set to Command

Ring Stopped and the Command TRB Pointer set to the current value of the

Command Ring Dequeue Pointer.

While the Command Ring is stopped, ownership of all Command Descriptors on

the ring is passed to software, which may remove, add, or rearrange Command

Descriptors. Software restarts command execution by writing the Host Controller

Doorbell register with the DB Reason field set to Host Controller Command. If

the Command Ring Pointer field of the Command Ring Control Register (CRCR)

was written while the ring is stopped the xHC shall restart Command Ring

execution at the new value defined by the CRCR write, otherwise Command Ring

execution shall restart at the current Dequeue Pointer value, i.e. the TRB

following the last command executed (or aborted). Software may modify the

value of the Command Ring Dequeue Pointer prior to restarting it by writing a

new value to the Command Ring Pointer field of the Command Ring Control

register.

4.6.1.2 Aborting a Command

System software may abort the execution of the current command by writing a

‘1’ to the Command Abort (CA) bit of the Command Ring Control register.

Aborting a command on the Command Ring shall perform the following

operations:

• If a command is currently executing:

• A Command Completion Event shall be generated for the aborted command with

its Completion Code set to Command Aborted.

• Advance the Command Ring Dequeue Pointer to point to the next Command

TRB.

• Generate a Command Completion Event with the Completion Code set to Command

Ring Stopped and the Command TRB Pointer set to the current value of the

Command Ring Dequeue Pointer.

Software may follow the method described in section 4.6.1.1 to restart the

“stopped” Command Ring.

 103

Note: If the xHC detects the assertion of an abort request between the execution of two

commands or after the last command, a Command Completion Event with the

Completion Code set to Command Aborted may not be found on the Event Ring

after an abort operation.

 IMPLEMENTATION NOTE

Aborting Commands

Typically when software asserts the Command Abort (CA) flag, the Command Ring will

normally stop after the completion of a command, i.e. Completion Code is not equal to

Command Aborted in the last Event Ring Command Completion Event TRB. Only if a

command is “blocked” will it be aborted.

An example of a command that may hang is the Address Device Command, because

waiting for a SET_ADDRESS request to be acknowledged by a USB device is outside of

the xHC’s ability to control.

An xHC implementation should “checkpoint” the state associated with a command

before a command is initiated. If the CA flag is set before the command is complete (e.g.

its Command Completion Event TRB is posted to the Event Ring), then the command’s

previous state should be restored by the xHC using the checkpoint information and its

Completion Code shall be set to Command Aborted.

Software should time the completion of all xHCI commands, including the Command

Abort operation, i.e. the delay between the negation of CRR (‘0’) and the assertion of CA

(‘1’). If software doesn’t see CRR negated in a timely manner (e.g. longer than 5 seconds),

then it should assume that the there are larger problems with the xHC and assert HCRST.

4.6.2 No Op

The No Op command can be issued by software to exercise the TRB Ring

mechanism of the xHC without affecting any xHC or USB Device state, or to

report the current value of the Command Ring Dequeue Pointer.

Note: A No Op Command may be inserted on the Command Ring by software to modify

the alignment memory boundaries of Command TDs.

The format of the No Op Command TRB is defined in section 6.4.3.1.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

To issue a No Op Command, system software shall perform the following

operations:

• Insert a No Op Command TRB on the Command Ring and initialize the following

fields:

• TRB Type = No Op Command (refer to Table 6-86).

• Clear all other fields of the command TRB to ‘0’.

104

• Cycle bit = Command Ring’s PCS flag. Refer to section 4.9.2 for a discussion of

the Cycle bit and PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When a No Op Command is executed by the xHC it shall perform the following

operations:

• Insert a Command Completion Event on the Event Ring and initialize the following

fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the No Op Command TRB.

• Completion Code = Success (refer to Table 6-85).

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

4.6.3 Enable Slot

The Enable Slot Command is issued by software to obtain an available Device

Slot and to transition a Device Slot from the Disabled to the Enabled state. Refer

to section 3.3.2 for a high level description of the Enable Slot Command and it’s

usage.

When an Enable Slot Command is processed by the xHC, it will look for an

available Device Slot. If a slot is available, the ID of a selected slot will be

returned in the Slot ID field of a successful Command Completion Event on the

Event Ring. If a Device Slot is not available, the Slot ID field shall be cleared to

‘0’ and a No Slots Available Error shall be returned in the Command Completion

Event.

Upon the successful completion of an Enable Slot Command, system software

shall use the Slot ID to link a Device Context data structure to the slot by writing

a pointer to the Device Context in the Device Context Base Address Array[Slot ID]

location. Undefined operation may occur if the Context Base Address Array entry

is not updated prior to issuing a Command for the slot, or ringing the Default

Control Endpoint (0) doorbell.

To ensure proper operation of the xHC, system software shall provide “valid”

Input Control Context, Slot Context and Endpoint Context data structures in the

Input Context data structure.

The requirements of a valid Slot Context data structure are defined in section

6.2.2.

The requirements of a valid Endpoint Context data structure are defined in

section 6.2.3.1.

The format of the Enable Slot Command TRB is defined in section 6.4.3.2.

 105

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

Sections 6.2.2.1 and 6.2.3.1 also define the Completion Code values that will be

found in the Command Completion Event if an invalid context is detected.

To issue an Enable Slot Command, system software shall perform the following

operations:

• Insert an Enable Slot Command TRB on the Command Ring and initialize the

following fields:

• TRB Type = Enable Slot command (refer to Table 6-86).

• Slot Type = value specified by the Protocol Slot Type field of the associated xHCI

Supported Protocol Capability structure (refer to Table 7-9).

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When an Enable Slot Command is executed by the xHC it shall perform the

following operations:

• Insert a Command Completion Event on the Event Ring and initialize the following

fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Enable Slot Command TRB.

• Determine if a Device Slot is available.

• If a Device Slot is available:

• Slot ID = ID of the selected Device Slot.

• Completion Code = Success (refer to Table 6-85).

• else // Device Slot is not available

• Slot ID = ‘0’.

• Completion Code = No Slots Available.

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

The algorithm for Device Slot ID selection is xHC implementation dependent.

Note: If this command is aborted (i.e. Completion Code = Command Aborted) the Slot

ID field should be considered by software to be invalid (e.g. no slot was

allocated).

4.6.4 Disable Slot

The Disable Slot Command is issued by software to force a Device Slot to the

Disabled state. A typical use would be to free a Device Slot when a USB device is

disconnected.

106

When a Disable Slot Command is processed by the xHC it shall:

• Disable the Doorbell register for the slot

• Free any bandwidth allocated to the periodic endpoints of the device

• Terminate any slot related USB activity (e.g. packet transfers)

• Free any internal resources associated with the slot

• Internally flag the slot as “available” for subsequent reassignment by an Enable Slot

Command. i.e. the Device Context Base Address Array entry for the slot is no longer

considered valid by the xHC and software can free the Device Context, Transfer Ring,

Stream Context Array, etc. data structures associated with the slot.

A Command Completion Event is always returned for a Disable Slot Command.

The format of the Disable Slot Command TRB is defined in section 6 .4.3.3.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

Note: Before software issues a Disable Slot Command the following conditions shall be

true, otherwise undefined behavior may occur:

• Any active endpoints associated with the slot shall be in the Stopped state

or Idle in the Running state, and any outstanding Transfer Events shall have

been received.

• Any commands targeted at the slot that is being disabled shall be complete,

i.e. any outstanding Command Completion Events for the slot have been

received.

To issue a Disable Slot Command , system software shall perform the following

operations:

• Insert a Disable Slot Command on the Command Ring and initialize the following

fields:

• TRB Type = Disable Slot Command (refer to Table 6-86).

• Slot ID = ID of the Device Slot to be disabled.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When a Disable Slot Command is executed by the xHC it shall perform the

following operations:

• Insert a Command Completion Event on the Event Ring and initialize the following

fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Disable Slot Command TRB.

• Slot ID = The value of the command’s Slot ID.

 107

• If the Device Slot identified by the Slot ID has been previously enabled by an

Enable Slot Command:

• Any xHC resources assigned to the Device Slot are freed and the Device Slot

is made available for reassignment.

• The Slot State of the associated Slot Context is set to Disabled.

• Completion Code = Success (refer to Table 6-85).

• else // The slot has not been enabled by an Enable Slot Command

• Completion Code = Slot Not Enabled Error.

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

Note: After software receives the Command Completion TRB for a Disable Slot

Command it shall clear the respective DCBAA entry to ‘0’. This action allows the

xHC to identify valid vs. invalid Device Slots after a Restore State operation.

Note: Any pending events not already posted to an Event Ring may be aborted when

this command is executed.

4.6.5 Address Device

The Address Device Command is issued by software to transition a Device Slot

from the Enabled to the Default or Addressed state or from the Default to the

Addressed state, depending on the state of the Block Set Address Request (BSR)

flag.

When an Address Device Command is processed by the xHC it shall enable the

device’s Default Control Endpoint, select an address for the USB device, and

issue a USB SET_ADDRESS request to the USB Device. The SET_ADDRESS

request for a USB2 device shall be issued to Address ‘0’. The SET_ADDRESS

request for a USB3 device shall be issued using the Route String.

Upon successful completion of an Address Device Command, the Default Control

Endpoint will be added to the xHCs’ endpoint scheduling list, the Default

Control Endpoint 0 Context Doorbell shall be enabled, and TRBs can be posted

to its endpoint Transfer Ring.

A USB Transaction Error shall be generated if an error is detected on the USB

SET_ADDRESS request and the Device Slot shall not transition to the Addressed

state.

Once a successful Address Device Command has completed, system software

can issue USB GET_DESCRIPTOR requests through the Default Control Endpoint

to retrieve the USB Device, Configuration, etc. descriptors from the USB device.

Using the information in these descriptors system software may determine

which Class Driver(s) to load for the USB device, and hand off the device.

108

Note: A USB SET_ADDRESS request does not include a data stage, so the default Max

Packet Size is sufficient to issue the request. However subsequent USB device

requests require that the xHC use the Max Packet Size defined by the device. The

first request that system software should issue to a USB Device is a

GET_DESCRIPTOR request with the wLength set to 8, to retrieve is the USB

Device Descriptor. The last byte of the returned partial Device Descriptor

(bMaxPacketSize0) identifies the maximum packet size of the Default Control

Endpoint. This value shall be used by system software to update the Max Packet

Size field in the Control Endpoint 0 Context.

Note: If the Block Set Address Request (BSR) flag is ‘0’ in the Address Device Command

TRB, then the xHC shall select a USB Device Address and issue a SET_ADDRESS

request to a USB device as part of an Address Device Command. If the Block Set

Address Request (BSR) flag is ‘1’ then the xHC shall not issue a SET_ADDRESS

request to a USB device as part of an Address Device Command. In either case,

all other operations described in this section for the Address Device Command

are performed. The BSR flag may be used by software to provide compatibility

with legacy USB devices which require their Device Descriptor to be read before

receiving a SET_ADDRESS request.

Note: If the xHC detects a SET_ADDRESS request on the Default Control Endpoint

Transfer Ring, it shall generate a TRB Error Completion Status for the TD. The

xHC shall never forward a SET_ADDRESS request on a Default Control Endpoint

Transfer Ring to a USB device.

The format of the Address Device Command TRB is defined in section 6.4.3.4.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

The Address Device Command utilizes the Address Device Command TRB data

structure defined in section 6.4.3.4, which points to an Input Context data

structure defined in section 6.2.5.

The Add Context flags A0 and A1 of the Input Control Context data structure (in

the Input Context) shall be set to ‘1’, and all remaining Add Context and Drop

Context flags shall all be cleared to ‘0’.

System software shall initialize Slot Context and Endpoint Context 0 entries of

the Input Context. All other Endpoint Contexts in the Input Context shall be

ignored by the xHC during the execution of this command.

To issue an Address Device Command, system software shall perform the

following operations:

• Ensure that the Device Context Base Address Array entry points to a properly sized

and initialized Device Context data structure for the device.

• Allocate and initialize an Input Context data structure for the command.

• The Add Context flags for the Slot Context and the Endpoint 0 Context shall be

set to ‘1’. All fields of the Input Context Slot Context data structure shall define

 109

valid values, refer to section 4.5.2. The Endpoint 0 Context data structure in the

Input Context shall define valid values for the TR Dequeue Pointer, EP Type, Error

Count (CErr), and Max Packet Size fields. The MaxPStreams, Max Burst Size, and

EP State values shall be cleared to '0'.

• Insert an Address Device Command on the Command Ring and initialize the following

fields:

• TRB Type = Address Device command (refer to Table 6-86).

• Slot ID = ID of the target Device Slot.

• Input Context Pointer = The base address of the Input Context data structure.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

Note: A Slot or Endpoint Context contained in the Input Context is referred to as an

Input Slot or Endpoint Context. And a Slot or Endpoint Context contained in the

Device Context data structure pointed to by the Device Context Base Address

Array is referred to as an Output Slot or Endpoint Context and the Device Context

itself is referred to as the Output Device Context.

When an Address Device Command is executed by the xHC it shall perform the

following operations:

• Insert a Command Completion Event on the Event Ring and initialize the following

fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Address Device Command TRB.

• Slot ID = The value of the command’s Slot ID.

• If the Device Slot identified by the command’s Slot ID field has been previously

enabled by an Enable Slot Command:

• Retrieve the pointer to the Output Device Context of the selected Device Slot.

• If the Block Set Address Request (BSR) flag = ‘1’

• If the slot is in the Enabled state:

• Copy all fields of the Input Slot Context to the Output Slot Context.

• Copy all fields of the Input Endpoint 0 Context to the Output

Endpoint 0 Context.

• Set the Endpoint State (EP State) field in the Output Endpoint 0

Context to Running.

• Set the Slot State in the Output Slot Context to Default.

• Set the USB Device Address field in the Output Slot Context to ‘0’.

• Completion Code = Success (refer to Table 6-85).

• else // The slot is not in the Enabled state:

• Completion Code = Context State Error.

110

• else // BSR = ‘0’

• If the slot is in the Enabled or Default state:

• Select a Device Address for the target USB device.

• Construct a SET_ADDRESS request to be sent the device

• bmRequestType = 0.

• wValue = Selected Device Address.

• wIndex = 0.

• wLength = 0.

• Retrieve the Route String from the Input Slot Context.

• Issue a SET_ADDRESS request to the target USB device.

• If the SET_ADDRESS request is successful:

• Copy all fields of the Input Slot Context to the Output Slot

Context.

• Copy all fields of the Input Endpoint 0 Context to the Output

Endpoint 0 Context.

• Set the Endpoint State (EP State) field in the Output Endpoint 0

Context to Running.

• Set the Slot State in the Output Slot Context to Addressed.

• Set the USB Device Address field in the Output Slot Context to

the address selected for the USB device by the xHC.

• Completion Code = Success (refer to Table 6-85).

• else // SET_ADDRESS request is not successful

• Completion Code = USB Transaction Error.

• else // The slot is not in the Enabled or Default state:

• Completion Code = Context State Error.

• else // The slot has not been enabled by an Enable Slot Command

• Completion Code = Slot Not Enabled Error.

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

Note: The xHC should check that all referenced contexts are valid before executing the

command. If an invalid context is detected, the state of the Output Device

Context shall not change and the a Command Completion Event shall be

generated with the Completion Code set to Parameter Error.

Note: The Slot Context (Add Context flag 0 (A0)) and the Default Endpoint Context (Add

Context flag 1 (A1)) shall be valid in the Input Context referenced by the Address

Device Command. All other Endpoint Contexts (A2 to A31) in the Input Context

shall be ignored by the xHC.

Note: If the SET_ADDRESS request was unsuccessful, system software may issue a

Disable Slot Command for the slot or reset the device and attempt the Address

 111

Device Command again. An unsuccessful Address Device Command shall leave

the Device Slot in the Default state.

Note: If an Address Device Command is received and all available USB Device

Addresses have been assigned for the BI that the device is associated with, then

a Command Completion Event shall be generated with the Completion Code set

to Resource Error.

Note: Software shall be responsible for timing the SetAddress() “recovery interval”

required by USB and aborting the command on a timeout. Refer to section 9.2.6.3

in the USB2 spec.

Note: If BSR = ‘0’ and this command is aborted (i.e. Completion Code = Command

Aborted), software should assume that the USB device is in an unknown state

(e.g. the USB device may or may not be in the Address state) and take the

appropriate action to recover it to a known state, otherwise undefined behavior

may occur.

Note: A USB Transaction Error Completion Code for an Address Device Command may

be due to a Stall response from a device. Software should issue a Disable Slot

Command for the Device Slot then an Enable Slot Command to recover from this

error. Refer to section 4.11.2.2 Implementation note.

Note: All endpoints shall be in the Stopped state or if in the Running state, shall be

“idle” (e.g. no USB Transactions are in progress, the Transfer Ring is empty, and

software has processed all outstanding events for the Transfer Ring) when this

command is executed. If this condition is not met undefined behavior may occur.

Note: If an Address Device Command fails with USB Transaction Error and the target

device is behind a TT, software shall issue a ClearFeature(CLEAR_TT_BUFFER)

request to TT in the HS hub.

Refer to section 6.2.1 for the definition of a Device Context data structure and its

access constraints.

The requirements of a “valid” Slot Context data structure are defined in section

6.2.2.1.

The requirements of a “valid” Endpoint Context data structure are defined in

section 6.2.3.1.

4.6.6 Configure Endpoint

The Configure Endpoint Command is issued by software to enable, disable, or

reconfigure endpoints associated with a target configuration.

The format of the Configure Endpoint Command TRB is defined in section

6.4.3.5.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

112

This command is issued by software under the following circumstances:

• Configuring a device. To set a configuration in a device, software shall issue a

Configure Endpoint Command to the xHC in conjunction with issuing USB

SET_CONFIGURATION request to the device. This command shall be used to enable

the set of Device Slot endpoints selected by the target configuration, and transition

a Device Slot from the Addressed to the Configured state. Undefined behavior may

occur if TDs are posted for endpoints enabled by this command and the

SET_CONFIGURATION request associated with this command is not successfully

completed by the USB device.

• Deconfiguring a device. To deconfigure a device, software shall issue a Configure

Endpoint Command to the xHC in conjunction with “deconfiguring” the device. A USB

device is “deconfigured” by issuing a SET_CONFIGURATION request to a USB device

with configuration ‘0’ selected. Software shall issue a Configure Endpoint Command

with Deconfigure (DC) = ‘1’ to inform the xHC that a SET_CONFIGURATION request

with a configuration value of zero shall be sent to the device. This command shall be

used to disable all enabled endpoints (except for the Default Control Endpoint) of a

Device Slot, and transition the Device Slot from the Configured to the Addressed

state. Undefined USB device behavior may occur if the SET_CONFIGURATION

request associated with this command is not successfully completed.

Note: Setting the Deconfigure (DC) flag to ‘1’ in the Configure Endpoint Command TRB

is equivalent to setting Input Context Drop Context flags 2-31 to ‘1’ and Add

Context 2-31 flags to ‘0’. If the DC flag = ‘1’, the Input Context Pointer field shall

be ignored by the xHC and the Output Slot Context Context Entries field shall be

set to ‘1’.

Note: If the device only has a Default Control Endpoint, then a Configure Endpoint

Command is not necessary prior to issuing a SET_CONFIGURATION

“deconfigure” request to a device.

• Setting an Alternate Interface on a device. To set an Alternate Interface on a device,

software shall issue a Configure Endpoint Command to the xHC in conjunction with

issuing USB SET_INTERFACE request to the device. This command shall be used to

disable, enable, or reconfigure a selected set of endpoints determined by the target

Alternate Interface. Undefined behavior may occur if the SET_INTERFACE request

associated with this command is not successfully completed.

Note: A USB device presents one or more Configuration options to system software.

System software selects a specific configuration with a USB

SET_CONFIGURATION request. Also, each Interface defined by a Configuration

may optionally present multiple Alternate Interface settings. System software

selects a specific Alternate Interface setting with a USB SET_INTERFACE request.

The result of the USB SET_CONFIGURATION and SET_INTERFACE requests

allow system software to enable a selected set endpoints on a USB device. The

specific endpoints enabled by a Configuration or Alternate Interface setting

depend on the respective descriptors reported by the device. The xHC does not

maintain information about the relationships between the Configuration and

 113

Alternate Interface options presented by a USB device and the endpoints

enabled by a specific configuration option. System software shall use the Add

Context and Drop Context flags of the Configure Endpoint Command to explicitly

identify to the xHC the endpoints of a Device Slot that shall be enabled due to

the selected USB device Configuration and Alternate Interface settings.

Note: Slot or Endpoint Contexts are found in Device and Input Contexts. A Slot or

Endpoint Context contained in the Input Context is referred to as an Input Slot

or Endpoint Context, and a Slot or Endpoint Context contained in the Device

Context data structure is referred to as an Output Slot or Endpoint Context.

The Add Context flag A1 and Drop Context flags D0 and D1 of the Input Control

Context (in the Input Context) shall be cleared to ‘0’. Endpoint 0 Context does

not apply to the Configure Endpoint Command and shall be ignored by the xHC.

A0 shall be set to ‘1’ and refer to section 6.2.2.2 for the Slot Context fields used

by the Configure Endpoint Command. The state of the remaining Add Context

and Drop Context flags depend on the specific endpoints affected by the

command. System software shall initialize the Endpoint Contexts of the Input

Context referenced by Add Context flags. All Endpoint Context data structures

not referenced by an Add Context flag shall be ignored by the xHC. Note that

Endpoint Context flags referenced only by a Drop Context flag does not need to

be initialized. Refer to section 6.2.3.2 for the Endpoint Context fields used by

the Configure Endpoint Command.

Note: An endpoint shall be in the Stopped state or if in the Running state shall be “idle”

(e.g. no USB Transactions are in progress, the Transfer Ring is empty, and

software has processed all outstanding events for the Transfer Ring) if its Drop

Context flag is set. If this condition is not met undefined behavior may occur.

The following rules apply to processing a Configure Endpoint Command :

• The xHC resources assigned to a Device Slot are not modified until after all Drop

Context and Add Context flags are evaluated.

• The Slot State field of a Device Slot Context is not modified until after all Drop

Context and Add Context flags are evaluated.

• The xHC maintains a global Resources Available variable, which is initialized to

indicate all xHC resources are available. A Resource is an xHC implementation

defined metric, which refers to the internal xHC data structures, buffer space, or other

implementation specific resources required to support an endpoint type.

• For each USB bus instance, a Bandwidth Available variable is maintained, which

initialized to the respective maximum available value. Bandwidth is a commodity

allocated by the host controller. Refer to section 4.14.2 (Reserved Bandwidth) for

more information on how bandwidth requirements are calculated for an endpoint.

• Two temporary variables are maintained by the xHC when evaluating the Configure

Endpoint Command: Resource Required and Bandwidth Required. Both variables

are initialized to ‘0’.

114

• The Resource Required variable identifies the “sum” of xHC resources required

to support all endpoints affected by a Configure Endpoint Command. Note that

the “units” of xHC resource measurement is an implementation specific value.

• The Bandwidth Required variable identifies the “sum” of USB bandwidth

necessary to support all endpoints affected by a Configure Endpoint Command.

• The Drop Context flags are evaluated before the Add Context flags.

• For each endpoint indicated by a Drop Context flag = ‘1’:

• If the Output Endpoint Context is not in the Disabled state:

• The endpoint related resources are subtracted from the Resource Required

variable.

• If the endpoint is periodic, then the bandwidth assigned to the endpoint is

subtracted from the Bandwidth Required variable.

• else // Output Endpoint Context is in the Disabled state

• Do nothing

• For each Input Endpoint Context indicated by an Add Context flag = ‘1’:

• The resources required to support the endpoint described by the Input Endpoint

Context shall be added to the Resource Required variable.

• If the endpoint described by the Input Endpoint Context is periodic, then the

bandwidth required to support the endpoint shall be added to the Bandwidth

Required variable.

• If the Drop Context flag is set for an endpoint and the Output Endpoint Context is in

the Disabled state, the Drop Context flag shall be ignored and no resource or

bandwidth evaluation shall be performed for the endpoint.

• After all Drop Context and Add Context flags are evaluated the xHC determines

whether the command was successful:

• The Resources Required variable is compared to the Resources Available

variable, if the result indicates an oversubscription of resources by the command

(i.e. Resources Available - Resources Required is less than 0), then the command

shall be unsuccessful and a Resource Error Completion Code shall be returned in

the Command Completion Event. Refer to section 4.14.1.1 for more information

on xHC resources.

• The Bandwidth Required variable is compared to the Bandwidth Available

variable, if the result indicates an oversubscription of bandwidth by the

command (i.e. Bandwidth Available - Bandwidth Required is less than 0), then the

command shall be unsuccessful and a Bandwidth Error Completion Code shall

be returned in the Command Completion Event.

• If the Resource and Bandwidth requirements of the command can be met, then

the command is successful and a Success Completion Code shall be returned in

the Command Completion Event.

• If the command is unsuccessful:

 115

• Current xHC resource allocations shall be unchanged for the endpoint.

• Current xHC bandwidth allocations shall be unchanged for the endpoint.

• The Output Slot Context Slot State field shall be unchanged for the device.

• The Output Endpoint Contexts referenced by the command in the Device

Context shall be unchanged.

• The Command Completion Event shall indicate the appropriate error Completion

Code.

xHC behavior is undefined if the Drop Context (D) flag is ‘0’, the Add Context (A)

flag is ‘1’, and the Output Endpoint Context is not in the Disabled state (i.e.

software is trying to add an endpoint without dropping its current resources).

• If the command is successful:

• The Resources Available variable shall be updated to reflect the new resource

allocation.

• The Bandwidth Available variable shall be updated to reflect the adjusted

bandwidth allocation.

• For each endpoint:

• If the Drop Context flag is ‘0’ and the Add Context flag is ‘0’, the xHC shall:

• Do nothing.

• The respective Input Endpoint Context is ignored by the xHC.

• If the Drop Context flag is ‘1’ and the Add Context flag is ‘0’, the xHC shall:

• Drop the endpoint from its pipe scheduling list if it is scheduled.

• Set the Endpoint State (EP State) field of the Output Endpoint Context to

Disabled.

• The Input Endpoint Context data structure is ignored by the xHC.

• If the Drop Context flag is ‘0’ and the Add Context flag is ‘1’, the xHC shall:

• Add the endpoint to its pipe scheduling list.

• All fields of the Input Endpoint Context data structure in the Configure

Endpoint Context are copied to the Output Endpoint Context fields in the

Device Context.

Note that when the Input Endpoint Context is copied to the Output

Endpoint Context, the ownership of a Stream Context Array pointed to

by the Input TR Dequeue Pointer is passed from software to the xHC.

• The Endpoint State (EP State) field of the Output Endpoint Context is set

to Running.

• Enable the associated Device Context Doorbell.

• If the Drop Context flag is ‘1’ and the Add Context flag is ‘1’, the xHC shall:

• Release the current Resources and Bandwidth allocated to the endpoint

116

and assign the new Resources and Bandwidth requested for the

endpoint.

• All fields of the Input Endpoint Context data structure in the Configure

Endpoint Context are copied to the Output Endpoint Context fields in the

Device Context.

Note that when the Input Endpoint Context is copied to the Output

Endpoint Context, the ownership of a Stream Context Array pointed to

by the Input TR Dequeue Pointer field is passed from software to the xHC.

Software shall not deallocate any Stream Context Array data structures

while they are owned by the xHC. It is software’s decision whether to set

the Input TR Dequeue Pointer equal to the Output TR Dequeue Pointer,

thus reusing the currently allocated Stream Contexts/Transfer Rings, or

allocating new data structures and changing the Input TR Dequeue

Pointer value. If new data structures are allocated, software shall be

responsible for recovering the old data structures after the command

completes.

• Set the Endpoint State (EP State) field of the Output Endpoint Context to

Running.

• If the device is “deconfigured” by this command (i.e. all Output Endpoint

Contexts (DCI 2-31) are in the Disabled state), the Output Slot Context Slot State

field shall be set to the Addressed state by the xHC.

• If any Output Endpoint Context (2 through 31) is not in the Disabled state, the

Output Slot Context Slot State field shall be set to the Configured state by the

xHC.

• The Command Completion Event Completion Code shall indicate Success.

When this command is used to “Set an Alternate Interface on a device”, software

shall set the Drop Context and Add Context flags as follows:

• If an endpoint is not modified by the Alternate Interface setting, then software shall

set the Drop Context and Add Context flags to ‘0’.

• If an endpoint previously disabled, is enabled by the Alternate Interface setting, then

software shall set the Drop Context flag to ‘0’ and Add Context flag to ‘1’, and initialize

the Input Endpoint Context.

• If an endpoint previously enabled, is disabled by the Alternate Interface setting, then

software shall set the Drop Context flag to ‘1’ and Add Context flag to ‘0’.

• If a parameter of an enabled endpoint is modified by an Alternate Interface setting,

the Drop Context and Add Context flags shall be set to ‘1’.

When configuring or deconfiguring a device, only after completing a successful

Configure Endpoint Command and a successful USB SET_CONFIGURATION

request may software schedule data transfers through a newly enabled endpoint

or Stream Transfer Ring of the Device Slot.

 117

When setting an Alternate Interface on a device, only after completing a

successful Configure Endpoint Command and a successful USB SET_INTERFACE

request may software schedule data transfers through a newly enabled endpoint

or Stream Transfer Ring of the Device Slot.

When the command is complete, a Command Completion Event is posted to the

Event Ring indicating the success or failure of the command.

If the Slot State is Disabled when a Configure Endpoint Command is received,

the xHC shall generate a Slot Not Enabled Error on the Event Ring.

The xHC shall reject a Configure Endpoint Command with Bandwidth Error if it

determines that the bandwidth required by the configuration is not available.

The xHC shall reject a Configure Endpoint Command with Resource Error if it

determines that it does not have enough internal resources (buffer space, etc.)

available to service all the endpoints defined in the configuration.

If the configuration defines periodic endpoints, system software may optionally

issue a Negotiate Bandwidth Command to cause the xHC to renegotiate

bandwidth with other devices. Refer to section 4.16.1 for more information on

bandwidth negotiation.

Upon successful completion of a Configure Endpoint Command, the enabled

endpoints will be added to the xHCs’ pipe scheduling list, the respective Device

Context Doorbells shall be enabled, and TRBs can be posted to any enabled

endpoint or Stream Transfer Ring.

Refer to section 4.11.4.5 for more information on the Configure Endpoint

Command.

The requirements of a “valid” Slot Context data structure are defined in section

6.2.2.2.

The requirements of a “valid” Endpoint Context data structure are defined in

section 6.2.3.2.

The requirements of a “valid” Stream Context data structure are defined in

section 6.2.2.1.

If the successful completion of the Configure Endpoint Command results in

endpoints being enabled, then information in the Input Context is copied to the

Device Context . As illustrated in the figure below.

118

Figure 4-3: Example Configure Endpoint Command

EP1 IN Context

EP1 OUT Context

EP0 Context

Slot Context

Device Context

EP1 IN Context

EP1 OUT Context

EP0 Context

Input Control

Context

Input Context

EP15 IN Context

EP15 OUT Context

...

EP15 IN Context

EP15 OUT Context

...

A3 and A30 = 1 . All other

Add flags = 0

A30 = 1

A3 = 1

If Configure Endpoint

Command Successful, copy

Endpoint Context fields

Configure

Endpoint

TD

Device

Context

Base

Address

Array

Slot Context

To issue a Configure Endpoint Command system software shall perform the

following operations:

• Allocate and initialize an Input Context data structure for the command.

• Insert a Configure Endpoint Command on the Command Ring and initialize the

following fields:

• TRB Type = Configure Endpoint Command (refer to Table 6-86).

• Slot ID = ID of the target Device Slot.

• Input Context Pointer = The base address of the Input Context data

structure.Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

Note: This example assumes the existence of two global variables: Bandwidth

Available, and Resource Available, which identify the amount of the respective

parameter available for allocation. And two temporary variables: Bandwidth

Required, and Resource Required, which define the amount of the respective

parameter required to successfully complete the Configure Endpoint Command.

Bandwidth is a commodity allocated by the host controller. Refer to section

4.14.2 for the maximum bus bandwidth may be allocated to periodic endpoints.

Resource is an xHC implementation specific parameter which may refer to

internal xHC data structure or buffer space.

Note: A Slot or Endpoint Context contained in the Input Context is referred to as an

Input Slot or Endpoint Context. And a Slot or Endpoint Context contained in the

Device Context data structure pointed to by the Device Context Base Address

Array is referred to as an Output Slot or Endpoint Context.

 119

When a Configure Endpoint Command is executed by the xHC it shall perform

the following operations:

• Insert a Command Completion Event on the Event Ring and initialize the following

fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Configure Endpoint Command TRB.

• Slot ID = The value of the command’s Slot ID.

• Initialize the Bandwidth Required variable to 0.

• Initialize the Resource Required variable to 0.

• If the Device Slot identified by the Slot ID field has been previously enabled by

an Enable Slot Command:

• Retrieve the Output Device Context of the selected Device Slot.

// Release the resources and bandwidth for the endpoints to be disabled.

• If the Output Device Context Slot State is equal to Configured:

• If the Deconfigure (DC) flag = ‘1’:

• For each Endpoint Context not in the Disabled state:

• Subtract the resources allocated to the endpoint from the

Resource Required variable.

• If the endpoint is periodic:

• Subtract bandwidth allocated to the endpoint from the

Bandwidth Required variable.

• Set the Output EP State field to Disabled.

• Set the Slot State in the Output Slot Context to Addressed.

• Completion Code = Success (refer to Table 6-85). Note: This value

may be overwritten by a later operation.

• else // DC = ‘0’

• For each Endpoint Context designated by a Drop Context flag = '1':

• Subtract the resources allocated to the endpoint from the

Resource Required variable.

• If the endpoint is periodic:

• Subtract bandwidth allocated to the endpoint from the

Bandwidth Required variable.

• Completion Code = Success (refer to Table 6-85). Note: This value

may be overwritten by a later operation.

// Calculate the resource and bandwidth requirements for the endpoints to be

enabled.

120

• If the Output Device Context Slot State is equal to Addressed or Configured

and DC = ‘0’:

• If all Input Endpoint Contexts identified by Add Context flag fields = ‘1’

are valid:

• For each Endpoint Context designated by an Add Context flag = '1':

• If the xHC resources required by the enabled endpoints are

available:

• Add the resources allocated to the endpoint to the Resource

Required variable.

• If the endpoint is periodic:

• Evaluate the bandwidth requirements define by the

Endpoint Context.

• Add bandwidth allocated to the endpoint from the

Bandwidth Required variable.

• If the Resource Required is less than or equal to the Resource

Available:

• If the Bandwidth Required is less than or equal to the Bandwidth

Available:

// The resource and bandwidth allocations will allow a successful

completion, so update Endpoint Context(s).

• Subtract the Bandwidth Required from the Bandwidth

Available.

• For each Endpoint Context designated by a Drop Context flag

= '1':

• Set the EP State field to Disabled14.

• For each Endpoint Context designated by a Add Context flag

= '1':

• Copy all fields of the Input Endpoint Context to the

Output Endpoint Context.

Note that this action passes ownership of the Transfer

Ring or Stream Context Array/Transfer Rings from

software to the xHC. If the Output Endpoint Context had

previously pointed to a Transfer Ring or a Stream

Context Array, software is responsible for performing

any garbage collection necessary for recovering them.

• Set the Output EP State field to Running.

14Note, if both the Add and Drop flags are set for an Endpoint Context, the xHC is not expected to write out the
intermediate Disabled state to the Output Device Context. The only requirement is that the Endpoint Context is
correct when the Command Completion Event is generated.

 121

• Load the xHC Enqueue and Dequeue Pointers with the

value of the TR Dequeue Pointer field from the Endpoint

Context.

• If all Endpoints are Disabled:

• Set the Slot State in the Output Slot Context to

Addressed.

• Set the Context Entries field in the Output Slot Context

to ‘1’.

• else // An Endpoint is Enabled

• Set the Slot State in the Output Slot Context to

Configured.

• Set the Context Entries field in the Output Slot Context

to the index of the last valid Endpoint Context in its

Output Device Context structure.

• Completion Code = Success (refer to Table 6-85).

• else15 // The Bandwidth Required is greater than the Bandwidth

Available

• If the Bandwidth Error is encountered in the primary

Bandwidth Domain:

• Completion Code = Bandwidth Error.

• else // The Bandwidth Error is encountered in a Secondary

Bandwidth Domain, refer to section 4.16.2 for more

information on Bandwidth Domains.

• Completion Code = Secondary Bandwidth Error.

• else // The Resource Required is greater than the Resource Available

• Completion Code = Resource Error.

• else // Not all Input Endpoint Contexts identified by Add Context flag

fields = ‘1’ are valid

• Completion Code =Parameter Error.

• else // The Output Device Context Slot State is not equal to Addressed or

Configured.

• Completion Code = Context State Error.

• else // The slot has not been enabled by an Enable Slot Command

• Completion Code = Slot Not Enabled Error.

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

15It is not required that the following checks for Primary and Secondary Bandwidth availability occur in this order.
An xHCI implementation may check for Secondary Bandwidth availability first.

122

Note: Disabled endpoints have no resources or bandwidth allocated to them, so if the

Drop Context flag is ‘1’ for a Disabled endpoint it is ignored.

Note: The xHC shall consider an Input Endpoint Context invalid if the DCI of an Add

Context flag = ‘1’ is greater than the value of Context Entries field of the Input

Slot Context.

Note: A Configure Endpoint Command may generate a Max Exit Latency Too Large

Error, because the current Max Exit Latency value caused the xHC to reject the

configuration, e.g. the Max Exit Latency value prevented a PING required by an

Isoch endpoing to be scheduled. Refer to section 4.23.5.2.2 for more information

on the Max Exit Latency Too Large Error.

Refer to sections 6.2.2

The requirements of a “valid” Slot Context data structure are defined in section

6.2.2.2.

The requirements of a “valid” Endpoint Context data structure are defined in

section 6.2.3.2.

The requirements of a “valid” Stream Context data structure are defined in

section 6.2.4.1.

4.6.6.1 Exit Latency Delta (ELD)

The Exit Latency Delta (ELD) provides a hint to software for optimizing power

management.

The ELD shall be reported by a Configure Endpoint Command as a non-zero

value in the Command Completion Parameter field in the Command Completion

Event. If the Command Completion Parameter = ‘0’, then ELD hinting is not

available.

If the Completion Code of a Configure Endpoint Command = Success, then the

ELD shall define the amount time in microseconds by which the current Max Exit

Latency value for the slot may be successfully increased and still allow the

configuration to succeed. If the Completion Code = Max Exit Latency Too Large

Error, then the ELD shall define the amount of time in microseconds that Max

Exit Latency must be reduced by to enable success. The Command Completion

Parameter field shall be cleared to ‘0’ for all other Configure Endpoint Command

completion Condition Code values.

Internally an xHC adjusts its timing with an implementation specific granularity.

An xHC shall report ELD = ‘1’ if the computed ELD value is too small to allow a

successful command completion.

 123

4.6.7 Evaluate Context

The Evaluate Context Command is issued by software to inform the xHC that

specific fields in the Device Context data structures have been modified. There

are several cases where parameters associated with a Slot Context or the Default

Control Endpoint Context are initially unknown, which shall be updated after the

slot has entered the Addressed state. e.g. the Max Packet Size of the control

endpoint may be determined only after software reads the Device Descriptor

from the device through the control endpoint. The Device Descriptor shall be

read to determine whether a device is a hub or not, etc.

When an Evaluate Context Command is processed by the xHC it shall only affect

the parameters identified by the respective context. Refer to the Evaluate

Context Command Usage sub-sections in section 4.5.2 and 6.2.2.3 for more

information on the specific context fields that are affected.

The format of the Evaluate Context Command TRB is defined in section 6.4.3.6.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

When the command is complete, a Command Completion Event is posted to the

Event Ring indicating the success or failure of the command.

If the Slot State is Disabled when an Evaluate Context Command is received, the

xHC shall generate a Slot Not Enabled Error Event on the Event Ring.

Upon successful completion of an Evaluate Context Command, the xHC shall

begin executing with the updated context parameters.

The Evaluate Context Command utilizes the Input Context data structure defined

in section 6.2.5 to define which Contexts are to be evaluated. The state of the

Add Context flags depends on the specific endpoints affected by the command.

All Drop Context flags of the Input Control Context shall be cleared to ‘0’ (these

flags do not apply to the Evaluate Context Command). System software shall

initialize Contexts of the Input Context affected by the command. All Contexts

not referenced by an Add Context flag in the Input Context are ignored by the

xHC.

To issue an Evaluate Context Command , system software shall perform the

following operations:

• Allocate and initialize an Input Context data structure for the command.

• Insert an Evaluate Context Command on the Command Ring

• TRB Type = Evaluate Context Command (refer to Table 6-86).

• The Add Context flags shall be initialized to indicate the IDs of the Contexts

affected by the command. Refer to sections 6.2.2.3 and 6.2.3.3 for the specific

Context fields that shall be evaluated.

• Set all Drop Context flags to ‘0’.

124

• Slot ID = ID of the target Device Slot.

• Input Context Pointer = The base address of the Input Context data structure.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When an Evaluate Context Command is executed by the xHC it shall perform the

following operations:

• Insert a Command Completion Event on the Event Ring.

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Evaluate Context Command TRB.

• Slot ID = The value of the command’s Slot ID.

• Completion Code = Success (refer to Table 6-85).

• If the Device Slot identified by the Slot ID fields has been previously enabled by

an Enable Slot Command:

• Retrieve the Output Device Context of the selected Device Slot.

• If the Output Slot State is equal to Default, Addressed or Configured:

• For each Context designated by an Add Context flag = '1':

• Evaluate the parameter settings defined by the selected Contexts.

• If the Context parameters are not valid:

• Completion Code = Parameter Error.

• If the Max Exit Latency is non-zero:

• Calculate the Isoch Scheduling Delay.

• If the Max Exit Latency + Isoch Scheduling Delay does not allow an

Isoch endpoint to be scheduled:

• Completion Code = Max Exit Latency Too Large Error.

• If Completion Code = Success:

• For each Endpoint Context designated by a Add Context flag = '1':

• Update Output Device Context parameters.

• else // The Output Slot State is not equal to Default, Addressed or Configured

• Completion Code = Context State Error.

• else // The slot has not been enabled by an Enable Slot Command

• Completion Code = Slot Not Enabled Error.

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

Note: The xHC shall consider an Endpoint Context invalid if the DCI of an Add Context

flag = ‘1’ is greater than the value of Context Entries.

 125

Note The Output Slot/Endpoint Context parameters shall not be changed if any error

is detected by this command.

Note: When an Evaluate Context Command modifies the value of Max Exit Latency, the

xHC shall not drop the data of any Isoch TDs of any endpoints associated with

the Device Slot targeted by the command.

Note: Prior to issuing an Evaluate Context Command that modifies the value of the Slot

Context Interrupter Target software shall ensure that all Endpoints (including the

Default Control Endpoint), are in the Stopped state.

The requirements of a “valid” Slot Context data structure are defined in section

6.2.2.3.

The requirements of a “valid” Endpoint Context data structure are defined in

section 6.2.3.3.

4.6.8 Reset Endpoint

The Reset Endpoint Command is issued by software to recover from a halted

condition on an endpoint.

The format of the Reset Endpoint Command TRB is defined in section 6.4.3.7.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

When a Transfer Ring or Stream is halted; the associated endpoint is removed

from the xHC’s Pipe Schedule, the Doorbell Register for that pipe is disabled, the

state of the associated Endpoint Context is set to Halted, and any subsequent

packets received for the endpoint will be silently dropped.

The Reset Endpoint Command defines Slot ID and Endpoint ID fields. The Slot ID

and Endpoint ID fields identify the USB device, and the endpoint of that device

that is the target of the command.

The xHC shall perform the following operations when Resetting an endpoint:

• If the endpoint is not in the Halted state when an Reset Endpoint Command is

executed:

• The xHC shall reject the command and generate a Command Completion Event

with the Completion Code set to Context State Error.

• else

• If the Transfer State Preserve (TSP) flag is ‘0’:

• Reset the Data Toggle for USB2 devices or the Sequence Number for USB3

devices.

• Reset any USB2 split transaction state associated with the endpoint.

• Invalidate any xHC TDs that may be cached, forcing xHC to fetch Transfer

126

TRBs from memory when the pipe transitions from the Stopped to Running

state.

• else // TSP = ‘1’

• The USB2 Data Toggle or the USB3 Sequence Number for the pipe shall be

preserved.

• Maintain any USB2 split transaction state associated with the endpoint.

• The endpoint shall continue execution by retrying the last transaction the

next time the doorbell is rung, if no other commands have been issued to the

endpoint.

• Set the Endpoint Context EP State field to Stopped.

• Enable the Doorbell Register for the pipe.

• Generate a Command Completion Event with the Completion Code set to

Success.

After the command completes, the Transfer Ring will be reinstated on the xHC’s

Pipe Schedule the next time its doorbell is rung.

Note: The Reset Endpoint Command maintains the state of an endpoint so that the

previously executed packet may be retried, irrespective of the value of the TSP

flag. e.g. if the endpoint halted retrying the 3rd 1K packet of a 4KB TRB, a

doorbell ring immediately after a Reset Endpoint Command would cause the

endpoint to retry the same packet and move the data to/from a 2KB offset within

the buffer referenced by the TRB. Clearing the TSP flag to ‘0’ resets the Data

Toggle/Sequence Number of the endpoint, however it has no other effect on

other state associated with the endpoint,

Note: Prior to restarting the Transfer Ring, software may use the Set TR Dequeue

Pointer Command to modify the value of the TR Dequeue Pointer field of the

Endpoint Context and clear the endpoint state associated with the previously

executed packet. If the Reset Endpoint Command is followed with a Set TR

Dequeue Pointer Command, the endpoint shall start execution at the beginning

of the TRB referenced by the TR Dequeue Pointer the next time the doorbell is

rung.

Note: Software shall execute the following sequence to “reset a pipe”, i.e. clear the xHC

endpoint halt condition, reset the host-side Data Toggle/Sequence Number,

clear a stall on the device, and reset the device-side Data Toggle/Sequence

Number. Also, if the device was behind a TT, the TT buffer would also need to be

cleared.

• Reset Endpoint Command (TSP = ‘0’).

• If the device was behind a TT and it is a Control or Bulk endpoint:

• Issue a ClearFeature(CLEAR_TT_BUFFER) request to the hub.

• If not a Control endpoint:

• Issue a ClearFeature(ENDPOINT_HALT) request to device.

 127

• Issue a Set TR Dequeue Pointer Command, clear the endpoint state and

reference the TRB to start.

• Ring Doorbell to restart the pipe.

The Set TR Dequeue Pointer Command resets the state of the endpoint so that

the xHC starts transferring data at the beginning of the TRB referenced by the TR

Dequeue Pointer (rather than at the location associated with the previous packet

that caused the halt) when the doorbell is rung.

Note: Undefined behavior may occur if this command is executed with TSP = ‘0’ and

the associated device endpoint is not successfully reset by system software. E.g.

the Data Toggle may not be synchronized between the xHC and a USB2 device

(refer to section 8.6 in the USB2 spec).

To issue a Reset Endpoint Command system software shall perform the

following operations:

• Insert a Reset Endpoint Command TRB on the Command Ring and initialize the

following fields:

• TRB Type = Reset Endpoint Command (r refer to Table 6-86).

• Transfer State Preserve (TSP) = Desired Transfer State result.

• Endpoint ID = ID of the target endpoint.

• Slot ID = ID of the target Device Slot.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command (DB

Stream ID = ‘0’).

When a Reset Endpoint Command is executed by the xHC it shall perform the

following operations:

• Insert a Command Completion Event on the Event Ring and initialize the following

fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Reset Endpoint Command TRB.

• Slot ID = The value of the command’s Slot ID.

• If the Device Slot identified by the Slot ID has been enabled by an Enable Slot

Command:

• Retrieve the Device Context of the selected Device Slot.

• If the Slot State is set to Default, Addressed, or Configured:

• If the Endpoint State (EP State) field is set to Halted:

• Set the Endpoint State (EP State) field to Stopped.

• If the Transfer State Preserve (TSP) flag is cleared to ‘0’:

• Set the USB2 Data Toggle or the USB3 Sequence Number for the

pipe to ‘0’.

128

• Enable the Doorbell register for the endpoint.

• Completion Code = Success (refer to Table 6-85).

• else // The Endpoint State (EP State) field is not set to Halted

• Completion Code = Context State Error.

• else // The Slot State is not set to Default, Addressed, or Configured

• Completion Code = Context State Error.

• else // The slot has not been enabled by an Enable Slot Command

• Completion Code = Slot Not Enabled Error

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

Note: The xHC resources and bandwidth associated with a reset endpoint are not

released by the Reset Endpoint Command.

Note: After the successful completion of a Reset Endpoint Command with TSP = ‘0’,

system software may issue a CLEAR_FEATURE(ENDPOINT_HALT) request to the

USB device to reset the halt condition on the endpoint of the device.

Note: Software shall be responsible for timing the Reset “recovery interval” required

by USB.

Note: After a Reset Endpoint Command is executed for a control endpoint, software

shall execute a Set TR Dequeue Pointer Command to ensure that the endpoint's

Dequeue Pointer references a Setup TD.

Note: Software is responsible for cleaning up any partially completed transfers after

issuing a Reset Endpoint Command, e.g. after this command completes, software

shall update the associated Transfer Ring to ensure that any endpoint specific

requirements are met (e.g. as identified in the previous note), before ringing the

endpoint’s doorbell.

Note: The Reset Endpoint Command may only be issued to endpoints in the Halted

state. If software wishes to reset the Data Toggle or Sequence Number of an

endpoint that isn't in the Halted state, then software may issue a Configure

Endpoint Command with the Drop and Add bits set for the target endpoint that

is in the Stopped state or Running but Idle state.

4.6.8.1 Soft Retry

A Soft Retry may effectively be used to recover from a USB Transaction Error

that was due to a temporary error condition (e.g. electrical interference caused

by a cell phone transmitting too close to a USB cable). Often the delay

introduced between software detecting the error and attempting a Soft Retry is

enough to let the temporary condition clear and allow a successful transfer.

Section 4.10.2.3 describes how the xHC shall halt an endpoint with a USB

Transaction Error after CErr retries have been performed. The USB device is not

aware that the xHC has halted the endpoint, and will be waiting for another

 129

retry, so a Soft Retry may be used to perform additional retries and recover from

an error which has caused the xHC to halt an endpoint.

Software performs a Soft Retry with the following operations:

1. Issue a Reset Endpoint Command with the TSP flag set to ‘1’. This causes

the endpoint to advance from the Halted to the Stopped state, but does

not change the state of the Data Toggle or Sequence Number, and allows

the xHC to continue the retry process another CErr times.

2. Ring the doorbell for the endpoint to initiate up to another CErr retries.

To support Soft Retry, the state of a partially completed TRB transfer (e.g. if 1K

of a 4K TRB has been moved) shall be maintained by a Reset Endpoint Command

if TSP = ‘1’.

Note: Soft Retry attempts shall not be performed on Isoch endpoints. Any attempt to

do so may result in undefined behavior.

Note: Soft Retry attempts shall not be performed if the device is behind a TT in a HS

Hub (i.e. TT Hub Slot ID > ‘0’). Any attempt to do so may result in undefined

behavior.

Note: Recovery of lost data on an Interrupt endpoint may be handled by class specific

mechanism.

Note: Software shall limit the number of unsuccessful Soft Retry attempts to prevent

an infinite loop.

4.6.9 Stop Endpoint

The Stop Endpoint Command is issued by software to stop the xHC execution of

the TDs on an endpoint. An endpoint may be stopped by software so that it can

temporarily take ownership of Transfer Ring TDs that had previously been

passed to the xHC, or to stop USB activity prior to powering down the xHC.

While the endpoint is stopped, software may add, delete, or otherwise rearrange

TDs on an associated Transfer Ring. e.g. this command allows software to insert

“high-priority” TDs at the Dequeue Pointer so they will be executed immediately

when the ring is restarted, or to “abort” one or more TDs by removing them from

the ring.

The Stop Endpoint Command is expected to stop endpoint activity as soon as

possible, which may mean that it stops in the middle of a TRB. When the

endpoint stops, it saves the value of the TR Dequeue Pointer and DCS fields (and

possibly other “Opaque” state) in the Endpoint/Stream Context so that it can

pick up where it left off the next time its doorbell is rung, e.g. if the endpoint

stopped after moving the first 1KB of data in a 4KB TRB, then transfer related

state maintained by the xHC will allow it to transfer the remaining 3KB of data

when the doorbell is rung. If a Set TR Dequeue Pointer Command is issued while

130

an endpoint is in the Stopped state, the transfer related state of the endpoint

will be dumped when the Output Endpoint/Stream Context TR Dequeue Pointer

and DCS fields are overwritten. The next time the doorbell is rung, the endpoint

shall start execution at the beginning of the TRB referenced by the TR Dequeue

Pointer.

Note: If the TR Dequeue Pointer references an Event Data TRB when a TD is stopped,

the xHC shall execute it before generating the Command Completion Event, by

generating an Event Data Transfer Event if the IOC flag was set and advancing to

the next TRB.

Before generating a Command Completion Event for this command, the xHC

shall write the final value of the endpoint’s Dequeue Pointer to the TR Dequeue

Pointer field and CCS flag to the DCS field of the Output Endpoint Context or

Stream Context associated with the stopped Transfer Ring. And if Stopped

EDTLA Capability (SEC) = ‘1’, then the xHC shall write the value of the EDTLA to

the Stopped EDTLA field of the Stream Context associated with the stopped

Transfer Ring. The xHC shall also ensure that the Stream Context TR Dequeue

Pointer, DCS, and Stopped EDTLA fields reflect the forward progress of any

Stream that entered the Move Data state while the endpoint was in the Running

state. Refer to section 4.12 for more information on Stream endpoint Stopped

state transitions.

Note: Stopped EDTLA Capability support (i.e. SEC = '1') shall be mandatory for all xHCI

1.1 compliant xHCs.

The format of the Stop Endpoint Command TRB is defined in section 6.4.3.8.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

The Stopped - Short Packet Capability (SPC) flag in the HCCPARAMS1 register

(5.3.6) indicates whether the xHC is capable of generating a Stopped - Short

Packet Completion Code. Any discussion of the Stopped - Short Packet

Completion code assumes that the Stopped - Short Packet Capability is

supported (SPC =’1’).

Note: The Stopped - Short Packet Capability (i.e. SPC = '1') shall be mandatory for all

xHCI 1.1 compliant xHCs.

Depending on the timing of the execution of the Stop Endpoint command

relative to the execution of the TDs on the ring, one of three of scenarios may

result:

• If the command is executed between TDs, then the xHC shall perform a Force

Stopped Event (FSE) operation by generating a Transfer Event for the endpoint with

Condition Code = Stopped - Invalid Length, TRB Pointer = current Dequeue Pointer

value, and TRB Transfer Length = 0, then generate a Success Command Completion

Event for the command.

 131

• If SPC = '1' and the command is executed, after a Short Packet condition has been

detected, but before the end of the TD has been reached, (i.e. the TD is in progress

for the pipe), then a Transfer Event TRB with its Completion Code set to Stopped -

Short Packet and its TRB Transfer Length set to the value of the EDTLA shall be forced

for the interrupted TRB, irrespective of whether its IOC or ISP flags are set. This

Transfer Event TRB will precede the Command Completion Event TRB for the

command, and is referred to as a Stopped Transfer Event.

• If a TD is in progress for the pipe when the command is executed, and a Short Packet

condition has not been detected or SPC = ‘0’ and a Short Packet condition has been

detected, then a Transfer Event TRB with its Completion Code set to Stopped, TRB

Pointer = current Dequeue Pointer value, and TRB Transfer Length set to the residual

bytes to transfer, shall be forced for the interrupted TRB, irrespective of whether its

IOC or ISP flags are set. This Transfer Event TRB will precede the Command

Completion Event TRB for the command, and is also referred to as a Stopped

Transfer Event.

While an endpoint is stopped, any USB packets received for it shall be silently

dropped by the xHC.

Note that when an endpoint is stopped, the xHC maintains the state necessary to

restart the last active Transfer Ring where it left off, however software may not

want to do this. The options are discussed below:

1. Temporarily Stop Transfer Ring Activity - If the intent of software in

issuing the Stop Endpoint Command was just to temporarily stop activity

on the Transfer Ring, then software may restart the stopped ring where it

left off by simply ringing its doorbell.

2. Aborting a Transfer - If, because of a timeout or other reason, software

issued the Stop Endpoint Command to abort the current TD. Then the Set

TR Dequeue Pointer Command may be used to force the xHC to dump

any internal state that it has for the ring and restart activity at the new

Transfer Ring location specified by the Set TR Dequeue Pointer

Command.

3. Modifying the order of execution of TDs on a Transfer Ring - It may be

necessary for software to place a “high priority” TD on a ring, by inserting

a TD ahead of any pending TDs. To safely modify the order of execution

of TDs on a ring, software shall first stop the endpoint. When an

endpoint is stopped, software may examine the Event Ring to determine

the current state of TDs on the associated Transfer Ring(s). If the xHC

stopped in the middle of a TD, then that TD may not be modified by

software, however any other TDs on the ring may be. If the xHC stopped

between TDs, then it may modify any TD on the transfer ring. After the

TDs are inserted, removed, or rearranged to the satisfaction of software,

it may ring the doorbell to restart operation on the ring.

132

Note: The xHC cannot distinguish whether software temporarily stopped Transfer Ring

activity or stopping the Transfer Ring to modifying the order of execution of its

TDs. In either case, if the xHC has read-ahead and cached TRBs for the Transfer

Ring, it shall invalidate all TRBs not associated with the current TD before

continuing execution of the Transfer Ring. This ensures that any TDs modified by

software shall be correctly executed by the xHC.

Note: If software is issuing the Stop Endpoint Command due to suspending a device or

a function on a device, it shall set the Suspend (SP) flag to ‘1’ in the Stop Endpoint

Command TRB (refer to SP definition in Table 6-66).

The xHC shall perform the following operations when Stopping an endpoint:

• The xHC shall stop the USB activity for the pipe.

• If a USB IN or OUT transaction is in-flight, it shall be completed.

• ERDYs shall be ignored on the pipe for that endpoint.

• If LS, FS, or HS, then polling of the pipe shall cease.

• If an SS pipe is waiting for an ERDY, the xHC shall clear the flow control condition

and cease waiting for the ERDY.

Note: A Set TR Dequeue Pointer Command clears any transfer related state associated

with an endpoint. If an SS pipe was waiting for an ERDY when the endpoint was

stopped, then if the endpoint transfer state was not cleared by a Set TR Dequeue

Pointer Command, the xHC shall reissue an IN or OUT for the pipe when the ring

is restarted.

• The current endpoint Service Opportunity (SO) shall be terminated.

• Stop the Transfer Ring activity for the pipe. Refer to Table 4-2 for Stop conditions

and Actions.

• Remove the endpoint from the xHC’s Pipe Schedule.

• Generate a Command Completion Event.

After the command completes, the endpoint shall be reinstated on the xHC’s

Pipe Schedule the next time its doorbell is rung.

Note: Prior to restarting the ring, software may use the Set TR Dequeue Pointer

Command to modify the value of the TR Dequeue Pointer field of the Endpoint

or Stream Context. The Set TR Dequeue Pointer Command shall invalidate any

xHC TDs that may be cached, forcing xHC to fetch Transfer TRBs from memory

when the pipe is restarted.

Note: If software wants to know the exact number of bytes transferred when a TD is

stopped:

If the ED flag is ‘0’ and the Completion Code equals Stopped, software may

subtract the value of the TRB Transfer Length field reported by the Transfer

Event from the sum of the TRB Transfer Length fields of all Transfer TRBs in the

TD executed prior to and including the TRB referenced by the Transfer Event.

 133

If the ED flag is ‘0’ and the Completion Code equals Stopped - Short Packet,

software shall use the TRB Transfer Length field of the Transfer Event.

If the ED flag is ‘0’ and the Completion Code equals Stopped - Length Invalid,

software shall ignore the TRB Transfer Length field of the Transfer Event, and

simply sum of the TRB Transfer Length fields of all Transfer TRBs in the TD

executed prior to the TRB referenced by the Transfer Event.

If the ED flag is ‘1’ then the TRB Transfer Length field reflects the number of

bytes transferred prior to stopping.

Note: If the ED flag is ‘0’ in the Stopped Transfer Event software may emulate an Event

Data Transfer Event for the stopped Transfer Ring. It does this by starting at the

TRB referenced by the Stopped Transfer Event and advancing through the TD,

searching for the next Event Data TRB. If one is found, the Parameter Component

of the Event Data TRB and the “number of bytes transferred” as described in the

previous Note may be used to emulate an Event Data Transfer Event.

Note: After the command is complete, the TR Dequeue Pointer field of all

Endpoint/Stream Contexts associated with an endpoint shall contain the current

value of the Dequeue Pointer for the respective ring.

The xHC shall generate a Stopped Transfer Event every time a Transfer Ring is

stopped with a Stop Endpoint Command. This operation is referred to as Force

Stopped Event (FSE). The forced Stopped Transfer Event explicitly indicates to

software that the selected Transfer Ring has stopped. If a Transfer Ring is empty

when a Stop Endpoint Command is issued, a Stopped Transfer Event shall be

generated on the Event Ring indicated by the Slot Context Interrupter Target

field.

The Table 4-2 identifies the Action that shall be taken by the xHC on the TRB

referenced by the Dequeue Pointer when the transfer ring stops. When

restarting a Stopped endpoint, Table 4-2 also identifies whether the xHC shall

advance the Dequeue Pointer prior to executing a TRB, or if it shall continue the

execution at the Stopped TRB.

Note: The cases in Table 4-2 that reference a “FSE” Action shall force an additional

Stopped Transfer Event.

Note: A Busy endpoint may asynchronously transition from the Running to the Halted

or Error state due to error conditions detected while processing TRBs. A possible

race condition may occur if software, thinking an endpoint is in the Running state,

issues a Stop Endpoint Command however at the same time the xHC

asynchronously transitions the endpoint to the Halted or Error state. In this case,

a Context State Error may be generated for the command completion. Software

may verify that this case occurred by inspecting the EP State for Halted or Error

when a Stop Endpoint Command results in a Context State Error.

134

Table 4-2: Stop Endpoint Command TRB Handling

TRB Type
referenced by TR
Dequeue Pointer

Chain
bit

(CH)
Condition Action

Advance TR
Dequeue Pointer
on Doorbell Ring

Transfer TRB16
(Completed)

Residual Length = 0

1

Stopped on TRB
boundary within a TD17.

Generate
Transfer Event.

An ISSE18 else
Length = 0,
CC = Stopped.

Yes

0

Stopped on TD

boundary.19

Generate event

if IOC flag set.

FSE20.

Yes

Transfer TRB
(Incomplete)

Residual Length > 0

X

Stopped within a TRB Generate
Transfer Event.
An ISSE18 else

Length =
Residual bytes
to transfer,

CC = Stopped.

No

Event Data 1

Stopped on
intermediate Event
Data TRB

Generate
Transfer Event.
An ISSE18 else

ED = 1,
Length =
EDTLA,

CC = Stopped.

Yes

16A “Transfer” TRB is a Normal, Setup Stage, Data Stage, Status Stage, or Isoch TRB. Note, this row identifies the case
where the endpoint has stopped on a TRB (that is not the last TRB of a TD), where all the data associated with
the TRB has already been transferred.

17This condition is interpreted identically to a “Transfer TRB (Incomplete)”, where 0 bytes have been transferred.

18 ISSE - If SPC = ‘1’, and a Short Packet condition has been detected, and the end of the TD has not been reached,
then the xHC shall perform a Intermediate Short Stopped Event (ISSE) operation, generating a Transfer Event for

the endpoint with Condition Code = Stopped - Short Packet, TRB Pointer = current Dequeue Pointer value, and TRB
Transfer Length = EDTLA.

19In this case the xHC is expected to complete the TD normally (e.g. generate a Transfer Event with CC = Success if

the IOC flag is set and the transfer was successful) and then perform a Force Stopped Event (FSE) operation.

20FSE - The xHC shall perform a Force Stopped Event (FSE) operation by generating a Transfer Event for the
endpoint with Condition Code = Stopped - Invalid Length, TRB Pointer = current Dequeue Pointer value, and TRB

Transfer Length = 0.

 135

0

Stopped on terminating

Event Data TRB21

Generate

Transfer Event.
ED = 1.
Length =

EDTLA.
CC = previous
Transfer TRB

CC.

FSE20

Yes

Link

1

Stopped on Link TRB
within a TD

Generate
Transfer Event.

An ISSE18 else

Length = 0.
CC = Stopped,
Length Invalid.

Yes22

0

Stopped on Link TD Generate event

if IOC flag set.

FSE20.

Yes22

No Op X

Stopped on
Terminating No Op TRB

Generate
Transfer Event if
IOC flag set.

FSE20.

Yes

Vendor Defined X
Stopped on Vendor
Defined TRB

Vendor defined.

FSE20.
Vendor Defined

Invalid TRB

(C != DCS)

Prev
TRB23 CH

= 1

Stopped while waiting
for more TRBs to be

posted for TD

Generate
Transfer

Event.24
Length = 0.
CC = Stopped -

Length Invalid.

No

Prev23

TRB CH =
0

Stopped on TD
boundary

FSE20.

No

Note: If a Transfer Ring has been Halted due to error condition when a Stop Endpoint

Command is received, no Stopped Transfer Event shall be generated.

21Force normal completion of Event Data TRB before generating Command Completion Event.

22When the Dequeue Pointer is advanced, the xHC shall begin parsing TRBs at the address identified by the Link
TRB Ring Segment Pointer field.

23In this case the TRB referenced by the TR Dequeue Pointer is invalid, so use the state of the Chain (CH) bit from
the last executed TRB. If no TRBs had been executed previously, assume C = ‘0’ case.

24The event generated by the “Stopped while waiting for more TRBs to be posted for TD.” condition uses the Slot

Context Interrupter Target field to identify the target Event Ring.

136

To issue a Stop Endpoint Command system software shall perform the following

operations:

• Insert a Stop Endpoint Command on the Command Ring and initialize the following

fields:

• TRB Type = Stop Endpoint Command (refer to Table 6-86).

• Endpoint ID = ID of the target endpoint.

• Slot ID = ID of the target Device Slot.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When a Stop Endpoint Command is executed by the xHC it shall perform the

following operations:

• If the Stop Endpoint Command interrupted the execution of a TD, then insert a

Transfer Event on the Event Ring and initialize the following fields:

• TRB Type = Transfer Event.

• Slot ID = The value of the command’s Slot ID.

• Endpoint ID = The value of the command’s Endpoint ID.

• If the TRB referenced by the TR Dequeue Pointer is an Event Data TRB:

• ED = ‘1’.

• Parameter Component (TRB Pointer) = 64 bits of Event Data TRB Parameter

component.

• Length = The value of the Event Data Transfer Length Accumulator (EDTLA).

Refer to section 4.11.5.2 for a description of EDTLA.

• else // The the TRB referenced by the TR Dequeue Pointer is not an Event Data

TRB

• ED = ‘0’.

• TRB Pointer = The address of the TRB interrupted by the command.

• Length = The number of bytes remaining to be moved for the interrupted

TRB.

• Completion Code = Stopped (refer to Table 6-85).

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

• Insert a Command Completion Event on the Event Ring and initialize the following

fields:

• TRB Type = Command Completion Event.

• Command TRB Pointer = The address of the Stop Endpoint Command TRB.

• Slot ID = The value of the command’s Slot ID.

 137

• If the Device Slot identified by the Slot ID has been previously enabled by an

Enable Slot Command:

• Retrieve the Device Context of the selected Device Slot.

• If the Slot State is set to Default, Configured, or Addressed:

• If the Endpoint State (EP State) field equals Running:

• Stop the USB activity for the pipe as described above.

• Stop the Transfer Ring activity for the pipe as described above.

• Write Dequeue Pointer value to the Output Endpoint or Stream

Context TR Dequeue Pointer field.

• Write CCS value to the Output Endpoint or Stream Context Dequeue

Cycle State (DCS) field.

• Removed the endpoint from the xHC’s Pipe Schedule.

• Set the Endpoint State (EP State) field to Stopped.

• Completion Code = Success.

• else // The Endpoint State (EP State) field is not Running

• Completion Code = Context State Error.

• else // The Slot State is not set to Default, Configured, or Addressed

• Completion Code = Context State Error.

• else // The slot has not been enabled by an Enable Slot Command

• Completion Code = Slot Not Enabled Error

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

Note: The xHC resources and bandwidth associated with an endpoint are not released

by the Stop Endpoint Command.

Note: The xHC shall wait for any partially completed USB2 split transactions to finish

before completing the Stop Endpoint Command.

4.6.10 Set TR Dequeue Pointer

The Set TR Dequeue Pointer Command is issued by software to modify the TR

Dequeue Pointer field of an Endpoint or Stream Context.

The Slot ID and Endpoint ID fields of the Set TR Dequeue Pointer Command TRB

identify the USB device, and the endpoint of that device, that is the target of the

command. If Streams are enabled for the endpoint, the Set TR Dequeue Pointer

Command TRB Stream ID field identifies the Stream Context that shall be

modified.

This command may be executed only if the target endpoint is in the Error or

Stopped state.

138

The format of the Set TR Dequeue Pointer Command TRB is defined in section

6.4.3.9.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

The xHC shall perform the following operations when setting a ring address:

• If the endpoint is not in the Error or Stopped state when the Set TR Dequeue Pointer

Command is executed:

• The xHC shall reject the command and generate a Command Completion Event

with the Completion Code set to Context State Error.

• else // The endpoint is in the Error or Stopped state

• Set the Dequeue Pointer to the value of the New TR Dequeue Pointer field in the

Set TR Dequeue Pointer TRB.

• Invalidate any xHC TDs that may be cached, forcing xHC to fetch Transfer TRBs

from memory when the pipe transitions from the Stopped to the Running state.

• Copy the value of the New TR Dequeue Pointer field in the Set TR Dequeue Pointer

TRB to the TR Dequeue Pointer field of the target Endpoint or Stream Context.

• Clear any prior transfer state, e.g. setting the EDTLA to 0, clearing any partially

completed USB2 split transactions, etc.

• Generate a Command Completion Event with the Completion Code set to

Success.

Note: If, when the Transfer Ring was stopped a TD was only partially executed, then

any remaining TRBs in that TD shall not be executed when the endpoints’ TR

Dequeue Pointer is updated by the Set TR Dequeue Pointer Command.

Note: A Set TR Dequeue Pointer Command may be issued to modify the TR Dequeue

Pointer field of a non-active Stream Context while a Stream endpoint is in the

Running state. Refer to section 4.12 for active vs. non-active Stream Context

information.

To issue a Set TR Dequeue Pointer Command system software shall perform the

following operations:

• Insert a Set TR Dequeue Pointer Command on the Command Ring and initialize the

following fields:

• TRB Type = Set TR Dequeue Pointer Command (refer to Table 6-86).

• Endpoint ID = ID of the target endpoint.

• Stream ID = ID of the target Stream Context or ‘0’ if MaxPStreams = ‘0’.

• Slot ID = ID of the target Device Slot.

• New TR Dequeue Pointer = The new TR Dequeue Pointer field value for the target

endpoint.

• Dequeue Cycle State (DCS) = The state of the xHCI CCS flag for the TRB pointed

to by the TR Dequeue Pointer field.

 139

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When a Set TR Dequeue Pointer Command is executed by the xHC it shall

perform the following operations:

• Insert a Command Completion Event on the Event Ring and initialize the following

fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Set TR Dequeue Pointer Command

TRB.

• Slot ID = The value of the command’s Slot ID.

• If the Device Slot identified by the Slot ID has been enabled by an Enable Slot

Command:

• Retrieve the Device Context of the selected Device Slot.

• If the Slot State is set to Default, Configured, or Addressed:

• If the Endpoint State (EP State) field equals Stopped or Error:

• If the Stream ID field is non-zero a Stream Context is referenced so

perform a Stream ID boundary check as described in section

4.12.2.1:

• If the Stream ID is valid:

• Copy the value of the New TR Dequeue Pointer field to the

TR Dequeue Pointer field of the target Stream Context.

• Copy the value of the Dequeue Cycle State (DCS) field to the

Dequeue Cycle State (DCS) field of the target Stream

Context.

• Completion Code = Success (refer to Table 6-85).

• else // The Stream ID is invalid

• Completion Code = TRB Error.

• else (Stream ID = ‘0’)

• If MaxPStreams = ‘0’:

• Copy the value of the New TR Dequeue Pointer field to the

TR Dequeue Pointer field of the target Endpoint Context.

• Copy the value of the Dequeue Cycle State (DCS) field to the

Dequeue Cycle State (DCS) field of the target Endpoint

Context.

• Completion Code = Success.

• else // MaxPStreams > ‘0’

• Completion Code = TRB Error.

• else // The Endpoint State (EP State) field is not Stopped or Error

• Completion Code = Context State Error.

140

• else // The Slot State is not set to Default, Configured, or Addressed

• Completion Code = Context State Error.

• else // The slot has not been enabled by an Enable Slot Command

• Completion Code = Slot Not Enabled Error

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

Note: Consider the case where there are multiple TDs posted for pipe for a single data

transfer and an error condition on one TD means that the data transfer is

terminated, and that the subsequent TDs associated with the data transfer are

now invalid. The xHC may have read ahead on the Transfer Ring and cached the

subsequent TDs. To ensure that xHC frees any cached information associated

with a pipe in a timely manner (so that it can reuse the cache space for other

pipes), software shall issue a Set TR Dequeue Pointer Command for the pipe

when the data transfer is terminated, vs. waiting for the next data transfer to be

ready before issuing the command.

Note: If software issues a Set TR Dequeue Pointer Command that points to a TRB that

had previously been partially completed TD, the xHC shall treat that TRB as the

first TRB of the TD. i.e. any prior state associated with a partially completed TRB

is lost.

Note: The xHC does not maintain knowledge of which Streams are active or non-active.

If software issues a Set TR Dequeue Pointer Command that targets an active

Stream of an endpoint, undefined behavior may occur. Refer to section 4.12 for

active vs. non-active Stream Context information)

4.6.11 Reset Device

The Reset Device Command is used by software to inform the xHC that the USB

Device associated with a Device Slot has been Reset (by either; setting the Root

Hub port PR flag if the device is attached to a Root Hub port, or issuing a

SetPortFeature(PORT_RESET) request the external hub port upstream of the

device). In the Slot Context of the selected device slot, the reset operation sets

the Slot State field to the Default state and the USB Device Address field to ‘0’.

The reset operation also disables all endpoints of the slot except for the Default

Control Endpoint by setting the Endpoint Context EP State field to Disabled in

all enabled Endpoint Contexts. Software should stop all endpoint activity before

issuing a Reset Device Command.

For all endpoints except the Default Control Endpoint the xHC shall:

• Terminate any USB activity (e.g. packet transfers).

• Disable the endpoints’ Doorbell.

• Drop any pending events not already posted to an Event Ring.

• Free any bandwidth allocated to the periodic endpoints.

 141

• Free any internal resources associated with the endpoint.

For the Default Control Endpoint the xHC shall terminate any USB activity, abort

any pending events not already posted to an Event Ring, and transition the

endpoint to the Running state. Undefined behavior may occur if this command is

executed and the device associated with it is not successfully reset. E.g. if the

USB device is not in the Default state, then a subsequent Address Device

Command shall fail.

The format of the Reset Device Command TRB is defined in section 6.4.3.10.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

To issue a Reset Device Command system software shall perform the following

operations:

• Insert an Reset Device Command on the Command Ring and initialize the following

fields:

• TRB Type = Reset Device Command (refer to Table 6-86).

• Slot ID = The ID of the Device Slot to reset.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When a Reset Device Command is executed by the xHC it shall perform the

following operations:

• If the Device Slot is in the Addressed or Configured state:

• Abort any USB transactions to the Device.

• Set the Slot State field of Slot Context to the Default state.

• Set the Context Entries field of Slot Context to ‘1’.

• Set the USB Device Address field of Slot Context to ‘0’.

• For each Endpoint Context of the Device Context (except the Default Control

Endpoint):

• Set the Endpoint Context EP State field to Disabled.

• Insert a Command Completion Event on the Event Ring of Interrupter 0 and initialize

the following fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Reset Device Command TRB.

• If the Device Slot was in the Addressed or Configured state:

• Completion Code = Success (refer to Table 6-85).

• else // The Device Slot was not in the Addressed or Configured state

• Completion Code = Context State Error.

• Clear all other fields of the event TRB to ‘0’.

142

• Cycle bit = Event Ring’s PCS flag.

Note: Software is responsible for recovering any memory data structures (Stream

Context Arrays, Transfer Rings, etc.) owned by disabled Endpoint Contexts the

slot when the Reset Device Command is issued.

The Reset Device Command forces a Device Slot to the Default state, however

the Reset Device Command TRB (section 6.4.3.10) does not reference an Input

Context, so there is no Input Context available to use to set the values of the

Output Device Context. After the completion of a Reset Device Command the

Slot and Endpoint 0 Contexts shall contain values that allow the xHC to issue

requests to the Default Control Endpoint of the USB device that has just been

reset. Refer to sections 6.2.2.4 and 6.2.3.7 for the respective Slot Context and

Endpoint Context field value settings.

4.6.12 Force Event (Optional Normative)

The Force Event Command is used by a VMM to insert an Event TRB in an Event

Ring of a target VM when the VMM is emulating an xHC device to a VM.

When a Force Event Command is processed by the xHC it shall insert an Event

TRB on the target VFs’ Event Ring and copy the data pointed to by the Force

Event Command, with the exception of the Cycle bit, to the target Event TRB.

The xHC shall set the Cycle bit to be consistent with the target VFs’ Event Ring.

A Command Completion Event with a TRB Error will be generated if the VF ID of

the Force Event Command is not valid. A VF Event Ring Full Error shall be

generated if the Target VF’s Event Ring is full.

Refer to section 8 for detailed information on the use of the Force Event

Command in a virtualized environment. And refer to section 3.3.11 for a high

level description of the Force Event Command and it’s usage.

The format of the Force Event Command TRB is defined in section 6.4.3.11.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

To issue a Force Event Command system software shall perform the following

operations:

• Allocate and initialize the VF Event TRB that will be sent to the target VF’s Event Ring.

The details of the VF Event TRB initialization will depend on the type of Event that is

being forced.

• Insert a Force Event Command on the Command Ring of the PF0 and initialize the

following fields:

• TRB Type = Force Event Command (refer to Table 6-86).

• VF ID = ID of the target VF.

 143

• VF Interrupter Target = The ID of the target Interrupter assigned to the VF. Refer

to Table 6-72 for more information on this value.

• Event TRB Pointer = The address of the VF Event TRB.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When a Force Event Command is executed by the xHC it shall perform the

following operations:

• Insert a Command Completion Event on the Event Ring and initialize the following

fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Force Event Command TRB.

• If the VF ID is valid:

• If the VF Interrupter Target is in range for the VF:

• If the target VF’s Event Ring is not full:

• Insert the VF’s Event TRB referenced by the Force Event Command

Event TRB Pointer into target VF’s Event Ring specified by the VF ID

and the VF Interrupter Target fields:

• Copy all fields of the VF Event TRB except the Cycle bit field to

the target VF’s Event Ring.

• Cycle bit = Target VF’s Event Ring’s PCS flag.

• Completion Code = Success (refer to Table 6-85).

• else // The target VF’s Event Ring is full

• Completion Code = VF Event Ring Full Error.

• else // The VF Interrupter Target is not in range for the VF

• Completion Code = TRB Error.

• else // The VF ID is not valid

• Completion Code = TRB Error.

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

Note: When the command completes, the VMM may release the buffer containing the

Event TRB pointed to by the Force Event Command.

Note: The “forced” event shall be dropped if the target Event Ring is full. Software

should reschedule a Force Event Command if an VF Event Ring Full Error is

returned.

144

4.6.13 Negotiate Bandwidth (Optional Normative)

The Negotiate Bandwidth Command is used by system software to initiate

Bandwidth Request Events for periodic endpoints. This command should be

used recover unused USB bandwidth from the system.

If the BW Negotiation Capability (BNC) bit in the HCCPARAMS1 register is ‘1’, the

xHC shall support this command.

This command shall complete with a Success Completion Code if the command

is supported, or a TRB Error Completion Code if the command is not supported.

The xHC shall generate Bandwidth Request Events upon the reception of the

command to all target periodic endpoints. The command will complete when all

Bandwidth Request Events have been generated.

The format of the Negotiate Bandwidth Command TRB is defined in section

6.4.3.12.

The format of the Bandwidth Request Event TRB is defined in section 6.4.2.4.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

To issue a Negotiate Bandwidth Command system software shall perform the

following operations:

• Insert an Negotiate Bandwidth Command on the Command Ring and initialize the

following fields:

• TRB Type = Negotiate Bandwidth Command (refer to Table 6-86).

• Slot ID = The ID of the slot that requires the bandwidth negotiation.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When a Negotiate Bandwidth Command is executed by the xHC it shall perform

the following operations:

• If the command is supported:

• If the Device Slot identified by the Slot ID has been enabled by an Enable Slot

Command:

• If the Slot ID identifies a slot in the Addressed or Configured state then:

• If there are devices that define candidate periodic endpoints for

receiving Bandwidth Request Events:

• For each device, identify the target Event Ring (specified by the

Interrupt Target field of the device’s Slot Context).

• If there is space on the device’s target Event Ring:

 145

• Insert a Bandwidth Request Event and initialize the following

fields:

• TRB Type = Bandwidth Request Event (refer to Table 6-86).

• Slot ID = ID of the device slot.

• Completion Code = Success (refer to Table 6-85).

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Device’s target Event Ring’s PCS flag.

• else // No space on the device’s target Event Ring

• Skip the device.

• Completion Code = Success (refer to Table 6-85).

• else // The Slot ID identifies slot not in the Addressed or Configured state

• Completion Code =Context State Error.

• else // The slot has not been enabled by an Enable Slot Command

• Completion Code = Slot Not Enabled Error

• else // The Negotiate Bandwidth Command is not supported

• Completion Code =TRB Error.

• Insert a Command Completion Event on the Event Ring of Interrupter 0 and initialize

the following fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Negotiate Bandwidth Command

TRB.

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

Note: System software may never issue a Negotiate Bandwidth Command, however if

the BNC flag is ‘1’ an unsolicited Bandwidth Request Event may be generated by

hardware, e.g. if the system software is running in a Virtual Machine and

communicating with an xHCI Virtual Function. This condition occurs when

system software running in another Virtual Machine issues a Negotiate

Bandwidth Command through its xHCI Virtual Function. System software should

immediately honor an unsolicited Bandwidth Request Event and free unused

USB bandwidth by selecting lower bandwidth alternate configurations or

interfaces on the devices that it owns.

Note: If the target Event Ring for a device is full, the Bandwidth Request Event shall be

dropped by the xHC.

Note: The xHCI may generate a Bandwidth Request Event for the same slot that a

Negotiate Bandwidth Command was issued to.

146

4.6.14 Set Latency Tolerance Value (LTV) (Optional Normative)

Refer to section 4.13.1 for an overview of the xHCI’s USB3 Latency Tolerance

Messaging (LTM) support. This section describes the Set LTV Command which is

one component of the Latency Tolerance Reporting (LTR) mechanism.

The Set LTV Command provides a simple means for host software to provide a

Best Effort Latency Tolerance (BELT) value to the xHC. This command is optional

normative, however it shall be supported if the xHC also supports a

corresponding host interconnect LTR mechanism.

Note: The host's interconnect LTR definition is owned by the respective bus

specification and is outside the scope of this document. (e.g. PCI Express, AHBA,

etc.)

The value of the BELT field in the Set LTV Command TRB shall be treated in

exactly the same way as BELT values received from USB3 devices by the xHC.

Refer to section 4.13.1.

Note: The manner in which these values are stored is implementation specific and as

such falls outside the scope of this specification.

If the Latency Tolerance Messaging Capability (LTC) bit in the HCCPARAMS1

register is ‘0’, the xHC shall not support this command.

Note: If LTC = 0, then this xHC implementation does not translate LTM messages from

a device into system LTM messages. However, if enabled in the DNCTRL register

(N2 = ‘1’), then LTM Device Notification TPs are received by the xHC shall

generate Device Notification Events. Refer to section 4.13.1.

This command will complete with a Success Completion Code if the command is

supported, or a TRB Error Completion Code if the command is not supported.

The format of the Set Latency Tolerance Value Command TRB is defined in

section 6.4.3.13.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

To issue a Set Latency Tolerance Value Command system software shall perform

the following operations:

• Insert an Set Latency Tolerance Value Command on the Command Ring and initialize

the following fields:

• TRB Type = Set Latency Tolerance Value Command (refer to Table 6-86).

• BELT = The Best Effort Latency Tolerance value provided by software.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

 147

When a Set Latency Tolerance Value Command is executed by the xHC it shall

perform the following operations:

• Record the value of the BELT field as the host defined LTV.

• If the value of the BELT field is less than the “current” LTV maintained by the xHC:

• Set the value of the BELT field as the “current” xHC LTV.

• Send the host-specific LTM to the host, reporting the new LTV to the system.

• Insert a Command Completion Event on the Event Ring of Interrupter 0 and initialize

the following fields:

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Set Latency Tolerance Value

Command TRB.

• Completion Code = Success (refer to Table 6-85).

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

4.6.15 Get Port Bandwidth

The Get Port Bandwidth Command is issued by software to retrieve the

percentage of Total Available Bandwidth on each Root Hub Port of the xHC or

on the downstream facing ports of a external USB hub. This information can be

used by system software to recommend topology changes to the user if they

were unable to enumerate a device due to a Bandwidth Error (Root Hub) or

Secondary Bandwidth Error (external hub).

An xHC may support multiple USB Bus Instances (BI), where each BI represents a

“unit” bandwidth at the speed that the BI supports. Also note that multiple Root

Hub ports may be assigned to a single BI.

For instance, an xHCI implementation that supports 8 ports may provide 1 SS BI,

2 HS BIs, and 4 LS/FS BIs. So in this example there are 7 USB BIs, 1 SS (5Gb/s), 2

HS (480 Mb/s) and 4 LS/FS (12Mb/s). Any SS device attached to a root hub port

shares the SS BI bandwidth. If the 2 HS BIs are mapped to ports 0 to 3 and 4 to

7, and the 4 LS/FS BIs are mapped to ports 0 and 1, 2 and 3, 4 and 5, and 6 and

7, respectively, then an LS/FS device attached to port 5 shares the BW available

on port 4 provided by one the LS/FS BIs, but not with any other ports. A more

sophisticated xHC implementation may have the ability to dynamically map

ports to BIs as function a device’s bandwidth requirements.

A USB2 hub may support a single or multiple Transaction Translators (TT),

where a single TT is capable of providing the equivalent of a LS/FS BI’s

bandwidth. If a USB2 Hub supports a single TT, then all of its downstream facing

ports attached to LS or FS devices shall share the bandwidth of the single TT

(i.e. a LS/FS BI). If a USB2 Hub supports a multi-TT capability, then a separate TT

148

exists for each of its downstream facing ports and each port is capable of

providing the bandwidth of a LS/FS BI.

When software issues a Get Port Bandwidth Command it is trying to

accommodate the bandwidth requirements of a particular device. By providing a

Device Speed parameter in the Get Port Bandwidth Command, the xHC can

supply software with Total Available Bandwidth on each port of the Root Hub or

USB2 hub, at a particular speed, without exposing its BI or TT to Port mapping

scheme.

Software, knowing the percentage of Total Available Bandwidth on a hub port,

the speed that the device in question is operating at, and the device’s bandwidth

requirement, may determine if a particular port will meet the device’s bandwidth

needs.

The xHC uses the Device Speed parameter to identify which Bus Instance(s) to

use when it calculates the Total Available Bandwidth on that port.

The Get Port Bandwidth Command passes a pointer to a Port Bandwidth Context

data structure to the xHC. The xHC updates this context with the percentage of

Total Available Bandwidth on each port. If a hub is attached to a Root Hub port

then the reported bandwidth is available on any unused port of the hub or any

port of the hub that is operating at the Device Speed.

For the Root Hub the Port Bandwidth Context shall be at least NumPorts+1 bytes

in size or for an external hub the Port Bandwidth Context shall be at least

bNbrPorts25+1 bytes in size, rounded up to the nearest Dword boundary.

The xHC overwrites the Port Bandwidth Context when it executes the Get Port

Bandwidth Command, so software does not need to initialize the context data

structure before passing it to the xHC.

• A Root Hub port assigned to the Debug Capability shall report ‘0’ bandwidth

available.

• If the Device Speed parameter is LS, FS, or HS, then USB3 (SS) Root Hub ports shall

report ‘0’ bandwidth available.

• If the Device Speed parameter is SS, then USB2 Root Hub ports shall report ‘0’

bandwidth available.

Note: Software shall consider any port that reports ‘0’ bandwidth available as being

unusable. A port that, as far as software is concerned, does not have a device

attached may report ‘0’ bandwidth available. e.g. a VMM shall report ‘0’

bandwidth for a port if the device attached to it is assigned to another VF.

25Refer to section 11.23.2.1 in the USB2 spec for the definition Hub Descriptor bNbrPorts field.

 149

Consider a physical connector that is “USB3 compatible” and has a SS device

attached it. The connector will be wired to a USB2 and a USB3 Root Hub Port.

When the USB2 Root Hub Port is queried for its HS bandwidth availability, it will

not know that a SS device is attached to physical connector and report a non-

zero HS bandwidth availability, when in reality the USB2 Root Hub port is not

available because it is associated with a physical connector that is attached to

SS device. The same problem will occur with a USB3 Root Hub port if a USB2

device or hub is attached to the physical connector. Note that the problem does

not occur if a USB3 hub is attached because both Root Hub Ports see a hub

attached. Software, knowing the Root Hub Port to physical USB connector

mapping (refer to section 4.19.7) and whether the attached device is a USB2 or

USB3 hub, shall be responsible for correcting the reported Port Bandwidth

Values.

The format of the Get Port Bandwidth Command TRB is defined in section

6.4.3.14.

The Get Port Bandwidth Command utilizes the Port Bandwidth Context data

structure defined in section 6.2.6.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

To issue a Get Port Bandwidth Command, system software shall perform the

following operations:

• Allocate and initialize an Port Bandwidth Context data structure.

• Insert a Get Port Bandwidth Command TRB on the Command Ring

• TRB Type = Get Port Bandwidth Command (refer to Table 6-86).

• Dev Speed = The bus speed of the target device. Refer to the Dev Speed field in

Table 6-76 for the encoding.

• Hub Slot ID = ‘0’ if referencing Root Hub ports (i.e. the Primary Bandwidth

Domain) or the value of the respective hub’s Slot ID if referencing the ports of a

USB2 hub (i.e. a Secondary Bandwidth Domain). Refer to section 4.16.2 for more

information on Bandwidth Domains.

• Port Bandwidth Context Pointer = The base address of the Port Bandwidth

Context data structure.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When a Get Port Bandwidth Command is executed by the xHC it shall perform

the following operations:

• Insert a Command Completion Event TRB on the Event Ring.

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Get Port Bandwidth Command TRB.

150

• Slot ID = ‘0’.

• If the Dev Speed field is valid (i.e. not equal to Undefined or Reserved):

• If the Hub Slot ID field = ‘0’:

• Compute Percentage of Total Available Bandwidth for each Root Hub

port based on its Speed. Use the value of the Dev Speed field for ports

that do not have devices attached.

• else

• Compute the percentage of Total Available Bandwidth for the ports of

the hub specified by the Hub Slot ID based on their Speed. Use the value

of the Dev Speed field for ports that do not have devices attached.

• Copy the results to the Port Bandwidth Context.

• Completion Code = Success (refer to Table 6-85).

• else // The Dev Speed field is not valid

• Completion Code = TRB Error.

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

Note: If a non-zero Hub Slot ID references a Device Slot whose Slot Context Hub field

= ‘0’ or Speed field is not equal to High-speed, may result in undefined behavior

by the xHC.

4.6.16 Force Header

The Force Header Command is issued by software to send a Link Management

(LMP) or Transaction Packet (TP) to a USB device, through a selected Root Hub

Port. For instance, it may be used to send a PING TP or a Vendor Device Test

LMP.

Note: Inappropriate or incorrect use of this command may cause the xHC link state

machines to get out of sync with those on an attached device. Software shall

comprehend the possible side effects of the specific headers that are forced on

the USB. If a forced header results in undefined behavior by the device or the

xHC (e.g. a DPH with no DP), software may have to reset the device, a Root Hub

port, the xHC, or all of them to restore normal operating conditions.

The xHC is not required to comprehend the content of the header being forced.

Depending upon the type of header forced, it is possible for various parameters

in the header (such a Data Packet sequence numbers) to be out of sync with the

host controller and/or device. In addition, some TPs may result in Device

responses which will not be comprehended by the xHC. It may be necessary to

reset the xHC to recover from these conditions.

The format of the Force Header Command TRB is defined in section 6.4.3.15.

The format of the Command Completion Event TRB is defined in section 6.4.2.2.

 151

To issue a Force Header Command, system software shall perform the following

operations:

• Insert a Force Header Command TRB on the Command Ring

• TRB Type = Force Header Command (refer to Table 6-86).

• Root Hub Port Number = The number of the Root Hub Port that defines the target

of the Header packet.

• Packet Type = The field identifies the SS packet type. Refer to section 8.3.1.2 in

the USB3 specification for valid values.

• Header Info = The header Type specific data to send to the target device. Refer

to section 8 in the USB3 specification for the encoding information.

• Clear all other fields of the command TRB to ‘0’.

• Cycle bit = Command Ring’s PCS flag.

• Write the Host Controller Doorbell with DB Target = Host Controller Command.

When a Force Header Command is executed by the xHC it shall perform the

following operations:

• Insert a Command Completion Event on the Event Ring.

• TRB Type = Command Completion Event (refer to Table 6-86).

• Command TRB Pointer = The address of the Force Header Command TRB.

• Slot ID = 0.

• If the value Root Hub Port Number field is in range:

• If the Force Header packet was transmitted successfully:

• Completion Code = Success (refer to Table 6-85).

• else // The Force Header packet was not transmitted successfully

• Completion Code = Undefined Error.

• else // The value Root Hub Port Number field is not in range

• Completion Code = TRB Error.

• Clear all other fields of the event TRB to ‘0’.

• Cycle bit = Event Ring’s PCS flag.

4.7 Doorbells

The xHCI presents an array of up to 256 32-bit Doorbell Registers (refer to

section 5.6), which reside in MMIO space and are indexed by Device Slot ID. The

base of the Doorbell Register Array is pointed to by the Doorbell Offset (DBOFF)

register in the xHCI Capability Registers (refer to section 5.3.7).

Each Doorbell Register contains a DB Target field, which is used to indicate the

reason for a software reference to the register. System software “rings” a

152

doorbell by writing a Doorbell Register with the appropriate value in the DB

Target field.

Doorbell Register 0 is dedicated to the Host Controller. For this register, there is

only one valid value for the DB Target field, 0 (Host Controller Command). The

remaining values (1-255) are reserved.

Doorbell Registers 1-255 are referred to as the Device Context Doorbell

registers. There is a 1:1 mapping of Device Context Doorbell registers to Device

Slots. System software rings a Device Context Doorbell after it has inserted work

on a Transfer Ring (endpoint/Stream) associated with the respective Device Slot.

The DB Target and DB Stream ID fields of a Device Context Doorbell register is

used to identify which Transfer Ring of a device has been modified. Refer to

Table 5-40 for the encoding of the DB Target field.

The xHC internally records all Doorbell Register write references and uses the

information to determine if the Command Ring or a Transfer Ring has newly

posted work items (TDs). There is no need to “clear” a Doorbell Register. To

inform the xHC that work has been posted to two separate Transfer Rings of a

device, system software shall post two writes to the associated Doorbell

Registers, where the value of the DB Target field identifies the respective

Transfer Ring.

Doorbell registers return no information when read.

Software shall not write to a Doorbell register:

• If the associated Device Slot is in the Disabled state.

• If the associated Device Slot is not in the Disabled state and the DB Target field is set

to an endpoint that is in the Disabled state.

If a doorbell register is written by software with the DB Target value that

references an endpoint that is in the Disabled state, the xHC should generate a

Transfer Event TRB with the TRB Pointer, TRB Transfer Length, Event Data (ED)

fields set to ‘0’, a Completion Code of Endpoint Not Enabled Error , and the Slot

ID and Endpoint ID fields contain the IDs of device slot/endpoint that the

doorbell that was rung for. This transfer Event TRB shall be posted to the

Primary Event Ring.

An Endpoint Not Enabled Error should be generated for doorbell register writes

to Device Slots that are in the Disabled state regardless of the DB Target value

provided.

The xHC may ignore doorbell references to Device Slots in the Disabled state or

endpoints in the Disabled state.

The xHC shall ignore doorbell references to endpoints in the Halted or Error

state.

 153

4.8 Endpoint

A USB device supports up to 31 endpoints (EPs): e.g.15 IN, 15 OUT, and 1

Control. The Default Control EP (0) is a bidirectional EP defined for all USB

devices.

4.8.1 Endpoint Addressing

Figure 4-4: Endpoint Context Addressing

Slot Context

EP Context 0 BiDir

Direction = N/A

EP Context 1 OUT

Direction = 0

EP Context 1 IN

Direction = 1

...

EP Context 15 OUT

Direction = 0

 EP Context 15 IN

Direction = 1

0

1

...

Device Context Index (DCI)

2

3

30

31

EP Number 0

(Bidirectional,

Direction bit ignored)

EP Number 1

EP Number 15

An Endpoint Address defined by a USB Endpoint Descriptor allows up to 31

possible values, where a 4-bit Endpoint Number is combined with a Direction bit

(refer to section 9.6.6 in the USB2 spec). The xHCI parallels this organization by

using the Endpoint Number to select one of 16 Endpoint Context data structure

pairs, and the Direction bit to select the IN or OUT Endpoint Context of a pair.

Refer to Figure 4-4 to the right.

A Control endpoint (e.g. EP Number 0 in Figure 4-4) is a bidirectional endpoint

and, per the USB specification, the Direction bit is “ignored” when calculating its

Endpoint Address , i.e. only the Endpoint Number is used to calculate the location

of a Control Endpoint Context data structure. To accommodate the addressing

anomaly of USB bidirectional endpoint addressing the xHC shall use the IN (odd)

Endpoint Context of the pair to manage bidirectional endpoints.

The USB specification allows a device to define additional Control (bidirectional)

endpoints, beyond the Default Control Endpoint (EP 0) required by the USB

Framework. Using the rules defined above, the xHCI is capable of supporting

additional Control endpoints.

154

For all Endpoint Numbers greater than 0, the xHC shall ignore the OUT (even)

Endpoint Context of the pair of any endpoint that declares itself as a

bidirectional. Software shall use the IN (odd) Endpoint Context of a pair for

managing a Control Endpoint.

4.8.2 Endpoint Context Initialization

All fields of an Input Endpoint Context data structure (including the Reserved

fields) shall be initialized to ‘0’ with the following exceptions:

4.8.2.1 Default Control Endpoint 0

• EP Type = Control. Refer to Table 6-9 for the encoding.

• Max Packet Size = For USB2 devices: Device Descriptor:bMaxPacketSize0 or for USB3

devices” Device Descriptor:2bMaxPacketSize0. May be set to Default Endpoint Max Packet

Size until USB Device Descriptor is retrieved. An Evaluate Endpoint Command shall

be used to modify the value of Max Packet Size when the device slot is in the

Addressed state.

• CErr = 3. Enables 3 retries.

• TR Dequeue Pointer = Start address of the first segment of the previously allocated

Transfer Ring.

• Dequeue Cycle State (DCS) = 1. Assuming that all TRBs in the segment referenced by

the TR Dequeue Pointer have been initialized to ‘0’, this field reflects Cycle bit state

for valid TRBs written by software.

4.8.2.2 Control Endpoints

Identical to the Default Control Endpoint except that the Max Packet Size shall

be set to the value of the associated Endpoint Descriptor:wMaxPacketSize.

4.8.2.3 Bulk Endpoints

• EP Type = Bulk IN or Bulk OUT. Refer to Table 6-9 for the encoding.

• Max Packet Size = Endpoint Descriptor:wMaxPacketSize.

• Max Burst Size = For USB3 devices: SuperSpeed Endpoint Companion

Descriptor:bMaxBurst, for USB2 devices: ‘0’.

• CErr = 3. Enables 3 retries.

• If Streams are enabled (i.e. SuperSpeed Endpoint Companion

Descriptor:bmAttributes MaxStreams field > 0):

• Allocate and clear Primary Stream Array.

• MaxPStreams = Size of Primary Stream Array.

• TR Dequeue Pointer = Start address of Primary Stream Array.

 155

• HID = Initialize as required to enable or disable Host Initiated Move Data

operations.

• LSA = Initialize as required to enable or disable Linear Stream Array operations.

• else

• MaxPStreams = ‘0’.

• TR Dequeue Pointer = Start address of the first segment of the previously

allocated Transfer Ring.

• Dequeue Cycle State (DCS) = 1. Assuming that all TRBs in the segment referenced

by the TR Dequeue Pointer have been initialized to ‘0’, this field reflects Cycle bit

state for valid TRBs written by software.

Note: The Endpoint Context Dequeue Cycle State (DCS) field is not applicable if the

Streams are enabled.

4.8.2.4 Isoch or Interrupt Endpoints

• EP Type = Isoch IN, Isoch OUT, Interrupt IN or Interrupt OUT. Refer to Table 6-9 for

the encoding.

• Max Packet Size = Endpoint Descriptor:wMaxPacketSize & 07FFh.

• Max Burst Size = SuperSpeed Endpoint Companion Descriptor:bMaxBurst or

(Endpoint Descriptor: wMaxPacketSize & 1800h) >> 11.

• Mult = SuperSpeed Endpoint Companion Descriptor:bmAttributes:Mult field.

Always ‘0’ for Interrupt endpoints.

• CErr = 3 for Interrupt endpoints. Enables 3 retries.

CErr = 0 for Isoch endpoints. Retries are not performed for Isoch endpoints.

• TR Dequeue Pointer = Start address of the first segment of the previously allocated

Transfer Ring.

• Dequeue Cycle State (DCS) = 1. Assuming that all TRBs in the segment referenced

by the TR Dequeue Pointer have been initialized to ‘0’, this field reflects Cycle bit

state for valid TRBs written by software.

• Max ESIT Payload = Refer to section 4.14.2 for value.

4.8.3 Endpoint Context State

The current state of an Endpoint Context is identified by its respective Endpoint

State (EP State) field. Figure 4-5 defines the Endpoint States.

156

Figure 4-5: Endpoint State Diagram

Running

Halted

Stopped

Error

Disabled

1. The Address Device Command transitions the Default Control Endpoint

from the Disabled to the Running state.

2. The Configure Endpoint Command (Add (A)= ‘1’and Drop (D) = ‘0’) shall

transition an endpoint, except the Default Control Endpoint, from the

Disabled to the Running state.

3. The Configure Endpoint Command (Add (A)= ‘0’ and Drop (D) = ‘1’) or

Reset Device Command shall transition an endpoint, from any state to

the Disabled state, except the Default Control Endpoint which shall

transition from the Stopped to the Running state.

4. The Disable Slot Command shall transition all endpoints of a Device Slot,

including the Default Control Endpoint, from any state to the Disabled

state.

5. In the Running state, a Set TR Dequeue Pointer Command should only be

issued to the non-active Transfer Rings of a Stream endpoint. Refer to

section 4.12 for active vs. non-active Stream Context information.

6. The Configure Endpoint Command (Add (A) = ‘1’ and Drop (D) = ‘1’) shall

transition an endpoint, except the Default Control Endpoint, from the

Stopped to the Running state.

7. In the Stopped state, a Set TR Dequeue Pointer Command may be used to

modify the starting TRB of an endpoint or non-active Stream prior to

ringing the Doorbell. Refer to section 4.12 for active vs. non-active

Stream Context information.

 157

Figure 4-5 illustrates the state transitions presented by an endpoint. The

Disabled to Running transition for the Default Control Endpoint shall occur due

to an Address Device Command, and for all other endpoints the transition shall

be invoked by a Configure Endpoint Command. Refer to Appendix E for state

machine notation.

A Halt condition, e.g. a Stall Error, Invalid Stream Type Error, Invalid Stream ID

Error, Babble Detected Error, Event Lost Error, USB Transaction Error, or a Split

Transaction Error detected on a USB pipe shall cause a Running Endpoint to

transition to the Halted state. A Reset Endpoint Command shall be used to clear

the Halt condition on the endpoint and transition the endpoint to the Stopped

state. A Stop Endpoint Command received while an endpoint is in the Halted

state shall have no effect and shall generate a Command Completion Event with

the Completion Code set to Context State Error.

Note: A STALL detected on any stage (Setup, Data, or Status) of a Default Control

Endpoint request shall transition the Endpoint Context to the Halted state. A

Default Control Endpoint STALL condition is cleared by a Reset Endpoint

Command which transitions the endpoint from the Halted to the Stopped state.

The Default Control Endpoint shall return to the Running state when the

Doorbell is rung for the next Setup Stage TD sent to the endpoint.

Section 8.5.3.4 of the USB2 spec and section 8.12.2.3 of the USB3 spec state of

Control pipes, “Unlike the case of a functional stall, protocol stall does not

indicate an error with the device.” The xHC treats a functional stall and protocol

stall identically, by Halting the endpoint and requiring software to clear the

condition by issuing a Reset Endpoint Command.

Note: If the STALL condition is detected on the Setup or Data Stage TD of a request,

software shall be responsible for removing the Data Stage or Status Stage TDs,

respectively, associated with the request from the Transfer Ring.

A TRB Error condition should cause a Running Endpoint to transition to the Error

state. A Set TR Dequeue Pointer Command shall be used to transition the

endpoint to the Stopped state. A Stop Endpoint Command received while an

endpoint is in the Error state shall have no effect and shall generate a Command

Completion Event with the Completion Code set to Context State Error.

Note: An endpoint in the Running state may be Busy (actively processing TRBs on its

Transfer Ring) or Idle (the endpoint is not processing TRBs and waiting for a

doorbell ring) sub-state, i.e. an endpoint does not exit the Running state if it

exhausts its Transfer Ring.

Note: Some xHC implementations may not handle a TRB Error gracefully, resulting in

undefined behavior and possibly the assertion of HCE. It is the responsibility of

software to always present correctly formed TRBs to the xHC.

A Stop Endpoint Command shall also transition the endpoint to the Stopped

state. While in the Stopped state, the ownership of the Transfer Ring is

158

relinquished up by the xHC, allowing software to add, delete, or modify any TD

on the ring.

If an endpoint is in the Stopped state when the doorbell is rung, it will transition

to the Running state. A Configure Endpoint Command shall also transition a

Stopped endpoint to the Running state. Note that a Configure Endpoint

Command does not affect the Default Control Endpoint, therefore shall not

transition the Default Control Endpoint from the Stopped to the Running state.

A Configure Endpoint “deconfigure” (DC = ‘1’) or Reset Device Command shall

transition all endpoints, except for the Default Control Endpoint, from the

Running, Halted, Error, or Stopped states to the Disabled state.

A Disable Slot Command shall transition all endpoints, including the Default

Control Endpoint, from the Running, Halted, Error, or Stopped states to the

Disabled state, as noted by the large bubble. System software is responsible for

issuing a Disable Slot Command when a device detach event is detected.

A Set TR Dequeue Pointer Command may be issued to a non-active Stream

Context of an endpoint to set its Dequeue Pointer while the endpoint is in the

Running state. Refer to sections 4.6.10 and 4.12.

An endpoint in the Stopped state shall not generate Transfer Events.

When an endpoint transitions from the Stopped to the Running state due to a

doorbell ring, the EP State field of the Output Endpoint Context shall be updated

by the xHC to running before any Transfer Events are generated.

Note: If the xHC is reset while an endpoint is not in the Disabled state, the value of the

Endpoint State (EP State) field shall be invalid.

Note: An Endpoint is considered “enabled” if it is not in the Disabled state.

Note: Software shall not write to the Doorbell register with the DB Target field value

set to an endpoint that is in the Disabled state.

Note: A control, bulk, or Interrupt endpoint shall transition to the Halted state if a

tHostTransactionTimeout occurs (refer to Table 8-36 in the USB3 spec). For

Isoch transactions the host shall not perform any more transactions to the

endpoint in the current Service Interval. And the host shall not halt the endpoint

and shall restart transactions to the endpoint in the next Service Interval. And

retries are not performed for any endpoint type if a tHostTransactionTimeout

occurs. Note that the tHostTransactionTimeout is an xHC implementation

specific delay within the range specified in the USB3 spec.

Note: There are several cases where the EP State field in the Output Endpoint Context

may not reflect the current state of an endpoint. The xHC should attempt to

keep EP State as current as possible, however it may defer these updates to

perform higher priority references to memory, e.g. Isoch data transfers, etc.

Software should maintain an internal variable that tracks the state of an

 159

endpoint and not depend on EP State to represent the instantaneous state of

an endpoint.

For example, when a Command that affects EP State is issued, the value of EP

State may be updated anytime between when software rings the Command

Ring doorbell for a command and when the associated Command Completion

Event is placed on the Event Ring by the xHC. The update of EP State may also

be delayed relative to a Doorbell ring or error condition (e.g. TRB Error, STALL,

or USB Transaction Error) that causes an EP State change not generated by a

command.

Software should maintain an accurate value for EP State, by tracking it with an

internal variable that is driven by Events and Doorbell accesses associated with

an endpoint using the following method:

• When a command is issued to an endpoint that affects its state, software

should use the Command Completion Event to update its image of EP State

to the appropriate state.

• When a Transfer Event reports a TRB Error, software should update its image

of EP State to Error.

• When a Transfer Event reports a Stall Error or USB Transaction Error,

software should update its image of EP State to Halted.

• When software rings the Doorbell of an endpoint to transition it from the

Stopped to Running state, it should update its image of EP State to Running.

Refer to section 6.2.3 for more information on the Endpoint Context data

structure.

4.9 TRB Ring

A TRB (Transfer Request Block) Ring defines a queue, which is used to transfer

Work Items between producer and consumer entities26.

A TRB Ring is defined as a circular queue of TRB data structures. TRB rings are

used to pass Work Items from the producer to the consumer. Two pointers

(Enqueue and Dequeue) associated with each ring identify where the producer

will Enqueue the next Work Item on the ring and where the consumer will

Dequeue the next Work Item from the ring.

A Work Item is comprised of one or more TRB data structures. A Work Item may

define an operation to perform, or the result of an operation that has been

performed.

26 Note: The xHCI Producer/Consumer model is not related to the PCI Producer/Consumer model.

160

There are 3 basic types or TRB Rings; Transfer, Event, and Command. Each type

of ring defines an exclusive set of TRB data structures; however they all employ

the underlying TRB Ring mechanism to organize their work items and the basic

TRB template.

Transfer Rings provide data transport to and from USB devices. There is a 1:1

mapping between Transfer Rings and USB Pipes. They are defined by an

Endpoint Context data structure contained in a Device Context, or the Stream

Context Array pointed to by the Endpoint Context.

The Event Ring provides the xHC with a means of reporting to system software:

data transfer and command completion status, Root Hub port status changes,

and other xHC related events. An Event Ring is defined by the Event Ring

Segment Table Base Address, Segment Table Size, and Dequeue Pointer

registers which reside in the Runtime Registers.

The Command Ring provides system software the ability to issue commands to

enumerate USB Devices, configure the xHC to support those devices, and to

coordinate virtualization features. The Command Ring is managed by the

Command Ring Control Register that resides in the Operational Registers.

The Enqueue Pointer and Dequeue Pointer are terms used to refer to the

logical beginning and end of the valid entries in a TRB Ring. The size of a TRB

ring is determined by the number and size of the segments that comprise the

ring.

Note: The Dequeue and Enqueue Pointers for Transfer and Command Rings are NOT

defined as physical xHC registers. However a facsimile of these pointers are

maintained internally by the xHC and system software to manage a respective

ring.

Note: Only the Dequeue Pointer for an Event Ring is defined as a physical xHC register.

A facsimile of the Enqueue Pointer is maintained internally by the xHC and

system software to manage an Event Ring.

This section describes how these “facsimiles” are maintained. The Enqueue and

Dequeue Pointers are always advanced starting from the TRB entry pointed to

by their initial values.

The Enqueue Pointer is the address of the next TRB in a ring available to the

producer. The producer constructs new Work Items starting with the TRB at this

location, and advances the Enqueue Pointer when the construction is complete.

The Dequeue Pointer is the address of the next TRB to be serviced by the

consumer.

If the Dequeue Pointer equals the Enqueue Pointer, then the TRB Ring is empty.

If the “Enqueue Pointer + 1” = Dequeue Pointer, then the ring is full. Note that

 161

the calculation of the “Enqueue Pointer + 1” value requires comprehending Link

TRBs. Refer to section 4.11.5.1 for more information on Link TRBs.

TRBs between the Enqueue Pointer -1 and Dequeue Pointer are owned by the

consumer of the Work Items. All other TRBs in a ring are owned by the producer

of the Work Items. TRB ownership is passed to the consumer when the Enqueue

Pointer is advanced by the producer. TRB ownership is passed to producer when

the Dequeue Pointer is advanced by the consumer.

A consumer or producer may modify any TRB that it owns, at any time, and in

any order. The producer shall never modify a TRB that is owed by the consumer.

And the consumer shall never modify a TRB that is owed by the producer.

TRBs shall be executed by the consumer in order, starting at the TRB referenced

by the Dequeue Pointer.

All TRB data structures shall be 16 bytes in size.

TRB Rings may be larger than a Page, however they shall not cross a 64K byte

boundary. Refer to section 4.11.5.1 for more information on TRB Rings and page

boundaries.

Initially when the TRB Ring is created in memory, or if it is ever re-initialized, all

TRBs in the ring shall be cleared to ‘0’. This state represents an empty queue.

Note: Refer to Table 6-86 for a definition of the valid TRB types allowed on a specific

TRB ring type. Table 6-87 defines the allowable Transfer Ring TRB Types as

function of endpoint type.

Note: Ownership of TRBs on a Transfer Ring is strictly determined by the location of its

Enqueue and Dequeue pointers. A Short Packet, error, or other condition

reported for a TRB that is not the last TRB of a TD shall not be interpreted by the

producer (software) as indicating that the ownership of the remaining TRBs in

the TD have also transitioned to the producer.

4.9.1 Transfer Descriptors

Transfer Rings support Transfer Descriptors (TDs) that consists of 1 or more

TRBs. The TRB Chain (C) bit is set in all but the last TRB of a TD.

The xHC shall schedule Max Packet Size USB transactions for all packets

associated with a TD, except possibly for the last packet if the TD does not

define an integer multiple of Max Packet Size data bytes.

To generate a “zero-length” USB transaction, software shall explicitly define a

TD with a single Transfer TRB, and its TRB Transfer Length field shall equal ‘0’.

Note that this TD may include non-Transfer TRBs, e.g. an Event Data or Link TRB.

162

Refer to section 4.14.1 for an Implementation Note that discusses TRBs and

system bandwidth management.

There are many conditions described in this specification where the xHC shall

“advance to the next TD”. However, if the xHC is processing a partially formed

TD when one of these conditions occurs, then advancing to the next TD is not

possible and the xHC shall stop advancing when it reaches the Enqueue Pointer

(i.e. the Cycle bit transition). In this case, the xHC sees the Transfer Ring as

empty (i.e. the Dequeue Pointer is equal to the Enqueue Pointer), and the next

time the doorbell is rung for the endpoint, the xHC shall attempt to advance to

the next TD boundary. Note that the xHC shall always interpret the New TR

Dequeue Pointer field of a Set TR Dequeue Pointer Command as a pointer to the

“next TD”, terminate any effort to “advance to the next TD”.

A “partially completed TD” is identified by the case where the Chain bit (CH) set

to ‘1’ in the TRB referenced by the Dequeue Pointer and advancing the Dequeue

Pointer sets it equal to the Enqueue Pointer.

Note: Command and Event TRBs do not support a Chain bit (CH), so all Command

Descriptors (CDs) and Event Descriptors (EDs) only consist of a single TRB.

Note: If the xHC receives a Short Packet from a device, then it shall retire the current

TD. If another TD is defined on the Transfer Ring, the xHC shall advance to it and

begin IN transactions. If the EOB flag was set in a short DP received on a SS IN

pipe, then the host shall retire the current TD, and wait for an ERDY from the

device before beginning IN transactions for the next TD (if one exists). Refer to

section 4.10.1.1 for detailed information on Short Packet handling.

Note: If an error is detected while processing a multi-TRB TD, the xHC shall generate a

Transfer Event for the TRB that the error was detected on with the appropriate

error Condition Code, then may advance to the next TD. If in the process of

advancing to the next TD, a Transfer TRB is encountered with its IOC flag set,

then the Condition Code of the Transfer Event generated for that Transfer TRB

should be Success, because there was no error actually associated with the TRB

that generated the Event. However, an xHC implementation may redundantly

assert the original error Condition Code. As a general rule, the Completion Code

of a Transfer Event represents the status of the buffer referenced by the Transfer

TRB that generated it, however there may be exceptions.

4.9.2 Transfer Ring Management

This section describes the operation of Enqueue and Dequeue Pointers in

Transfer Rings. The operation of Enqueue and Dequeue Pointers in Command

Rings is described in section 4.9.3 and Event Rings in section 4.9.4.

Figure 4-6 shows a graphical representation of a Transfer Ring. The producer

(host) places items in a Transfer Ring at the Enqueue Pointer, and the consumer

(xHC) removes items from the Transfer Ring at the Dequeue Pointer.

 163

The Cycle bit field in a TRB identifies the location of the Enqueue Pointer in a

Transfer Ring, eliminating the need to define a physical Enqueue Pointer

register.

Software uses and maintains private copies of the Enqueue and Dequeue

Pointers for each Transfer Ring. The Enqueue and Dequeue Pointers are set to

the address of the first TRB location in the Transfer Ring and written to the

Endpoint/Stream Context TR Dequeue Pointer field, when a Transfer Ring is

initially set up. Software uses the Enqueue Pointer to determine where to place

the next Work Item on a Transfer Ring. Software advances its copy of the

Enqueue Pointer, by either incrementing it by the TRB size, or reloading it with

the value of the Ring Segment Pointer field when it encounters a Link TRB, every

time it writes a TRB to the Transfer Ring. The position of the Enqueue pointer is

also marked in the Transfer Ring itself, by a transition of the Cycle bit.

The xHC also maintains private copies of the Enqueue and Dequeue Pointers for

each Transfer Ring. When a Transfer Ring is enabled or reset, the xHC initializes

its copies of the Enqueue and Dequeue Pointers with the value of the

Endpoint/Stream Context TR Dequeue Pointer field.

The xHC uses the Dequeue Pointer to determine where to fetch the next Work

Item from a Transfer Ring. The xHC advances its copy of the Dequeue Pointer, by

either incrementing it by the TRB size, or reloading it with the value of the Ring

Segment Pointer field when it encounters a Link TRB, every time it fetches a TRB

from the Transfer Ring.

The xHC employs the Event Ring to report the current value of the Dequeue

Pointer to system software. Each Transfer Event placed on the Event Ring points

to the Transfer TRB that generated it. Software may interpret the pointer value

from the latest Transfer Event as the “current value” of the xHC Dequeue

Pointer.

The xHC uses the Enqueue Pointer to determine when a Transfer Ring is empty.

As it fetches TRBs from a Transfer Ring it checks for a Cycle bit transition. If a

transition detected, the ring is empty.

Software uses the Dequeue Pointer to determine when a Transfer Ring is full. As

it processes Transfer Events, it updates its copy of the Dequeue Pointer with the

value of the Transfer Event TRB Pointer field. If advancing the Enqueue Pointer

would make it equal to the Dequeue Pointer then the Transfer Ring is full and

software shall wait for Transfer Events that will advance the Dequeue Pointer.

The Enqueue Pointer is managed by the producer and the Dequeue Pointer is

managed by the consumer. The producer maintains a Producer Cycle State

(PCS) flag which identifies the value that it shall write to the TRB Cycle bit. The

consumer maintains a Consumer Cycle State (CCS) flag, which it compares to

the Cycle bit in TRBs that it fetches. If the CCS flag is equal to the value of the

TRB Cycle bit, then the consumer owns the TRB pointed to by the Dequeue

164

Pointer and may process it. If they are not equal, then the consumer shall stop

processing TRBs and wait for a notification of more work.

Figure 4-6: Index Management

TRB 0 PCS

TRB 1

TRB 2

TRB 3

TRB 4

PCS

PCS

PCS

PCS

TRB 5

...

TRB n-1

Transfer

RingRing Base

Pointer

Consumer Cycle State (CCS)

Dequeue Pointer

Consumer (xHC)

~PCS

...

~PCS

Producer (Software)

Producer Cycle State (PCS)

Enqueue Pointer

Execution

Cycle bit

Cycle bit

Transition

Where TRB n is the

last TRB in the ring.

Producer

Owned

TRBs

Consumer

Owned

TRBs

Link TRB

Toggle Cycle = 1

Points to the beginning

of the Transfer Ring

TRB n ~PCS

In Figure 4-6, TRBs are written by the producer setting the Cycle bit to the value

of PCS. Note that in Figure 4-6, “~PCS” is the inverted version of PCS.

To form a ring (or circular queue) a Link TRB may be inserted at the end of a ring

to point to the first TRB in the ring. A ring may contain multiple Link TRBs which

are used to chain together Transfer Ring Segments.

In the example of Figure 4-6 the Toggle Cycle flag is set in the Link TRB. If the

Producer encounters a Toggle Cycle flag set in a Link TRB it shall toggle the

state of its PCS flag. If the Consumer encounters a Toggle Cycle flag set in a Link

TRB it shall toggle the state of its CCS flag. The producer sets the TRB Cycle bit

to the value of the PCS flag when it writes a TRB to set the position of the

Enqueue Pointer. In Figure 4-6, the next TRB written by the producer after

encountering the Link TRB will be TRB 0. The assertion of the Toggle Cycle bit in

the Link TRB will cause the Producer to toggle the state of the PCS flag. The

Cycle bit in TRB0 will be set to the value of PCS.

Link TRBs allow Transfer Rings to span Page boundaries and to be dynamically

sized.

Note: All TRBs between the Dequeue Pointer and the Enqueue Pointer-1 are owned by

the Consumer and may not be modified by the Producer. If the Ring is empty

(Dequeue Pointer = Enqueue Pointer) then no TRBs are owned by the Consumer.

Any TRBs in a ring not owned by the Consumer are owned by the Producer.

 165

Note: If Streams are not enabled for an endpoint, the Transfer Ring CCS flag shall be

set to the value of the Endpoint Context DCS flag by a Configure Endpoint

Command if the associated Add Context flag is ‘1’, or by a Set TR Dequeue Pointer

Command.

If Streams are enabled for an endpoint, then when a Stream is selected, the CCS

flag shall be set to the value of the DCS flag in the associated Stream Context,

and when the Stream state is saved, the DCS flag in the associated Stream

Context shall be set to the value of the CCS flag.

4.9.2.1 Segmented Rings

The Link TRB provides support for non-contiguous TRB Rings. For instance, if

contiguous Pages of memory cannot be allocated by system software to form a

large TRB Ring, then Link TRBs can be used to tie together multiple memory

Pages to form a single large Transfer Ring.

A non-contiguous TRB Ring is composed of Ring Segments. A Ring Segment is a

contiguous block of physical memory. The Link TRB provides a 64-bit pointer

which points to the next segment of a ring. If the ring is comprised of only a

single segment then the only Link TRB points to the beginning of the ring, as

illustrated in Figure 4-6 above. A multi-segment ring will use a Link TRB to

delimit the end of one Segment and the start of the next. The last TRB in a Ring

Segment is always a Link TRB.

166

Figure 4-7: Segmented Ring Example

TRB

TRB

Transfer Ring

Segment 0

Transfer Ring

Segment 1

Dequeue Pointer

Enqueue Pointer

Execution

256

TRBs

244

TRBs

Empty TRB

Pending TRB

Endpoint Context

Ring Base Address

TD

Link TRB

EP State

TRB

TRB

TRB

...
TRB

TRB

TRB

TRB

...
TRB

TRB

Link TRB

Link TRB

Unused

Ring Size = 500

Legend

0

Figure 4-7 illustrates a Segmented Ring that contains two segments. In this

example both segments are allocated as 4KB contiguous blocks of memory.

Segment 0 defines 256 TRBs, where the last TRB is a Link TRB that points to the

beginning of the next segment. Segment 1, which defines 244 TRBs, does not

fully utilize the 4K buffer that was allocated for it. The two segments together

define ring size of 500 total TRBs, where 498 of them are available for TDs. Note

that the Toggle Cycle flag is set only in Segment 1’s Link TRB.

4.9.2.2 Pointer Advancement

When a Dequeue Pointer is “advanced”, its value is adjusted to point to the next

transfer related (Isoch, Setup Stage, Normal, etc.) TRB to be executed. The xHC

increments the pointer value by 16 bytes to point to the next TRB, however if

the next TRB is a Link TRB and its Cycle bit indicates that it is a valid TRB, then

the xHC will automatically set the Dequeue Pointer to the address provided by

the Link TRB. This operation will point the Dequeue Pointer to the first TRB of

the next segment.

Software is responsible for advancing the Enqueue pointer. It does this by

toggling the Cycle bit each pass through the ring as it writes TRBs.

Once started (by a doorbell), the xHC processes TRBs until the ring is empty. A

ring is defined as “empty” if the Dequeue Pointer is equal to the Enqueue

pointer. The value of the Enqueue Pointer is defined by the Cycle bit transition.

 167

To prevent overruns, software shall determine when the Ring is full. The ring is

defined as “full” if advancing the Enqueue Pointer will make it equal to the

Dequeue Pointer. Software shall take Link TRBs into account when evaluating

the full condition. If the Enqueue Pointer is not pointing at a Link TRB, software

can determine if the Ring is full by adding the size of a TRB (16) to the Enqueue

Pointer and checking if the result is equal to the value of the Dequeue Pointer. If

the Enqueue Pointer is pointing at a Link TRB, then software shall compare the

Ring Segment Pointer value in the Link TRB with the Dequeue Pointer.

Figure 4-8: Enqueue Pointer Advancement

Link TRB?
No Yes

Initialize Ring

Producer Cycle State (PCS) = 1

Write TRB?
No

Yes

TRB Cycle bit = PCS

Enqueue Pointer += 16

Enqueue Pointer = Link TRB

(Ring Segment Pointer)

Toggle Cycle

= 1?

No

Yes

PCS = -PCS

Note: The Producer Cycle State (PCS) and the Consumer Cycle State (CCS) flags are

maintained internally by the xHC and software to aid in identifying the value of

the Enqueue pointer. These flags are NOT defined in xHC registers or data

structures.

The Pointer Advancement rules:

• The Cycle bit shall be initialized by software to ‘0’ in all TRBs of all segments when

initializing a ring.

• The Producer Cycle State (PCS) and the Consumer Cycle State (CCS) bits shall be set

to ‘1’ when a ring is initialized.

168

Note: The initial state of a Transfer Ring’s CCS flag is determined by the Endpoint

Context DCS flag. The initial state of the Command Ring’s CCS flag is determined

by the Command Ring Control Register Ring Cycle State (RCS) flag. The initial

state of the Event Ring’s CCS flag is always ‘1’. The previous two bullets assume

that the DCS and RCS flags are initialized to ‘1’ by software. If software chooses

to initialize a CCS flag (DCS or RCS) to ‘0’, the Cycle bits in the respective ring shall

be set to ‘1’.

• The Cycle bit shall be written by the producer with the current value of the PCS bit.

• The Cycle bit shall be treated as Read-Only by the consumer.

• The Consumer may execute a TRB referenced by the Dequeue Pointer whose Cycle

bit equals CCS.

• If the Enqueue Pointer references a Link TRB, then the Enqueue Pointer shall be set

to Link TRB Ring Segment Pointer and if the Toggle Cycle bit is set to ‘1’ in the Link

TRB, the PCS bit shall be toggled by the Producer.

• If the Dequeue Pointer references a Link TRB then the Dequeue Pointer shall be set

to Link TRB Ring Segment Pointer and if the Toggle Cycle bit is set to ‘1’ in the Link

TRB, the CCS bit shall be toggled by the Consumer.

Note: A Cycle bit transition takes place between a Link TRB and the first TRB of the

segment that the Link TRB Ring Segment Pointer references.

Note: The TR Dequeue Pointer and Link TRB are not required to point to the beginning

of a memory page.

4.9.2.3 Enlarging a Transfer Ring

To increase the size of a Transfer Ring, software shall allocate and initialize a

new segment.

Software then identifies a segment boundary (Link TRB) where it will add the

new segment.

Note: Only Link TRBs that are owned by the producer may be modified to point to the

new segment.

 169

Figure 4-9: Initial State of Transfer Ring

TRB 0 0

TRB 1

TRB 2

TRB 3

TRB 4

0

0

0

1

TRB 5

...

TRB n-1

1

...

1

TRB n 1

Dequeue Pointer

Enqueue Pointer

TRB 0 1

TRB 1

TRB 2

TRB 3

TRB 4

1

1

1

1

TRB 5

...

TRB n-1

1

...

1

TRB n (TC) 1

CCS = 1

PCS = 0

Segment A Segment B

Figure 4-9 illustrates a two segment Transfer Ring (A and B) where TRBs 5 to n

of Segment B and TRBs 0 to 3 of Segment A are owned by the consumer (xHC),

and the remaining TRBs are available to the producer (software) for creating new

TDs. Note that the Toggle Cycle (TC) bit is set in the Link TRB of segment B and

not set in the Link TRB of segment A, hence the state of the Cycle bit is toggled

once each pass through the Transfer Ring.

Now, consider the case where software needs to grow the ring size of Figure 4-9.

Software may pause its insertion of TDs on the Transfer Ring, which temporarily

stops the Enqueue Pointer from advancing, to insert a new segment. Software

may only modify Link TRBs that it owns, so the new segment C may only be

inserted between existing segments A and B as illustrated in Figure 4-10.

Note: If a Link TRB is not owned by software and not an “intermediate” TRB of the TD

currently being executed by the xHCI, software may stop the Transfer Ring to

modify the Link TRB, then restart it. If the Link TRB is an “intermediate” TRB of

the TD currently being executed by the xHCI, then software shall use a Set TR

Dequeue Pointer Command after stopping the Transfer Ring to ensure that the

xHCI flushes any cached TRBs before restarting it. Refer to section 4.6.9 for more

information on the requirements of stopping a Transfer Ring.

170

Figure 4-10: Final State of Transfer Ring

. .

. .

TRB 0 0

TRB 1

TRB 2

TRB 3

TRB 4

0

0

0

1

TRB 5

...

TRB n-1

1

...

1

TRB n (TC) 1

TRB 0 0

TRB 1

TRB 2

TRB 3

TRB 4

0

0

0

0

Segment A (New) Segment C

TRB 0 1

TRB 1

TRB 2

TRB 3

TRB 4

1

1

1

1

TRB 5

...

TRB n-1

1

...

1

TRB n (TC) 1

Segment B

TRB 5

...

0

0

TRB n-1 0

TRB n (TC) 0

In this example software initializes the new segment with the following

operations:

• All TRBs in the new segment C to ‘0’, including the Cycle bit.

• The TRB Type of the last TRB (n) in segment C shall be set to Link TRB.

• And the Ring Segment Pointer field of the segment C Link TRB (n) shall be initialized

to point to the first TRB (0) of segment B.

• The Toggle Cycle (TC) flag of the segment C Link TRB (n) shall be set, to indicate the

Cycle bit transition between the last TRB in segment C and first TRB in segment B.

Software then modifies segment A’s Link pointer to point to link the new

Segment C into the ring.

• The Ring Segment Pointer field of the segment A Link TRB (n) shall be initialized to

point to the first TRB (0) of segment C.

• The Toggle Cycle (TC) flag of the segment A Link TRB (n) shall be set to ‘1’, to indicate

the Cycle bit transition between the consumer owned TRBs in segments A and C.

Software is required to ensure that the state of the Cycle bits in the new

segment(s) and the Toggle Cycle flags in the Link TRBs that are used to connect

the new segment to existing segments, do not cause an inconsistency in the

definition of the Enqueue Pointer position.

Given the initial conditions illustrated in Figure 4-9, to ensure Cycle bit

consistency when inserting segments software may either: 1) clear all the Cycle

bits in all TRBs in the new segment(s) to ‘0’ and modify the Link TRB Toggle

Cycle flags in the segment that points to the new segment and the new segment,

or 2) set all the Cycle bits in all TRBs in the new segment to ‘1’. Figure 4-10

illustrates the case 1.

 171

4.9.2.4 Shrinking a Transfer Ring

To decrease the size of a Transfer Ring, software shall identify a segment

boundary (Link TRB) where it will perform the shrink operation.

Note: The producer shall not modify Link TRBs that it does not currently own.

Software may modify the Link TRB Ring Segment Pointer to map out one or

more intermediate segments and/or set the Link TRB Ring Segment Pointer to a

TRB location in the segment terminated by the Link TRB.

Software shall ensure that the state of the Cycle bits in all remaining segments

do not cause an inconsistency in the definition of the Enqueue Pointer position

by managing the Link TRB Toggle Cycle bits.

4.9.3 Command Ring Management

This section describes the operation of Enqueue and Dequeue Pointers in the

Command Ring.

The operation of a Command Ring is identical to Transfer Rings with the

following exceptions:

• If the Command Ring Control Register (CRCR) is written while the Command Ring is

stopped (CRR = ‘0’) the xHC shall initialize the Command Ring Dequeue Pointer with

the value of the Command Ring Pointer field (refer to section 5.4.5).

• When the Host Controller Doorbell Register (0) is written by system software, the

xHC will evaluate the Command TRB pointed to by the Command Ring Dequeue

Pointer. Once started (by a doorbell write), the xHC processes Command TRBs and

advances the Command Ring Dequeue Pointer until the ring is empty.

• The location of the Command Ring Dequeue Pointer is reported on the Event Ring in

Command Completion Events.

• No multi-TRB TDs are allowed on the Command Ring.

All other aspects of Command Ring management are identical to those

described for the Transfer Rings. i.e.:

• Software is responsible for advancing the Enqueue pointer. It does this by toggling

the Cycle bit each pass through the Command Ring as it writes Command TRBs.

• A Command Ring is defined as “empty” if the Dequeue Pointer is equal to the

Enqueue pointer. The Enqueue Pointer is defined by a Cycle bit transition.

Note: Refer to the description of the CRCR RCS bit in Table 5-23 for information on

Command Ring CCS flag initialization.

Note: While the Command Ring is in the Running state (CRR = ‘1’), it may be Busy

(actively processing Command TRBs) or Idle (not processing Command TRBs and

waiting for a doorbell ring), i.e. CRR is not negated when the Command Ring has

completed all queued commands.

172

4.9.4 Event Ring Management

This section describes the operation of Enqueue and Dequeue Pointers in the

Event Ring. The operation of Enqueue and Dequeue Pointers in Transfer Rings is

described in section 4.9.2 and Command Rings in section 4.9.3. Note an xHC may

implement multiple Interrupters, each with its own Event Ring. This section

describes the operation of a single Event Ring.

A fundamental difference between an Event Ring and a Transfer or Command

Ring is that the xHC is the producer and system software is the consumer of

Event TRBs. The xHC writes Event TRBs to the Event Ring and updates the Cycle

bit in the TRBs to indicate to software the current position of the Enqueue

Pointer.

The xHC maintains an Event Ring Producer Cycle State (PCS) bit, initializing it to

‘1’ and toggling it every time the Event Ring Enqueue Pointer wraps back to the

beginning of the Event Ring. The value of the PCS bit is written to the Cycle bit

when the xHC generates an Event TRB on the Event Ring.

Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it

to ‘1’ and toggling it every time the Event Ring Dequeue Pointer wraps back to

the beginning of the Event Ring. If the Cycle bit of the Event TRB pointed to by

the Event Ring Dequeue Pointer equals CCS, then the Event TRB is a valid event,

software processes it and advances the Event Ring Dequeue Pointer. If the Event

TRB Cycle bit is not equal to CCS, then software stops processing Event TRBs

and waits for an interrupt from the xHC for the Event Ring. When the interrupt

occurs, software picks up where it left off, checking the Cycle bit of the Event

TRB pointed to by the Event Ring Dequeue Pointer against its CCS bit.

System software shall write the Event Ring Dequeue Pointer (ERDP) register to

inform the xHC that it has completed the processing of Event TRBs up to and

including the Event TRB referenced by the ERDP.

Note: The detection of a Cycle bit mismatch in an Event TRB processed by software

indicates the location of the xHC Event Ring Enqueue Pointer and that the Event

Ring is empty. Software shall write the ERDP with the address of this TRB to

indicate that it has processed all Events in the ring.

Event Ring segments are defined by an Event Ring Segment Table (ERST). The

ERST consists of an array of Base Address/Size pairs (ERST.BaseAddress and

ERST.Size), each defining a single Event Ring segment. The first element in the

ERST (0) is pointed to by the ERST Base Address Register (ERSTBA section

5.5.2.3.2). The number of elements in the ERST is defined by the ERST Size

Register (ERSTSZ section 5.5.2.3.1). When the xHC is initialized, it begins writing

Event TRBs starting at the address referenced by the 0th ERST entry. The xHC

maintains a count of the Event TRBs that it has written to a segment. When the

count exceeds the value of the associated ERST.Size entry, the xHC shall fetch

the next ERST entry. The ERST entries are treated as a circular queue, wrapping

 173

back to the ERST(0) after the ERST(ERSTSZ – 1) is fetched. Refer to section 6.5

for the definition of an ERST entry.

Figure 4-11: Segmented Event Ring Example

ERST Base Addr

ERST Size = 3

TRB

TRB

TRB

TRB

Event Ring

Segment 0

Event Ring

Segment 1

Event Ring Dequeue Pointer

Enqueue Pointer

Execution

Empty TRB

Pending TRB

Event Ring Registers

TRB

...
TRB

Legend

TRB

TRB

TRB

...
TRB

TRB

TRB

TRB

...
TRB

Event Ring

Segment 2

Ring Segment Base Address Size

Ring Segment Base Address Size

Ring Segment Base Address Size

Event Ring

Segment Table

ERST(0)

ERST(1)

ERST(2)

Internal xHC Event Ring

Register

Figure 4-11 illustrates a segmented Event Ring that consists of 3 segments.

Rules for operation of an Event Ring:

• Prior to writing the ERST Base Address (ERSTBA) register system software shall:

• Initialize the Event Ring Segments that will be referenced by the Event Ring

Segment Table (ERST) to ‘0’.

• Initialize the ERST by initializing the ERST.BaseAddress and ERST.Size fields of

each element in the table. The ERST.BaseAddress field shall point to the

associated Event Ring Segment, and the ERST.Size field shall indicate the

number of TRBs supported by the segment.

• Write the ERST Size (ERSTSZ) Register with the number of valid entries in the

ERST and Event Ring Dequeue Pointer (ERDP) Register with the value of

ERST(0).BaseAddress.

• Write the ERST Base Address (ERSTBA) register with the value of

ERST(0).BaseAddress. When the ERSTBA register is written, the Event Ring State

Machine (Figure 4-12) is set to the Start state.

• System software shall advance the Event Ring Dequeue Pointer by writing the

address of the last processed Event TRB to the Event Ring Dequeue Pointer (ERDP)

register. Note, the “last processed Event TRB” includes the case where software

detects a Cycle bit mismatch when evaluating an Event TRB and the ring is empty.

• System software is responsible for ensuring valid values for ERST entries in paged

environments.

• System software is responsible for ensuring the Size of every ERST entry (Event Ring

segment) is at least 16.

174

Figure 4-12: Event Ring State Machine

Start

TRB Count = 0?
No

Yes

Write Event TRB @ EREP

EREP += 16

TRB Count--

ERST Count++

ERSTE= ERST[ERST Count]

EREP = ERSTE.BaseAddr

TRB Count = ERSTE.Size

New Event

posted?
No

Yes

ERST Count = 0

ERST Count =

ERSTSZ?

No Yes

Check For ER Full

PCS = ~PCS

NSP = ERST(((ERST Count+1) MOD ERSTSZ)).BaseAddr

TRB Count = 1?

Yes

No

Start

Check for

ER Full

EREP+16 =

ERDP?

Yes

No

Stop processing Transfer and Command Rings

Write Event Ring Full Error Event @ EREP

EREP += 16

TRB Count--

Done

Check for

ER Full

ERDP = NSP?

Yes

No

Check current

segment

Check next

segment

EREP Advancement Event Ring Full Check

Event Ring full

Event Ring

has room

ERSTBA write

Run/Stop = 0?
Yes

No

PCS = 1

TRB Count = 0?

No

Yes
ERST Count++

ERST Count =

ERSTSZ?

No

Yes

PCS = ~PCS

ERST Count = 0

ERSTE= ERST[ERST Count]

EREP = ERSTE.BaseAddr

TRB Count = ERSTE.Size

Advance to

next segment

ERDP Write?
Yes

No

Wait for more room

in Event Ring

Run/Stop = 1?
Yes

No

Figure 4-12 describes the algorithm the xHC employs for advancing its internal

Event Ring Enqueue Pointer (EREP). The left side of the figure describes the EREP

Advancement algorithm. The right side of the figure describes the algorithm for

checking if the Event Ring is full.

Note: The Producer Cycle State (PCS) flag for the Event Ring is toggled only when the

Event Ring wraps back to the beginning.

Note: The Event Ring State machine is Stopped if the USBCMD Run/Stop (R/S) flag is

‘0’.

Note: A blocked Event Ring may impact forward progress on endpoints whose TDs

target other Event Rings.

 175

Note: It is recommended that software process as many Events as possible before

writing the ERDP. This approach not only minimizes the number of MMIO writes,

but is particularly important if the Event Ring is full. If an Event Ring Full condition

exists, writing the ERDP after processing individual Events may cause no work to

progress because the Event Ring becomes filled with Event Ring Full Events.

Ideally, software writes the ERDP after processing all Events on an Event Ring.

Practically, software should maximize the number of Events processed before

writing the ERDP, e.g. processing a minimum of 4 Events before each ERDP write.

Note: Section 4.23.2 describes the xHC Restore process. Step 2 in the restore process

requires software to load all registers (including the ERSTBA) with previously

saved values. Writing the ERSTBA initializes the Event Ring State Machine

internal variables and advances it to wait for Run/Stop (R/S) to be asserted or an

event to be posted. A Restore operation, which always follows the register load

by software, shall overwrite the Event Ring State Machine internal variables

(ERSTE, ERST Count, EREP, and TRB Count) with previously saved values,

allowing the Event Ring State Machine to “pick up where it left off” after a power

event.

Note: Software writes to the ERDP register shall always advance the Event Ring

Dequeue Pointer value, i.e. software shall not write the same value to the ERDP

register on two consecutive write operations.

Table 4-3: Event Ring State Machine Definitions

Name Label Description

Event Ring Segment
Table

ERST Resides in host memory. Contains the addresses and
lengths of the Event Ring segments. Refer to section 6.5.

Event Ring Dequeue

Pointer

ERDP Resides in Runtime register space. Advanced by software.

Refer to section 5.5.2.3.3.

Event Ring Enqueue

Pointer

EREP Internal xHC variable. Advanced by Figure 4-12 algorithm

Event Ring Segment
Table Count

ERST Count Internal xHC variable. Identifies the offset into the ERST of
the segment that is currently being filled with Event TRBs

by the xHC.

Event Ring Segment
Table Entry

ERSTE Internal xHC variable. A pointer to an ERST entry.

Event Ring Segment
Table Base Address

ERSTE.BaseAddr Ring Segment Base Address field of current ERST entry.

176

Event Ring Segment

Size

ERSTE.Size Segment Size field of current ERST entry.

Event Ring Segment

Table Size

ERSTSZ Number of entries in the in the ERST.

Next Segment

Pointer

NSP Base address for next Segment of ERST, based on the

current EREP.

TRB Count TRB Count Internal xHC variable. Identifies the number of remaining
TRBs in the current segment.

The following steps describe the xHC Event Ring Enqueue Pointer (EREP)

Advancement algorithm (left side of Figure 4-12):

1. When the ERST Base Address (ERSTBA) register is initially written the

Event Ring State Machine enters the Start state.

2. The xHC initializes its internal PCS flag to ‘1’.

3. The xHC sets its internal ERST Count to ‘0’.

4. The xHC then fetches the entry in the Event Ring Segment Table

referenced by the ERST Count (ERSTE = ERST[ERST Count]) and

initializes its Enqueue Pointer (EREP) with the value of the Ring Segment

Base Address field (ERSTE.BaseAddr), and the TRB Count with the value

of the Segment Size field (ERSTE.Size).

5. If the USBCMD Run/Stop (R/S) flag = ‘0’ the Event Ring State Machine

shall wait for Run/Stop (R/S) to return to ‘1’27. When Run/Stop (R/S) flag

= ‘1’ the xHC shall proceeds to check if an event is posted (step 6.,

otherwise it proceeds immediately to step 6.

6. When an event is posted for the ring, the xHC shall first check if the ring

is full. If not, the xHC writes the Event TRB to the location identified by

the EREP, increments the EREP by 16, and decrements the TRB Count.

The Cycle bit of the Event TRB is set to the value of the PCS flag. If no

event is posted, the xHC will return to step 5.

7. As long as the TRB Count is non-zero, the xHC shall return to step 5,

continuing to check Run/Stop (R/S) or for new events.

27A Controller Restore State (CRS) operation overwrites the Event Ring State Machine internal variables. This may
occur while waiting for Run/Stop (RS) to be set to ‘1’ when restoring state from a power event. Refer to section
4.23.2.

 177

8. When the TRB Count reaches ‘0’, the xHC shall increment the ERST Count

and evaluate it, otherwise it returns to step 5.

a. If the ERST Count is not equal to the value of the ERSTSZ register,

then the xHC returns to step 4 to process events starting in the

next segment of the ERST.

b. If the ERST Count equals the value of the ERSTSZ register, then

the xHC sets the ERST Count to ‘0’, toggles the Producer Cycle

State (PCS) flag, and return to step 3 to process events starting in

the first segment of the ERST.

If the Event Ring is full, the xHC shall flag the condition by reporting an Event

Ring Full Error, which requires placing an Event on the Event Ring. To ensure

that there is space on the Event Ring for this error, the xHC shall consider the

Event Ring full when there is still room for one more entry.

The following steps describe the xHC algorithm for checking if the Event Ring is

full (right side of Figure 4-12):

1. If the TRB Count is greater than ‘1’, then the xHC can simply add 16 to

the EREP and compare it to the ERDP to determine whether the Event

Ring is full.

2. If the TRB Count is equal to ‘1’, then the xHC shall check if the ERDP

points to the first entry in the next segment. To obtain the base address

for the next segment the xHC retrieves the ERST.BaseAddress entry for

the ERST Count + 1 modulus the ERSTSZ. Then calculates the address of

the next Event Ring segment (NSP).

a. If the NSP does not equal the ERDP, then the Event Ring has room

and the Event Ring Full Check exits.

b. If the NSP equals the ERDP, then the Event Ring is full. The xHC

stops processing the Transfer and Command Rings, writes a Event

Ring Full Error Event to the EREP, advances the EREP and

decrements the TRB Count. Refer to Step 2b note below.

3. If the TRB Count is not equal ‘0’, then there is room in the current

segment for more events so go to step 6 and wait for the ERDP to

advance.

4. If the TRB Count is equal ‘0’, then increment the ERST Count to advance

the EREP to the next segment.

a. If the ERST Count is not equal to the value of the ERSTSZ register,

then the xHC goes to step 5 to initialize the state machine

parameters for the next segment of the ERST.

178

b. If the ERST Count equals the value of the ERSTSZ register, then

advance the EREP to the first segment of the ERST by setting the

ERST Count to ‘0’ and toggling the Producer Cycle State (PCS)

flag, then go to step 5 to initialize the state machine parameters

for the first segment of the ERST.

5. To initialize the state machine parameters, the xHC fetches the entry in

the Event Ring Segment Table referenced by the ERST Count (ERSTE =

ERST[ERST Count]) and initializes its Enqueue Pointer (EREP) with the

value of the Ring Segment Base Address field (ERSTE.BaseAddr) and the

TRB Count with the value of the Segment Size field (ERSTE.Size). Once

the EREP has been advanced to the next segment go to step 6 and wait

for the ERDP to advance.

6. The Event Ring will remain full until the next time that software writes

the ERDP. When the ERDP is written, the xHC will determine if the new

ERDP value has freed space on the Event Ring by returning to step 1).

Note: The expectation is that the xHC shall gracefully stop execution on the Command

and Transfer Rings when the Event Ring is full. An “Event Ring Stop” will

propagate all the way to the USB when all the buffered operations in the xHC are

exhausted. The xHC is expected to not lose Control, Interrupt, or Bulk data under

these conditions, however if the condition persists, the xHC will begin to miss

periodic endpoint Service Opportunities (SOs), resulting in the loss of Isoch data

and the possible loss of Interrupt data. The Missed Service Error may be used to

report this condition in an Isoch Transfer Event once the Event Ring Stop

condition is cleared. The Event Ring Full Error shall be reported whether data is

lost or not, to inform system software that the Event Ring is under provisioned.

Note: Step 22.b above states that “the xHC stops processing the Transfer and

Command Rings” if an Event Ring is full. This action is further qualified with the

type of Event Ring that has gone full. If the Primary Event Ring is full, then all

command and transfer rings shall stop processing TRBs. If a Secondary Event

Ring becomes full, then the xHC may stop all command and transfer ring

processing, or only stop processing on those transfer rings that target the full

Event Ring. If virtualization is enabled, an xHC implementation shall ensure that

a full condition on a Secondary Event Ring does not stop the processing of TRBs

on the Command Ring, the Primary Event Ring, or other Secondary Event Rings.

4.9.4.1 Changing the size of an Event Ring

To increase the size of an Event Ring, software shall allocate and initialize a new

segment.

Software then initializes ERST entries, starting at the offset defined by ERSTSZ,

with the Address and Size of the new Event Ring segment(s) and writes new size

of the ERST to the ERSTSZ Register.

 179

Software may determine when the xHC has started using the new segment by

evaluating the Completion Code of the first TRB in the new segment for a non -

zero (valid) condition.

Consider the case were there the 2 segments ‘0’ and ‘1’ (ERSTSZ = 2, ERST(0)

and ERST(1)) are active, and a new segment ‘2’ is being added. Software

initializes all TRBs in the new segment to ‘0’. Then sets the ERST(2).BaseAddr

equal to the base address of the new segment, the ERST(2).Size equal to the

number of Event TRBs supported by the new segment, and the ERSTSZ to 3.

If the EREP just passed the end of segment 1 when the ERSTSZ was written, the

xHC will not start using the new segment until the next pass through the Event

Ring. If the EREP is positioned at the last TRB of segment ‘1’ when the ERSTSZ

was written, the xHC will start using the new segment.

Note that the xHC will write the Cycle bit in the segment 2 TRBs with the same

value as it had been using for segment 1. Software may determine when the xHC

started using the new segment as it is evaluating Event TRBs pointed to by the

Dequeue Pointer. When software evaluates the Event TRB after the last TRB of

segment 1, it shall check for a Valid (non-zero) Completion Code in the first TRB

of segment 2 as an indicator that the xHC has started using the new segment. If

the Completion Code is Valid, then software shall advance the Dequeue Pointer

to the first TRB of segment 2. If the Completion Code is Invalid (‘0’) value,

software shall check the state of the Cycle bit in the first TRB of segment 0 to

see whether it matches the expected state for the next pass through the Event

Ring. If it does not match, it means that the EREP is pointing at the last TRB of

segment 1 and the Event Ring is empty. If it does match, then software shall

advance the Dequeue Pointer to the first TRB of segment ‘0’. If the Event Ring is

empty, software shall reevaluate direction of the EREP at the segment 1 to

segment 2 boundary the next time it receives an interrupt.

The Valid (non-zero) to Invalid (‘0’) transition of the Event TRB Completion Code

field shall be used by software to determine the position of the Enqueue Pointer

during the first pass of the Dequeue Pointer through the new segment(s). The

TRB Cycle bit field shall be treated as invalid during the first pass through the

new segment(s) and shall not be used by software to determine the position of

the Enqueue Pointer.

After the first pass of the Enqueue Pointer through the new segment(s), the xHC

has initialized the Cycle bit in all newly added Event TRBs.

After the first pass of the Dequeue Pointer through the new segment(s), software

shall evaluate the Cycle bit state in segment 2 to determine the Enqueue Pointer

position.

Note: ERST entries (Segment Base Address and Size fields) between 0 and ERSTSZ-1

are not allowed to be modified by software when HCHalted (HCH) = ‘0’.

180

4.9.4.2 Shrinking an Event Ring

To decrease the size of an Event Ring, software shall decrement value of the

ERSTSZ Register.

Software may determine when the xHC has stopped using the segment that is to

be removed by evaluating the state of the Cycle bit of the first TRB in the

deleted segment(s).

Consider the case where there are 3 segments 0, 1, and 2 (ERST Count = 3) and

segment 2 is being deleted. Software writes the ERSTSZ register, setting it to 2.

If the EREP is pointing into segment 2 when the ERSTSZ was written, the xHC will

not stop using the “deleted” segment until the next pass through the Event Ring.

If the EREP is positioned at the last TRB of segment 1 when the ERSTSZ was

written, the xHC will stop using the new segment immediately.

Software may determine when the xHC stopped using the “deleted” segment as

it is evaluating Event TRBs pointed to by the Dequeue Pointer. When software

evaluates the Event TRB after the last TRB of segment 1, it may check the Cycle

bit of the first TRB in segment 2. If the Cycle bit state matches the expected

state then it shall continue processing the Event TRBs in the deleted segment. If

the Cycle bit state of the first TRB in segment 2 does not match the expected

state, then software shall check the state of the first TRB in segment 0. If the

Cycle bit in the first TRB in segment 0 matches the state of the last TRB in

segment 1, then the EREP is pointing at the last TRB of segment ‘1’ and the

Event Ring is empty. If it does not match, then the EREP has advanced to

segment 0 and the next Event TRB to process is the first TRB of segment 0, and

the xHC has stopped using the deleted segment. If the Event Ring is empty,

software shall reevaluate direct ion of the EREP at the segment ‘1’ to segment ‘2’

boundary the next time it receives an interrupt.

4.9.4.3 Primary and Secondary Event Rings

The number of Interrupters available to software is defined by the MaxIntrs field

in the HCSPARAMS1 register. If more than one Interrupter is available then the

0th Interrupter is referred to as the Primary Interrupter and all other

Interrupters are referred to as the Secondary Interrupters. Each Interrupter

defines an associated Event Ring. The Event Ring associated with the 0th

Interrupter is referred to as the Primary Event Ring . The Event Rings associated

with the other Interrupters are referred to as the Secondary Event Rings. The

only Event TRB types that may be found on a Secondary Event Ring are:

• Transfer Event

• Bandwidth Request Event

• Device Notification Event

• Host Controller Event

 181

• Vendor defined event (optional)

Transfer Events generated by a Device Slot may be directed to a Secondary

Event Ring by a non-’0’ value in the Transfer TRB Interrupter Target field. All

Transfer Events with the TRB Interrupter Target field cleared to ‘0’, shall be

directed to the Primary Event Ring by the xHC.

Bandwidth Request and Device Notification Events are targeted at a Device Slot.

The xHC shall use the Device Slot’s Slot Context Interrupter Target field to

determine the Event Ring that shall receive the event.

4.10 Host Controller TRB Handling

4.10.1 Transfer TRBs

A fully configured host controller can support 255 USB Devices, where each

device can declare up to 31 endpoints. 30 of the endpoints may declare up to

64K Streams each. This means that approximately 500M Transfer Rings may

exist for a single xHC. Of course this is a worst case value; however the xHC

architecture shall cope efficiently with reporting the completion status of

hundreds, or possibly thousands, of Transfer Rings. Transfer Ring completions

are queued on Event Rings as Transfer Event TRBs for the host. Refer to section

4.11.3.1 for more information on Transfer Event TRBs.

When the data transfer associated with a Transfer TRB is completed, the xHC

will evaluate the completion status of the transfer and the Transfer TRB flags to

determine whether to generate a Transfer Event TRB for the Transfer TRB.

If upon transfer completion of a TRB the Interrupt On Completion (IOC) flag is

set, the xHC shall generate a Transfer Event TRB . Note the generation of an

Event TRB always generates an interrupt to the host. The Completion Code and

Length fields of the Transfer Event TRB will reflect the completion status of the

Transfer TRB that generated the event.

The detection of a USB Short Packet (i.e. the actual number of bytes received

was less than the expected number of bytes defined by the Transfer TRB) during

a transfer does not necessarily generate an Event. A Short Packet will trigger the

generation of a Transfer Event TRB on the Event Ring if the Interrupt-on-Short

(ISP) or Interrupt On Completion (IOC) flags are set in the TRB that the Short

Packet was detected on. The Completion Code field of the Transfer Event shall

be set to Short Packet. The Length field of the Transfer Event shall be set to the

residual number of bytes not written to the Transfer TRBs’ data buffer. A Short

Packet may occur on an intermediate TRB of a TD. In this case the xHC shall

advance to the first TRB of the next TD after completing the transfer.

Note: The xHC shall execute the first Event Data TRB encountered while advancing to

the end of the Short Packet TD.

182

The detection of an error during a transfer shall always generate a Transfer

Event, irrespective of whether the Interrupt-on-Short or Interrupt On Completion

(IOC) flags are set in the Transfer TRB. The Completion Code of the Transfer

Event shall identify the detected error condition. If a Missed Service Error occurs

on an intermediate TRB of a TD of an Isoch endpoint the xHC shall advance to

the first TRB of the next TD or the Enqueue Pointer (i.e.Cycle bit transition),

whichever is encountered first, when continuing execution on the Transfer Ring.

When an error condition is encountered which requires an endpoint to halt; the

xHC shall stop on the TRB in error, the endpoint shall be halted, and software

shall use a Set TR Dequeue Pointer Command to advance the Transfer Ring to

the next TD.

Note: If the xHC encounters a Cycle bit transition and is unable to advance to a TD

boundary when it encounters an error, it shall advance to the next TD boundary

the next time the doorbell is rung. The only exception is if a Set TR Dequeue

Pointer Command is issued before the doorbell is rung, modifying the Dequeue

Pointer. In this case the xHC shall assume that the modified Dequeue Pointer

references the first TRB of a TD.

A Transfer Event TRB identifies the location of the TRB that “generated the

event” (the Device ID, Endpoint ID, and address of the source TRB). The

Completion Code field of the Transfer Event TRB shall contain the originating

TRBs’ completion status. The location information in the Transfer Event TRB

allows system software to identify the device, endpoint, and TRB that generated

the event. The location information also allows the host to update its copy of

the Dequeue Pointer for the Transfer Ring that generated the event.

If interrupts to the host are enabled, Interrupt Moderation (refer to section 4.17)

is used to gracefully manage bursts of Transfer Events.

A host controller implementation may delay the generation of Events associated

with Transfer TRBs. The following conditions should force Transfer Event

generation to take place immediately:

• The completion of a TRB that has its IOC flag set.

• The completion of a Short Packet on a TRB that has its ISP flag set.

• An error occurs on any Transfer TRB.

• An xHC implementation dependent threshold, designed to prevent the TRB Ring

state from getting too far behind, is reached.

Note: The TRB Pointer field in a Transfer Event TRBs not only references the TRB that

generated the event, but it also provides system software with the latest value of

the xHC Dequeue Pointer for the Transfer Ring. Software may choose to use

Event Data TRBs exclusively to report TD completions (e.g. never setting an IOC

flag in the Transfer TRBs of TDs). However, to keep the software copy of the

Transfer Ring Dequeue Pointer current, software will occasionally have to set the

IOC flag in a Transfer TRB, except if an Event Data TRB is declared. The frequency

 183

with which the IOC flag is set in Transfer TRBs will depend on many system and

software factors, that are outside the scope of this specification.

Note: System software should not generate unnecessary Events. Typically there is no

need to set the IOC flag in more than one Transfer TRB per TD. The only

exceptions would be for 1) very large TDs (e.g. > 16MB transfers) where

Intermediate Event Data TRBs are declared, or 2) if the IOC flag is set to refresh

the software Dequeue Pointer value.

Note: An Event Lost Error shall be generated for the endpoint if the xHC is unable to

generate all the Events defined by a TD. An Event Lost Error shall halt the

endpoint. By following the recommendations in the notes above, this condition

may be avoided. The conditions that generate this error are xHC implementation

specific.

4.10.1.1 Short Transfers

The TD Transfer Size is defined by the sum of the Length fields in all TRBs that

comprise the TD. On an IN endpoint the xHC shall schedule ((TD Transfer Size -

1) / Max Packet Size) + 1 USB packets for each TD.

If the TD Transfer Size is larger than Max Packet Size, all USB packets shall be

Max Packet Size except for the last packet, which shall be sized to contain the

remaining TD data.

A Short Packet condition shall occur if the number of bytes received for a USB

packet associated with a TD is less than the number of bytes expected.

4.10.1.1.1 Short Transfers when using Event Data TRBs

When a Short Packet condition occurs and Event Data TRBs are being used, the

xHC shall perform the following operations:

• If the Interrupt-on Short Packet (ISP) or if the Interrupt On Completion (IOC) flag is set

to ‘1’ in the TRB that the Short Packet condition occurred on, a Transfer Event shall

be generated for that TRB with the Completion Code set to Short Packet.

• Automatically advance the Dequeue Pointer for the Transfer Ring to the beginning

of the next TD.

• When an Event Data TRB is encountered in the process of advancing the

Dequeue Pointer from the Short Packet TRB to the beginning of the next TD, the

xHC shall parse the Event Data TRB, i.e. if the IOC flag is set in the Event Data TRB,

an Event Data Transfer Event shall be generated with the Completion Code set

to Short Packet and the Length field set to the actual number of bytes received

by the TD.

• If subsequent Event Data TRBs are encountered in the process of advancing

the Dequeue Pointer from the first Event Data TRB encountered to the

beginning of the next TD, the xHC shall parse them if the Parse All Event Data

(PAE) flag is set (‘1’), and shall not parse them if the PAE flag is cleared (‘0’).

184

Refer to section 5.3.6 for more information on PAE.

• If a Link TRB is encountered, the xHC shall parse the Link TRB and if its IOC flag

is set (‘1’), then a Transfer Event shall be generated with its Completion Code set

to Success. All Link TRBs encountered in TD shall be parsed.

If a Short Packet condition does not occur while receiving the data for a TD, the

xHC shall parse all TRBs of the TD. i.e. any TRB with its IOC flag shall generate a

Transfer Event.

Note: A USB packet may be comprised of the data from many TRBs, or many USB

packets may be required to transfer a single TRB.

Note: No relationship is assumed between USB packet boundaries and TRB data buffer

boundaries.

When a Short Packet condition occurs and Event Data TRBs are being used, the

xHC shall perform the following operations:

Software shall perform the following operations when using Event Data TRBs to

flag the completion of a TD that may receive a Short Packet, then:

• The ISP and IOC flags shall be cleared (‘0’) in all Transfer TRBs.

• The IOC shall be set (‘1’) in all Event Data TRB(s).

Event Data Transfer TRBs encountered prior to the occurrence of a Short Packet

shall generate an Event Data Transfer Event with its Completion Code = Success

(assuming no errors) and TRB Transfer Length field equal to the number of bytes

transferred since the beginning of the TD or the previous Event Data Transfer

TRB of the TD.

If a Short Packet occurs and the PAE flag is set (‘1’), then all subsequent Event

Data Transfer TRBs encountered while advancing to the end of the TD shall

generate an Event Data Transfer Event with its Completion Code = Short Packet

and should set the TRB Transfer Length field equal to the number of bytes

transferred since the beginning of the TD or the previous Event Data Transfer

TRB of the TD. If a Short Packet occurs and the PAE flag is cleared (‘0’), then

subsequent Event Data Transfer TRBs encountered while advancing to the end

of the TD shall not generate Event Data Transfer Events.

If a Short Packet does not occur, then the last Event Data Transfer TRB shall

generate an Event Data Transfer Event with its Completion Code = Success

(assuming no errors) and TRB Transfer Length field equal to the number of bytes

transferred since the beginning of the TD (i.e. EDTLA) or the previous Event Data

Transfer TRB of the TD. Refer to section 4.11.5.2 for more information on Event

Data TRB usage.

• If a TD on an IN endpoint is terminated with an Event Data TRB, there is no need to

set the ISP flag in every TRB of the TD because the length of the transfer (including

 185

the terminating Short Packet) shall be reported by the TRB Transfer Length field of

the Event Data TRB.

• Software shall not interpret an Short Packet Event Data Transfer Event as indicating

that the TD that it is associated with is “complete”, unless the Event Data Transfer

Event is the last TRB of the TD.

4.10.1.1.2 Short Transfers when not using Event Data TRBs

If software is not using Event Data TRBs, but it wants to flag the completion of a

TD that may receive a Short Packet, then:

• The ISP flag shall be set (‘1’) in all Transfer TRBs of the TD, and

• The IOC flag shall be set (‘1’) in the last Transfer TRB of the TD.

If a Short Packet occurs, then a Transfer Event shall be generated with the

Completion Code = Short Packet, its TRB Pointer field pointing to the Transfer

TRB that the Short Packet occurred on, and its TRB Transfer Length field shall

indicate the residue bytes in the buffer.

If a Short Packet does not occur, then the last TRB of the TD shall generate a

Transfer Event with its Completion Code = Success (assuming there was no

error), its TRB Pointer field pointing to the last Transfer TRB, and the TRB

Transfer Length field shall equal 0.

If the Short Packet occurred while processing a Transfer TRB with only an ISP

flag set, then two events shall be generated for the transfer; one for the Transfer

TRB that the Short Packet occurred on, and a second for the last TRB with the

IOC flag set. In the second event, the Completion Code shall be set to Short

Packet, and the TRB Transfer Length should be set to the same value that was

reported by the initial Short Packet Event.

Software shall not interpret a Short Packet Event as indicating that the TD that it

is associated with is “complete”, unless the TRB Pointer field of the Transfer

Event references the last TRB of the TD.

If Event Data TRBs are not used, then the total number of received bytes for a

Short Packet TD is the sum of the TRB Transfer Length fields in all Transfer TRBs

up to and including the one that generated the Short Packet Event, minus the

residue value of the TRB Transfer Length field in the Short Packet Event.

Note: Typically an IOC flag is only set in the last TRB of a TD, and the event that is

generated by the TRB is referred to as the "TD Completion Event", i.e. the Event

that completes the TD. Also note that due to errors or Short Packet conditions,

the TD Completion Event may not occur on the last TRB of a TD. And for Transfer

Ring management or other reasons, software may set the IOC flag in any TRB of

a TD, including a TD that is configured to handle Short Packets (i.e. with the ISP

flag set in one or more TRBs). Because of this the xHC must handle the generation

186

of multiple Events for a single TD, and those events may occur before and after

the "TD Completion Event".

TD Completion Events are generated by few basic conditions:

• If the IOC flag = ‘1’ and the TD completes successfully, then a Transfer Event

shall be generated with its Completion Code = Success and TRB Transfer

Length identifying the number bytes transferred.

• If a Short Packet occurs and the ISP or IOC flags are set, then a Transfer Event

shall be generated with set its Completion Code = Short Packet and TRB

Transfer Length identifying the number bytes transferred.

• If an error condition is detected while processing any TRB within a TD, an

Event shall be forced for that TRB (irrespective of whether the IOC or ISP

flags are set on the TRB) with the Condition Code indicating the error that

occured and the TRB Transfer Length indicating the number of bytes that

were successfully transferred.

Events generated for a TD by TRBs encountered before the TD Completion Event

shall set their Completion Code to Success. Where Data Transfer Events (ED =

'0') shall set their TRB Transfer Length to 0 (since the TRB Transfer Length field

represents the "residue" of a transfer and all the bytes the buffer referenced by

the TRB were successfully moved), and Event Data Transfer Events (ED = '1') shall

set their TRB Transfer Length to the current value of the EDTLA and then reset

the EDTLA to zero.

After the TD Completion Event, if any subsequent Transfer TRBs are

encountered with their IOC flag set while advancing to the end of the TD then

those TRBs shall also generate an Event, where the Completion Code field shall

return the same value as TD Completion Event and TRB Transfer Length field

should return the same value as TD Completion Event. There are a couple of

exceptions to this rule:

• If the IOC flag is set in an Event Data TRB then an Event Data Transfer Event

shall be generated only if PAE = '1'.

• If the IOC flag is set in a Link TRB then the Transfer Event shall be generated

with Completion Code = Success, and the TRB Transfer Count = 0.

Note: Setting the IOC flag in a TRB always forces an Event for that TRB (whether a Short

Packet condition occurs or not), therefore also setting the ISP flag in the same

TRB is redundant (but allowed).

4.10.2 Errors

The detection of an error during a USB transfer shall always generate a Transfer

Event, irrespective of whether the Interrupt-on-Short Packet (ISP) or Interrupt

On Completion (IOC) flags are set in the Transfer TRB. The Completion Code of

the Transfer Event shall identify the detected error condition. An error may

occur on any TRB of a TD.

 187

All Transfer Ring error conditions force the state of the associated endpoint to

Halted and require system software intervention to recover.

Refer to section 4.11.2.2 for more information on Control Endpoint error

handling.

An isoch endpoint never halts because there is no handshake to report a halt

condition. Errors are reported as a completion code associated with a TRB for an

isochronous transfer, but an isoch pipe is not halted in an error case. If an error

is detected, the xHC shall continue to process the data associated with the next

ESIT of the transfer. Only limited error detection is possible because the

protocol for isochronous transactions do not provide per-transaction

handshakes. Refer to section 5.6.5 of the USB2 spec. There is no equivalent text

in the USB3 spec, however SuperSpeed isoch endpoints are treated the same

way.

4.10.2.1 Stall Error

A STALL PID (USB2) or STALL LMP (USB3) may be returned by a USB function in

response to an IN token or after the data phase of an OUT or in response to a

PING transaction. The STALL PID indicates that a function is unable to transmit

or receive data, or that a control pipe request is not supported. The state of a

USB device after returning a STALL for any endpoint (except the Default Control

Endpoint) is undefined. The host controller shall not return a STALL under any

condition.

When a STALL PID is received from a USB device by the xHC, it shall stop further

activity on the associated Transfer Ring by removing it from its Pipe Schedule,

set the associated Endpoint State (EP State) field to Halted, and generate a

Transfer Event TRB with a Stall Error.

Note: If a device responds to a SETUP packet with a STALL28 the endpoint shall

generate a Stall Error for the Setup TRB and shall be halted.

A two step process is required to recover a halted endpoint:

1. System software shall use a Reset Endpoint Command (section 4.11.4.7)

to remove the Halted condition in the xHC. After the successful

completion of the Reset Endpoint Command, the Endpoint Context is

transitioned from the Halted to the Stopped state and the Transfer Ring

of the endpoint is reenabled. The next write to the Doorbell of the

28Typically control endpoints only return STALL TPs due to a Protocol Stall condition (as described in the USB3
spec section 8.12.2.3), however section 8.1 of the USB3 spec states “For non-isochronous transfers, an endpoint
may respond to valid transactions by:... Returning a STALL Transaction Packet if there is an internal endpoint

error”. This condition describes a “Functional Stall” case, which applies to a SuperSpeed Control Endpoint if an
internal endpoint error is detected by the device, hence any TP or DP issued to a Control Endpoint may return a
STALL TP, including a Setup DP.

188

Endpoint will transition the Endpoint Context from the Stopped to the

Running state.

Note: The Reset Endpoint Command for the endpoint shall complete successfully and

the halt condition on the USB device shall be successfully cleared before

attempting to restart the Transfer Ring by ringing its doorbell.

2. Software intervention is required to recover the pipe within the USB

device.

4.10.2.1.1 Non-Control Endpoints

Removal of the halt condition on an interrupt or bulk pipe in a USB device is

achieved via software intervention through a separate control pipe.

Note: The software intervention required to remove the halt condition on the USB

device shall be invoked after the pipe has been transitioned to the Stopped state

by a successful Reset Endpoint Command, but before writing to the Doorbell

register of the Endpoint to restart activity on the pipe.

Note: Since an Isoch endpoint does not generate a transaction handshake, they cannot

generate a Stall Error.

4.10.2.1.2 Control Endpoints

Removal of the halt condition on the Control endpoint of a USB device is

achieved by the device accepting the next SETUP PID.

For Control endpoints, a reset of the USB device shall be required to clear the

halt or error condition if the device does not accept the next Setup PID.

Refer to section 4.11.2.2 for additional Control Endpoint error handling.

4.10.2.2 TRB Error

A TRB Error indicates the TRB field values are out of range or that the xHC has

determined that a TRB is incorrectly formed.

This error condition may be reported in a Transfer Event or a Command

Completion Event due to an error detected on a Transfer or Command TRB,

respectively. This error will not be reported in any other Event TRB types.

Note: A Transfer Ring TRB Error should transition an endpoint to the Error state (refer

to section 4.8.3), however an xHC implementation may assert HCE29 due to the

29A TRB Error is generated due to a malformed TRB or a SET_ADDRESS Setup Stage TRB, hence their generation is

solely due to a xHCI driver error. So as not to burden xHCI implementations with complex error handing logic
that only applies to the driver debug process, an xHC is allowed to assert HCE when TRB Error conditions are
detected.

 189

detection of TRB Error related error conditions. It is the responsibility of software

to always present correctly formed TRBs to the xHC.

4.10.2.3 USB Transaction Error

A transaction error is any error that causes the host controller to not complete a

transfer successfully. Table 4-4 lists the events/responses that the xHC can

observe as a result of a transaction. The effects of the Bus Error Counter and

interrupt status are summarized in the following paragraphs. Most of these

errors set the USB Transaction Error Completion Code in the appropriate

Transfer Event TRB.

There is a small set of protocol errors that relate only when executing a Setup

Stage TRB and fit under the umbrella of a Bad PID error that are significant to

explicitly identify. When these errors occur, the Bus Error Counter (4.10.2.7) is

decremented. When the USB PID Code30 indicates a SETUP, the following

responses are protocol errors and shall result in a USB Transaction Error if not

resolved after CErr retries.

• A high-speed device and returns a NAK handshake to a SETUP.

• A high-speed device and returns a NYET handshake to a SETUP.

• A low- or full-speed device complete-split receives a NAK handshake.

• A SuperSpeed device responds to a SETUP DP with an NRDY TP.

Table 4-4: Summary of USB Transaction Errors

Event / Result Error Tries TRB Error Status

USB2 CRC or USB3 DPP Error31 CErr USB Transaction32

Timeout
CErr (USB2),
N/A (USB3)33

USB Transaction32

30Refer to Table 8-1 in the USB2 spec for a list of the PID Codes (Types).

31Refer to section 0 for the definition of a DPP Error. Note that the xHCI definition is slightly different than the

definition of DPP Error in the USB3 spec because it includes the case where an ACK TP is received for a DPP with
the Retry Data Packet (rty) bit set,

32If error occurs on a USB transaction, then a USB Transaction Error (XactErr) is asserted immediately on an Isoch

pipe or after CErr unsuccessful attempts on all other pipe types. In addition non-Isoch Transfer Ring shall be
halted, refer to section 4.10.2.1.

33Section 8.13 of the USB3 spec states that if a tHostTransactionTimeout occurs, for control, bulk, and Interrupt

transactions the host shall assume that the transaction has failed and halt the endpoint. For Isoch transactions
the host shall not perform any more transactions to the endpoint in the current Service Interval. And the host
shall not halt the endpoint and shall restart transactions to the endpoint in the next Service Interval. No retries

are performed for any transaction type if a tHostTransactionTimeout occurs.

190

USB2 Bad PID34 CErr USB Transaction32

Babble N/A Babble Detected Error

Buffer Error N/A Data Buffer Error

This error condition shall only be reported in a Transfer Event due to an error

detected on a Transfer TRB. This error shall not be reported in any other Event

TRB types.

Note: No retries shall be performed if the xHC does not see a response to a Data

Transaction (either IN or OUT) within tHostTransactionTimeout on a

SuperSpeed or SuperSpeedPlus pipe. The endpoint shall transition to Halted

state when this condition is detected.

Note: The USB3 spec defines a range of possible tHostTransactionTimeout values. The

specific value applied by an xHC implementation may be hardcoded by an xHC

vendor or programmable through a vendor defined mechanism, e.g. a Vendor

Defined xHCI Extended Capability.

4.10.2.4 Babble Detected Error

When a device transmits more data on the USB than the host controller is

expecting for a transaction, it is defined to be babbling. In general, this is called

a Babble Error35. When a device sends more data than the TD Transfer Size

bytes (TD Babble), unexpected activity that persists beyond a specified point in

a (micro)frame (Frame Babble), or a packet greater than Max Packet Size (Packet

Babble), the host controller shall set the Babble Detected Error in the

Completion Code field of the TRB, generate an Error Event, and halt the

endpoint (refer to Section 4.10.2.1). The Bus Error Counter is not decremented

for a Babble Error condition.

This error condition shall only be reported in a Transfer Event due to an error

detected on a Transfer TRB. This error shall not be reported in any other Event

TRB types.

34The xHC received a response from the device, but it could not recognize the PID as a valid PID. Not applicable to
USB3.

35The USB3 spec describes a (Packet) babble condition as receiving “sDataSymbolsBabble symbols without
receiving a valid DPPEND ordered set or DPPABORT”.The USB2 spec describes a (Frame) babble condition as
“unexpected bus activity that persists beyond a specified point in a (micro)frame. Refer to section 8.7.4 in the

USB2 spec for more details.The EHCI spec describes two (TD and Packet) babble conditions as “the device sends
more than Transaction X Length or Maximum Packet Size bytes (whichever is less)”. Where Transaction X Length
is equivalent to TD Transfer Size, i.e. a TD Babble condition. The EHCI spec also states that a babble error “is

considered a fatal error for the transfer”.

 191

Note: When Babble Detected Error is generated, software shall assume that any excess

received data has been lost and not attempt a Soft Retry.

Note: If a Babble Error is detected and the received data passes all integrity checks, the

host controller may write the received data (up to the expected data length) to

the data buffer, and the value of the TRB Transfer Length field in the Babble

Detected Error Transfer Event shall be consistent with the number of data bytes

written to the buffer.

4.10.2.4.1 USB2 Protocol

A babble condition also exists if IN transaction is in progress at High -speed

EOF2 point. This is called a Frame Babble. If a Frame Babble condition is

detected while a TRB is being processed the xHC shall set the Babble Detected

Error in the Completion Code field of the TRB, generate an Error Event, and halt

the endpoint. In addition, the xHC shall disable the Root Hub port to which the

Frame Babble is detected. The xHC shall never start an OUT transaction that will

babble across a microframe EOF.

Note: Frame Babble is also a Port_Error condition which shall transition a port in the

Enabled state to the Disabled state, assert the PEC flag (‘1’), and generate a Port

Status Change Event. Refer to section 4.19.1.1.6.

 IMPLEMENTATION NOTE

PID Mismatch and Babble Checking

When a host controller detects a data PID mismatch, it shall either: disable the Packet

Babble checking for the duration of the bus transaction, or do Packet Babble checking

based solely on Maximum Packet Size. The USB core specification defines the

requirements on a data receiver when it receives a data PID mismatch (e.g. expects a

DATA0 and gets a DATA1 or visa-versa). In summary, the xHC shall ignore the received

data and respond with an ACK handshake, in order to advance the transmitter's data

sequence.

The xHCI allows System software to provide buffers for a Control, Bulk or Interrupt IN

endpoint that are not an even multiple of the maximum packet size specified by the

device. Whenever a device misses an ACK for an IN endpoint, the host and device are out

of synchronization with respect to the progress of the data transfer. The xHC may have

advanced the transfer to a buffer that is less than maximum packet size. The device will

re-send its maximum packet size data packet, with the original data PID, in response to

the next IN token. In order to properly manage the bus protocol, the host controller shall

disable the Packet Babble check when it observes the data PID mismatch.

4.10.2.4.2 USB3 Protocol

A babble condition also exists if on an IN transaction the DPP exceeds the Max

Packet Size. If a babble condition is detected the xHC shall set the Babble

192

Detected Error in the Completion Code field of the TRB, generate an Error Event,

and halt the endpoint.

4.10.2.5 Data Buffer Error

This event indicates that an overrun of incoming data or an underrun of

outgoing data has occurred for this Transfer TRB. This would generally be

caused by the host controller not being able to access required data buffers in

memory within necessary latency requirements. These conditions are not

considered transaction errors, and do not effect the Bus Error Count. When

these errors do occur, a Transfer Event TRB will be generated (pointing to the

TRB that the error was detected on) with the Completion Status set to Data

Buffer Error.

If the Data Buffer Error occurs on a non-isochronous IN, the host controller shall

not issue a handshake to the endpoint. This will force the endpoint to resend

the same data (and data toggle) in response to the next IN to the endpoint.

If the Data Buffer Error occurs on an OUT, the host controller shall corrupt the

end of the packet so that it cannot be interpreted by the device as a good data

packet. Simply truncating the packet is not considered acceptable. An

acceptable implementation option is to 1's complement the CRC bytes and send

them. There are other options suggested in the Transaction Translator section

of the USB2 spec.

This error condition shall only be reported in a Transfer Event due to an error

detected on a Transfer TRB. This error will not be reported in any other Event

TRB types.

Note: A Data Buffer Error may be generated for a USB2 or USB3 transfer.

4.10.2.6 Host System Errors

Interrupts are used by xHCI to report Events generated by the controller. The

reporting requires that the xHC hardware that manages the Event Ring, and the

host system hardware that the xHCI is communicating over, is operating

properly.

If a catastrophic system error occurs, it may prevent the xHC from properly

completing a TRB in the Event Ring. This means that software could receive an

interrupt with an inconsistent Event Ring. If in the process of normal Event TRB

processing software suspects a problem, it may examine the Host System Error

(HSE) bit in the USBSTS register to determine whether the problem was due to a

host controller related catastrophic fault condition.

If a catastrophic error occurs during a host system access involving the Host

Controller module the Host System Error (HSE) bit in the USBSTS register shall

be set to ‘1’. (In a PCI system, conditions that set this bit to ‘1’ include PCI Parity

error, PCI Master Abort, and PCI Target Abort.) When this error occurs, the Host

 193

Controller shall clear the Run/Stop (R/S) bit in the USBCMD register to prevent

further execution of the scheduled TDs.

The following conditions shall indicate an Event TRB problem:

• System software receives an xHC interrupt and a Valid Transfer Event TRB does not

point to a Valid source TRB.

• System software receives an xHC interrupt and a Valid Transfer Event TRB does not

identify an enabled Device Slot.

• System software receives an xHC interrupt and a Valid Transfer Event TRB does not

identify to an enabled endpoint.

• Out of range, incomplete, or inconsistent Event TRB field values.

It is recommended that system software check for these conditions.

Note: A Host System Error (HSE = ‘1’) may be generated due to transfer integrity errors

on the system bus. Some modern system bus interrupt mechanisms (e.g MSI,

MSI-X) utilize specialized writes to the host address space to generate interrupts.

These writes require that the address and data paths of the system bus to be

functioning properly. A catastrophic error condition may prevent these writes

from completing successfully. It is recommended that an xHC implementation

uses and “Out-of-Band” mechanism for reporting Host System Errors. This may

be a hardwired interrupt, bus or system error signal provided by the system bus.

Host System Error (HSE) may optionally be used to report other internal xHC

errors that might jeopardize system level operation or data integrity. It should

be assumed, however, that the assertion of HSE should generate a critical

system interrupt (e.g., NMI or Machine Check) and is, therefore, fatal.

Consequently, care should be taken in using HSE to report non-parity or system

errors. Both the xHC and software shall assume that system integrity has been

compromised when HSE is asserted.

Note: Host Controller Error (HCE) should be used to report internal xHC error

conditions which may be recovered from by software resetting and

reinitialization of the xHC. Refer to section 4.24.1.

 IMPLEMENTATION NOTE

Out-of-Band Error Reporting

The PCI PERR# (Parity ERRor) and SERR# (System ERRor) error reporting pins are

required for all PCI implementations. xHC implementations shall assert the PERR# pin if

a parity error is detected during a PCI transaction (other than Special Cycle). The xHC

shall assert the SERR# pin if an address parity error, data parity error on the Special

Cycle command, the Host System Error (HSE) bit in the USBSTS register is set to ‘1’, or

any other system error is detected by the xHC where the result will be fatal. Assertion of

the PERR# or SERR# pins shall set the HSE bit in the USBSTS register to ‘1’.

194

If an MSI or MSI-X write transaction is terminated with a Master-Abort or a Target-

Abort, the xHC shall report the error by asserting SERR# (if bit 8 in the PCI

Configuration Space Command register is set) and to set the appropriate bits in the PCI

Configuration Space Status register (refer to Section 3.7.4.2 of the PCI specification). An

MSI or MSI-X memory write transaction is ignored by the target if it is terminated with a

Master-Abort or Target-Abort. Refer to section 5.2.1 for more information on the PCI

Configuration Space registers.

If SERR# is not enabled, software should implement an algorithm for checking the HSE

flag if the xHC is not responding.

Non-PCI xHC implementations shall provide an equivalent out-of-band notification

mechanism for xHC notification of catastrophic errors.

4.10.2.7 Bus Error Counter

The Bus Error Counter is an internal 2-bit down counter that the xHC maintains.

This counter determines the number of consecutive Errors allowed while

executing a USB Transaction.

Section 4.10.2.3 describes how when CErr bus errors are encountered on any

packet of a TD, the TD is aborted, the endpoint is Halted and an Error Event will

be generated. The xHC is expected to maintain an internal Bus Error Counter for

each endpoint, which allows retries and differentiating “soft-errors” from “hard-

errors”.

The xHC initializes this internal Bus Error Counter to the value defined by the

Endpoint Context Error Count (CErr) field on the first transmission of a packet

and decrements it when an error is detected, if the Bus Error Counter reaches 0,

then a hard-error is generated. If a packet transmission successfully completes

prior to the Bus Error Counter reaching 0, it is considered successful and no

error will be generated.

Table 4-5: CErr Management

Error Decrement
Counter Comment

Transaction

Error

Yes Refer to section 4.10.2.3.

Stalled No Detection of Babble or Stall automatically halts the ring. Thus, count is

not decremented.

 195

No Error No If a bus transaction completes and the host controller does not detect a

transaction error, then the host controller should reset the Bus Error
Counter to extend the total number of errors for this TD. For example,
Bus Error Counter should be reset with value of CErr on each successful

completion of a USB transaction. The xHC shall not reset the Bus Error
Counter if the value at the start of the transaction is 00b.

Data Buffer
Error

No Data buffer errors are host problems. They don't count against the
device's retries.

Babble
Detected

No Detection of Babble or Stall automatically halts the ring. Thus, count is
not decremented.

Note: Software shall not program CErr to a value of ‘0’ when the Slot Context Speed

field indicates a Full- or Low-speed device. This combination could result in

undefined behavior.

4.10.2.8 Isoch Endpoint Error Handling

CErr does not apply to Isoch Data Transactions because retries are not

performed on Isoch endpoints. Also an Isoch endpoint shall not halt due to a

Data Transaction error, but instead shall advance to the next Isoch TD and

attempt to execute it during the next ESIT. An Isoch Data Transaction error s hall

force the generation of a Transfer Event, irrespective of whether the Interrupt-

on-Short Packet (ISP) or Interrupt On Completion (IOC) flags are set in the

Transfer TRB, where the Transfer Event’s :

• TRB Pointer field shall point to the Transfer TRB that the error was detected on, and

• TRB Transfer Length field shall indicate the residue of the number of bytes not

successfully transferred.

If a Timeout, USB2 CRC Error, USB3 DPP Error, or a USB2 Bad PID was detected

on an Isoch IN Data Transaction, the Completion Code of the Transfer Event shall

be set to USB Transaction Error.

If a Babble condition was detected on an Isoch IN Data Transaction, the

Completion Code of the Transfer Event shall be set to Babble Error.

While advancing to the next Isoch TD:

• If an Event Data TRB is encountered, the xHC shall parse it, i.e. if the its IOC flag is set,

an Event Data Transfer Event shall be generated with its Completion Code set to the

same error value reported by the Transfer Event and TRB Transfer Length field set to

the number of bytes successfully transferred. The first Event Data TRB encountered

shall be parsed.

196

• If subsequent Event Data TRBs are encountered in the process of advancing to

the next Isoch TD, the xHC shall parse them if the Parse All Event Data (PAE) flag

is set ('1'), and shall not parse them if the PAE flag is cleared ('0'). Refer to section

5.3.6 for more information on PAE.

• If a Link Data TRB is encountered, the xHC shall parse the Link TRB, i.e. if its IOC flag

is set, a Transfer Event shall be generated with its Completion Code set to Success.

All Link TRBs encountered shall be parsed.

Note: Isoch TD shall follow the TD Fragment rules which define when an IOC flag may

be set within a TD.

Note: If a tHostTransactionTimeout occurs a SuperSpeed or SuperSpeed Plus Isoch IN

endpoint shall not perform any more transactions to the endpoint in the current

Service Interval. And the host shall not halt the endpoint and shall restart

transactions to the endpoint in the next Service Interval (refer to Table 8-33 in

the USB3 spec). Note that the tHostTransactionTimeout is an xHC

implementation specific delay.

4.10.3 Events

Refer to section 4.17.4 for information on Event to Interrupter mapping.

4.10.3.1 Ring Overrun and Underrun

If an Isoch endpoint is Running, the xHC periodically schedules the endpoint as a

function of the ESIT. Each ESIT the xHC shall execute one Isoch TD on the

endpoint's Transfer Ring. If the Isoch ring is empty when the xHC is ready to

perform the transfer, it shall generate a Transfer Event on the Event Ring

indicated by the Slot Context Interrupter Target field. An IN Isoch endpoint shall

set the Completion Code to Ring Overrun and an OUT Isoch endpoint shall set

the Completion Code to Ring Underrun.

When a Ring Overrun or Ring Underrun condition occurs, the TRB referenced by

the Dequeue Pointer is not valid. Ring Underrun and Ring Overrun Transfer

Events shall clear the TRB Transfer Length field to ‘0’, and set the TRB Pointer

field to the address of the invalid TRB (i.e. the value of the Dequeue Pointer

where the Overrun or Ring Underrun condition was detected). Refer to section

4.11.3.1 for a detailed description of the Transfer Event TRB . The functionality

described in this paragraph shall be mandatory for all xHCI 1.1 compliant xHCs.

Note: Pre-1.1 xHC implementations clear the TRB Pointer field of a Ring Underrun or

Ring Overrun Transfer Event TRB to ‘0’.

After a Ring Overrun or Ring Underrun condition is reported the endpoint shall

remain in the Running state, and be removed from the Pipe Schedule. The

endpoint shall be placed back on the Pipe Schedule the next time system

software rings the doorbell for the endpoint.

 197

A Ring Overrun or Ring Underrun condition may occur unintentionally if

software posts Isoch TDs late, i.e. software does not meet the Isochronous

Scheduling Threshold (IST) requirement. In this case the xHC detects an empty

Transfer Ring for the ESIT, generates a Ring Overrun or Ring Underrun Event,

and removes the endpoint from the Pipe Schedule. However software, not

knowing that it is late, rings the endpoint’s doorbell, posting an Isoch TD for the

ESIT that just incurred the Over/Underrun condition. The doorbell ring causes

the xHC to put the endpoint back on the Pipe Schedule, and in preparation for

the next ESIT, the xHC may fetch a TD that software had intended for a previous

ESIT. If the SIA flag is set, then the TD (and all subsequent TDs) will be

transferred one ESIT late. If the SIA flag is cleared, then the xHC will inspect the

TD’s Frame ID, recognize that the TD is not within the current Valid Frame

Window36, and generate a Missed Service Error, because the xHC is unable to

service the TD within the specified ESIT. After the Missed Service Error the xHC

will attempt to “resynchronize” the Isoch pipe. If resynchronization is successful,

then subsequent Isoch TDs will be transferred in their correct ESITs. Refer to

section 4.10.3.2 for more information on Missed Service Error handling. Refer to

section 4.11.2.5.2 for more information on Resynchronization.

Software typically posts multiple Isoch TDs with each doorbell ring. If software

is very late (e.g. multiple ESITs) when it rings the doorbell after an

Overrun/Underrun condition, then multiple Isoch TDs may not be within the

current Valid Frame Window. In this case, a Missed Service Error shall be

generated for each TD skipped in the process of resynchronizing. Refer to

section 4.11.2.5 for the definition of Valid Frame Window.

Note: For Isoch TDs with SIA = '0' that are not scheduled in advance of the Isochronous

Scheduling Threshold (IST):

• If an Isoch endpoint is Running and Busy, then TDs that are not scheduled in

advance of the IST shall result in an Ring Overrun or Ring Underrun condition,

because the Transfer Ring appears empty when the xHC goes to fetch the

next TD (refer to section 4.14.2.1.4 for more information on IST).

• If an Isoch endpoint is Running and Idle, then TDs that are not scheduled in

advance of the IST shall result in a Missed Service Error, because the doorbell

is rung too late for the xHC to schedule the TD for the ESIT targeted by the

Frame ID (refer to section 4.10.3.2 for more information).

Refer to section 4.11.2.5.1 for scheduling ESITs less than 1 ms., i.e. Microframe

Alignment.

Note: A late doorbell ring may result in the generation of two Events; a Ring Overrun or

Ring Underrun condition, being followed immediately by a Missed Service Error.

36If the ESIT is less 1 ms., then subsequent TDs within the same frame report the same Frame ID value and pass the
"current Valid Frame Window" test, but they may still be late. Refer to section 4.11.2.5.1 for how software may
ensure that an Isoch TD is transferred within the correct ESIT of a Frame.

198

The xHC generates a Ring Overrun or Ring Underrun condition because an Isoch

Transfer Ring is empty when it tries to move the data for a scheduled Interval.

The Ring Overrun or Ring Underrun condition also causes the endpoint to

transition to the Runnung Idle state, i.e. requiring a doorbell ring to restart it.

When the (late) doorbell ring does occur, assuming it posted data buffers for the

Interval that generated the Ring Overrun or Ring Underrun condition, the xHC will

fetch buffer targeted at an Interval that has already passed and generate a Missed

Service Error because it cannot deliver the data associated with an Isoch TD.

4.10.3.2 Missed Service Error

This error only applies to Isochronous endpoints. A Missed Service Error

Completion Code indicates that the xHC was unable to complete the data

transfer associated with an Isoch TRB within the ESIT. The cause of the error

may be due to an Event Ring full condition, excessive DMA latency when

accessing periodic data causing an internal xHC buffer overrun or underrun, etc.

The data associated with the TD in error shall be lost, however for the next ESIT

the xHC shall advance to the next Isoch TD and attempt to execute it.

A Missed Service Error shall utilize the Transfer Event TRB format. The TRB

Pointer field of Missed Service Error Transfer Event shall reference the TRB that

was missed and its TRB Transfer Length the residue data bytes in the buffer.

Since a Missed Service Error forces a Transfer Event, the Event’s TRB Pointer

field may not reference a TRB that has its IOC flag set (‘1’) within the skipped

Isoch TD.

If the conditions that cause a Missed Service Error persist, multiple consecutive

Isoch transfers may not be completed. In this case, a Missed Service Error

Transfer Event shall be generated for every ESIT missed. The only exception to

this rule is if an Event Ring full condition prevents the posting of Missed Service

Error Transfer Events. When the Event Ring full condition clears, the xHC shall

post a Missed Service Error Transfer Event for the last Isoch TD (of each Transfer

Ring) not completed.

Note: xHC implementations that do not support the Contiguous Frame ID Capability

(CFC) may not generate a Missed Service Error Transfer Event for every ESIT

missed.

A Missed Service Error shall not be reported if an Isoch transfer was not

completed due to another error condition, e.g. USB Transaction Error, etc.

Refer to section 4.10.3.1 for more information on the relationship of Missed

Service Errors to Ring Overrun and Ring Underrun conditions.

4.10.3.3 Split Transaction Error

This error only applies to USB2 protocol endpoints for reporting an error on a

split transaction, e.g. that the xHC was unable to schedule a required complete -

 199

split transaction of a HS Split Interrupt IN transaction. If a Split Transaction Error

is detected, there is the possibility of data loss and the endpoint shall be halted.

Note: Software shall not attempt a Soft Retry to recover from a Split Transaction Error.

4.10.3.4 Short Packet

A Short Packet Completion Code shall be reported if number of bytes received

was less than the TD Transfer Size and the Interrupt-on Short Packet (ISP) or

Interrupt on Completion (IOC) flag was set to ‘1’ in the associated Transfer TRB .

Refer to section 6.4.5 Table 6-85 for the definition of the Short Packet

completion code. Refer to section 4.10.1.1 for more information in Short Packet

handling.

Note: If a Short Packet ends between two TRBs, either TRB may report a Short Packet

Completion Code.

4.10.4 IOC Flag

The general rule for how the xHC should handle the IOC flag is simple: if the IOC

flag is set, then generate an event. There are some exceptions to this rule

described in the spec, e.g. if the Event Ring is full, but normally this rule should

always be applied.

If software wants to know when the xHC has completed processing all the TRBs

associated with a TD, it must set the IOC flag in the last TRB of TD. The event

that the IOC in the last TRB generates informs software that last TRB of the TD is

complete, which means that the TD is complete, and that the space on the

Transfer Ring that the TD consumed may be reclaimed.

The ISP flag generates an event only if less data was received, than was

specified by a TRB. The TRB Transfer Length field of the Transfer Event that a

Short Packet condition generates informs software of the exact number of bytes

transferred when the condition was detected. Software may also set the BEI flag

if it is not interested in generating an interrupt due to a Short Packet Event.

And if the ISP flag is set and IOC flag is not set in the last TRB of TD that may

received a Short Packet, an event shall not be generated if a Short Packet

condition does not occur on that TRB, i.e. if the buffer defined by the TRB is

completely filled.

In some cases, the xHC response to an error condition may look very similar to a

Short Packet condition, because after the xHC generates an event for either

condition, the xHC may automatically advance to the next TD. An example of this

behavior is when a USB Transaction Error is detected during an Isoch IN transfer,

where the Isoch pipe does not stall, but advances to the next Isoch TD in

preparation for the next Interval. The error will generate an event, however if the

event does not point to last TRB of the Isoch TD and the IOC flag is not set in

200

last TRB of the TD with the error, software will have to wait until the next IOC

flag is encountered by the endpoint before it can reclaim the Isoch TD that had

the error. This may take many milliseconds depending on the size of the Interval

and where software set the IOC flags.

In summary, software can not only use the IOC flag to report specific TD

completions, but it can also be used to provide timely updates of the Dequeue

Pointer position so that TRBs can be reclaimed, to reduce error recovery times,

or to allow Transfer Rings to grow or shrink as function of system loading or

resource changes.

Note: An exception is if the PAE flag is cleared (‘0’). In this case when a Short Packet

occurs, the IOC flag in the first Event Data TRB encountered generates an Event

Data Transfer Event and the IOC flag is ignored in subsequent Event Data TRBs

that are encountered in the process of advancing the Dequeue Pointer to the

beginning of the next TD. Refer to section 5.3.6 for more information on PAE.

4.11 TRBs

This section discusses the properties and uses of TRBs that are outside of the

scope of the general data structure descriptions that are provided in section 6.4.

4.11.1 TRB Template

TRBs adhere to the generalized template illustrated in Figure 4-13.

Figure 4-13: TRB Template

Control ENT C

Status

Parameter

31 16 15 10 9 1 0

03-00H

07-04H

0B-08H

0F-0CHTRB Type

2

A TRB consist of 3 basic components: Parameter, Status, and Control. The

following sub-sections identify the properties of each component.

4.11.1.1 Command and Transfer TRB Components

Command and Transfer TRB Components adhere to the following general rules,

where the producer is system software and the consumer is the xHC.

All components of all Command and Transfer TRBs shall be initialized to ‘0’ by

the system software when the Command Ring or a Transfer Ring is created.

All components of all Command and Transfer TRBs shall be treated as read-only

by the xHC.

 201

The format/contents of all Command or Transfer TRB components shall be

defined by the Control component TRB Type field. TRB Type field shall always

reside in bits 10-15 of the Control component.

The Enqueue Pointer of a ring is defined by the transition of the Control

component Cycle (C) bit in the TRB Ring. Refer to section 4.9 for a detailed

explanation of Cycle bit operation. Cycle bit shall always reside in bit 0 of the

Control component.

If the xHC does not pre-fetch TRBs the Evaluate Next TRB (ENT) flag forces the

xHC to evaluate the next TRB of a TD before advancing to the next endpoint in

the Pipe Schedule. The ENT flag does not span TDs, therefore the ENT flag is

valid only if the Chain bit (CH) is ‘1’. Refer to section 4.12.3 for more information

on the ENT flag.

Note: if all 4 Dwords of a TRB are not written as an atomic memory operation, then it is

required that the Parameter and Status components of a TRB shall be initialized

prior to writing the Control Component. Violating this rule shall cause undefined

xHC behavior.

How a Transfer Ring is managed is described in section 4.11.2. How a Command

Ring is managed is described in section 4.11.4.

 IMPLEMENTATION NOTE

xHC Bus Mastering

The xHCI specification is designed around the assumption that hardware will issue a

single, atomic system bus transaction when reading and writing TRBs and other data

structures. For example, at least a 16 byte read transaction would be issued as an atomic

operation to fetch a TRB from memory. Larger read or write transactions may be used to

minimize the system bus overhead associated with moving data structures to or from

memory, e.g. an xHC implementation could fetch 4 TRBs with a single 64B atomic

operation, or use the system bus’s maximum transaction size. Failure to read or write

TRBs as atomic operations may result in undefined behavior.

4.11.1.2 Event TRB Components

Event TRB Components adhere to the following general rules, where the

consumer is system software and the producer is the xHC.

All components of all Event TRBs shall be initialized to ‘0’ by the system

software when the Event Ring is created.

After Event Ring initialization, all components of Event TRBs shall be treated as

read-only by system software.

202

The format/contents of all Event TRB components shall be defined by the

Control component TRB Type field. TRB Type field shall always reside in bits 10-

15 of the Control component.

The Enqueue Pointer of a ring is defined by the transition of the Control

component Cycle (C) bit in the Event TRB Ring. Refer to section 4.9 for a detailed

explanation of Cycle bit operation.

How an Event Ring is managed is described in section 4.11.3.

4.11.2 Transfer TRBs

Transfer TRBs shall be found on a Transfer Ring. A Work Item on a Transfer Ring

is called a Transfer Descriptor (TD) and is comprised of one or more Transfer

TRB data structures. This section describes the transfer related TRBs.

System software is the producer of all Transfer TRBs and the xHC is the

consumer.

Upon completion of a Transfer TRB one of 4 conditions shall cause an

associated Transfer Event to be generated on the Event Ring:

1. The Interrupt On Completion (IOC) flag is set.

2. A Short Packet has been received and the Interrupt-on Short Packet (ISP)

flag is set.

3. An error occurred while executing a Transfer TRB.

In each case, the Completion code will indicate either Success or the cause of

the Transfer Event generation.

The IOC flag will typically only be set (‘1’) in the last TRB of Transaction

Descriptor (TD) to minimize Event TRB generation and system interrupts.

Each Endpoint Context defines one Transfer Ring if the MaxPStreams field = '0'

or multiple Transfer Rings if the MaxPStreams field > '0'.

Table 6-86 defines the TRB Types found on a Transfer Ring. Table 6-87 defines

the allowable Transfer Ring TRB Types as function of endpoint type.

Note: Software shall only utilize Transfer Events to determine TRB completions.

Software shall not infer TRB completions based on Frame ID, MFINDEX, or other

information.

Refer to section 4.11.7 for more information on TRB requirements.

 203

4.11.2.1 Normal TRB

A Normal TRB is used in several ways; exclusively on Bulk and Interrupt Transfer

Rings for normal and Scatter/Gather operations, to define additional data

buffers for Scatter/Gather operations in Isoch and for Data stage TDs.

The direction of a data transfer associated with a Normal TRB depends on the

direction defined by the Endpoint Context that it is associated with, or the

preceding Data Stage TRB in the TRB Ring associated with a Control endpoint.

The Chain bit (CH field in Figure 6-8) may be set to ‘1’ in Normal, Data Stage,

Status Stage, and Isoch TRBs to form multi-TRB Transfer Descriptors. Chaining

allows scatter/gather operations. Chaining can be used by system software to

concatenate Pages of virtual memory, or to concatenate byte aligned data.

Refer to section 6.4.1.1 for the definition of a Normal TRB.

4.11.2.2 Setup Stage, Data Stage, and Status Stage TRBs

All USB devices respond to requests from the host on the device’s De fault

Control Pipe. These requests are made using Control Transfers. At the USB

packet level, a Control Transfer consists of multiple transactions partitioned into

stages: a setup stage, an optional data stage, and a terminating status stage.

The xHCI defines the Setup Stage TRB, Data Stage TRB, and Status Stage TRB to

provide a 1:1 mapping to the respective USB Control transfer stages. Refer to

section 3.2.9 for an overview of xHCI Control transfer support.

Refer to sections 6.4.1.2.1, 6.4.1.2.2, and 6.4.1.2.3 for detailed definitions of a

Setup Stage TRB , Data Stage TRB, and Status Stage TRB, respectively. Also see

section 8.5.3 in the USB2 spec. or section 8.12.2 in the USB3 spec. for a

description of “Control Transfers”.

Table 9-2 of the USB2 or USB3 specification defines the format of the USB

SETUP Data. The host is responsible for establishing the values passed in the

USB SETUP Data fields. Every USB Setup packet is comprised of an eight byte

USB SETUP Data structure.

Figure 4-14: SETUP Data, the Parameter Component of Setup Stage TRB

wLength wIndex

bmRequestTypebRequestwValue

31 16 15 8 7 0

00H

04H

DTD Type Recipient

7 6 5 4 0

bmRequestType

Figure 4-14 illustrates the mapping of the USB SETUP Data defined in section

9.3 (Table 9-2) of the USB2 or USB3 spec. to the Setup Stage TRB Parameter

component.

204

The Transfer Ring associated with a Control Endpoint adheres to the following

rules:

• The Control Transfer Ring may contain Setup Stage and Status Stage TDs, and

optionally Data Stage TDs.

• Each Setup Stage TD shall contain a single Setup Stage TRB.

• A Data Stage TD shall consist of a Data Stage TRB chained to zero or more Normal

TRBs, or Event Data TRBs.

• A Status Stage TD shall contain of a single Status Stage TRB, optionally chained to

an Event Data TRB.

• All Control transfers require a Setup Stage TD followed by a Status Stage TD. If a

data stage is required for the transfer, then system software is responsible for

ensuring that a Data Stage TD is inserted between the Setup Stage TD and the Status

Stage TD. “No-data” Control transfers do not require a Data Stage TD.

• A No-data Control transfer is generated by software if a Data Stage TD does not exist

between the Setup Stage and Status Stage TDs.

• A Setup Stage TRB shall contain immediate data (IDT flag = ‘1’), its Parameter fields

shall contain the 8-byte USB SETUP Data, which defines the request and the

request’s parameters that will be sent to the device in the USB Setup stage

transaction, and its Length field shall be set to ‘8’.

• System software is responsible for setting the values passed in the USB SETUP Data

fields as function of the desired USB Control Endpoint request. Refer to section 9.3

in the USB2 or section 9.3 in the USB3 spec. for the format of the USB Setup Data.

• System software is responsible for ensuring that the Direction (DIR) flag of the Data

Stage and Status Stage TRBs are consistent with the USB SETUP Data defined

bmRequestType:Data Transfer Direction (DTD) flag and wLength field. Refer to Table

4-6 for mapping.

• No more than one Data Stage TD may be defined between a pair of Setup and Status

Stage TDs.

Table 4-6: USB SETUP Data to Data Stage TRB and Status Stage TRB mapping

USB SETUP Data

Transfer Type flag
(TRT)

Status Stage TRB

Direction flag (DIR)

Data transfer direction
(DTD) wLength Data Stage TRB

Status Stage
TRB

Host-to-device
0 No Data Stage No Data Stage TD

defined
IN

 205

>0 OUT Data Stage OUT IN

Device-to-host

0 No Data Stage No Data Stage TD
defined

IN

>0 IN Data Stage IN OUT

Note: The Direction (DIR) flag in the Status Stage TRB indicates the direction of the

control transfer acknowledgement. For USB2 devices, DIR directly determines

the PID that shall be used for the associated USB2 transaction. For USB3 devices,

a Status TP is defined which is used for the status stage of all SuperSpeed (SS)

control transfers. Refer to section 8.5 of the USB3 spec for the definition of the

SS Status TP Direction flag.

Note: The Direction (DIR) flag in the Data Stage TRB defines the transfer direction for

all TRBs in the Data Stage TD. For USB2 devices, DIR directly determines the PID

that shall be used for the Data Stage transaction. For USB3 devices, if DIR = OUT

a DP is generated with write data, if DIR = IN an ACK TP is generated to request

read data from the device.

• If the data associated with a Data Stage TD is not contiguous, then additional Normal

TRBs shall be chained in a Data Stage TD.

• System software is responsible for ensuring that the total data length defined by a

Data Stage TD (i.e. the sum of the Length fields of the Data Stage TRB and all Normal

TRBs) is equal to wLength. Note that communicating with some non-compliant

devices may require violating this rule. The transfer lengths managed by the xHC

depend strictly on the TRB Length fields.

• The Transfer Event generated by a Status Stage TRB shall report a Success, Stall

Error, or other error Completion Code.

• Success indicates that the USB device has completed the command and is ready to

accept a new command. Refer to “Function completes” row in Table 8-7 of the USB2

spec. Refer to “Request completes” row in Table 8-27 of the USB3 spec.

• Stall Error indicates that the USB device has an error that prevents it from

completing the command. Refer to “Function has an error” row in Table 8-7 of the

USB2 spec. Refer to “Request has an error” row in Table 8-27 of the USB3 spec.

Software shall provide a timeout for all control operations and abort them using a

Stop Endpoint Command if the operation times out.

206

Note: If a USB device is still processing the command when the Status Stage TD is

executed, the device will return a Busy37 response. The xHC shall wait indefinitely

for a Success, Stall Error or other error response from device for the Status stage.

• The xHC shall NOT check for the following Control transfer error conditions.

Note: Some (non-compliant) USB devices use the SETUP Data wLength field as a

custom parameter for non-data control transfers. xHCI implementations should

not tie a non-zero wLength value to the existence of a Data Stage TD in a control

transfer to ensure compatibility with those devices.

• If a Data Stage TD follows a Setup Stage TD, where wLength = ‘0’.

• If a Status Stage TD does not follow a Setup Stage TD, where wLength = ‘0’.

• If a Data Stage TD does not follow a Setup Stage TD, where wLength > ‘0’38.

• If the total size of the Data Stage TD is not equal to wLength.

• If the Data Stage TRB Direction (DIR) flag does not correspond to the definition

in Table 4-6.

• If the Status Stage TRB Direction (DIR) flag does not correspond to the definition

in Table 4-6.

• The xHC is NOT required to check for the following Control transfer error conditions.

If system software is properly designed these error conditions will never occur.

However if the xHC does check for these conditions it shall generate a Transfer Event

for the TRB that the error was detected on with the Completion Code set to TRB Error.

• If a Status Stage TD does not follow a Data Stage TD.

• If the Setup Stage TRB defines a Length not = 8.

• The xHC shall inspect the bRequest field in Setup Stage TRBs for a SET_ADDRESS

request code and the bmRequestType field for Data Transfer Direction (DTD) = Host-

to-device, Type = Standard, and Recipient = Device. If these values are detected for

bRequest and bmRequestType, no Control transfer shall be issued to the USB, and

the Transfer Event associated with the Setup Stage TRB shall return a TRB Error

completion code. The SET_ADDRESS request is the ONLY Standard Device Request

trapped by the xHC. This error shall not generate a stall condition on the Default

Control Endpoint.

37Refer to “Function is busy” row in Table 8-7 of the USB 2 spec. Refer to “Device is busy” row in Table 8-27 of the
USB 3 spec.

38This condition violates the definition of a USB Control Transfer, however this condition should be ignored by the

xHC to ensure legacy device compatibility. The Setup Stage Transfer Type (TRT) field strictly indicates the
presence and the Direction of the Data Stage TD, and determines the direction of the Status Stage TD so the
wLength field should be ignored by the xHC.

 207

• On a SS endpoint, if a STALL TP is received for a Setup, Data, or Status Stage TD, the

xHC shall generate a Transfer Event pointing to the TRB that the error occurred on,

with the Completion Code set to Stall Error.

• On a USB2 endpoint, if an error is detected on a Setup, Data or Status Stage TD, the

xHC shall generate a Transfer Event pointing to the TRB that the error occurred on,

with the Completion Code set to USB Transaction Error.

• All Control transfers begin with a Setup Stage TD and end with a Status Stage TD. A

Control transfer may be aborted prior to executing its Data Stage or Status Stage TDs

using a Stop Endpoint Command. Software is responsible for cleaning up the

Transfer Ring after issuing a Stop Endpoint Command. And this is the only case

where the xHC may expect to see a Setup Stage TD not follow a Status Stage TD.

Note: Undefined behavior may occur if software does not schedule a Status Stage TD

to terminate a control transfer.

 IMPLEMENTATION NOTE

Control Endpoint Recommendations

The USB2 specification section 8.5.3 is silent about what to do if a STALL is returned for

a Setup Transaction handshake. The EHCI spec (e.g. section 4.12.1) treats a STALL

generically, retrying the transaction indefinitely. Receiving a STALL for any Transaction

handshake (including a Setup) halts the endpoint. The EHCI treats a NAK to a Setup

Transaction as a USB Transaction Error (i.e. decrements CErr). It is recommended that

xHCI provides the same response.

The USB3 specification section 8.12.2 is silent about what to do if an NRDY or STALL is

returned for a Setup TP. xHCI implementations should treat these NRDYs like a USB

Transaction Error, retrying the transaction CErr times (refer to section 4.10.2.3), and if a

STALL is received for a Setup TP the xHC should halt the endpoint (refer to section

4.10.2.3).

4.11.2.3 Isoch TRB

An Isoch Transfer Descriptor (TD) shall consist of an Isoch TRB chained to zero or

more Normal TRBs.

The direction of a data transfer associated with an Isoch Transfer Ring (and the

Isoch TD that it defines) depends on the direction defined by the Endpoint

Context that it is associated with. Refer to the EP Type field definition in Table

6-9 for the direction encoding.

The USB Endpoint Descriptor bInterval and wMaxPacketSize, and USB

SuperSpeed Endpoint Companion Descriptor bMaxBurst and bmAttributes:Mult

parameters define the bandwidth requirements of an isochronous pipe. These

parameters specify a Quality of Service contract between the device and the

host. This contract ensures that during an Interval, up to Max ESIT Payload bytes

may be transferred between the host and the device. Another way of looking at

208

it is; the USB Descriptor fields; bInterval, wMaxPacketSize, bMaxBurst, Mult,

define a bandwidth that is guaranteed to be available on the USB for moving the

data associated with this endpoint. The xHCI defines more generic versions of

these parameters in the Endpoint Context; Interval, Max Packet Size , Max Burst

Size, and Mult fields. System software is responsible for converting the

endpoint type and speed dependent values defined in the USB Endpoint and

SuperSpeed Endpoint Companion Descriptors to the generic values utilized by

the xHCI. Refer to section 6.2.3 for more information on the Endpoint Context

fields and their relationship to the USB Descriptor fields.

An Isoch TD defines an isochronous data transfer that will occur during a single

Interval. An Isoch TD consists of one or more TRBs, where the first TRB of TD is

always an Isoch TRB. If the data associated with an Isoch TD is not contiguous or

larger than 64K bytes, then additional Normal TRBs may be chained to the initial

Isoch TRB, forming a multi-TRB Isoch TD.

The xHC shall consume one Isoch TD each Interval on an Isoch Transfer Ring. To

ensure streaming data, system software is required to place at least one Isoch

TD on the Transfer Ring each Interval, prior to the Isochronous Scheduling

Threshold (refer to IST, section 4.14.2.1).

For Isoch OUT endpoints, if the associated Transfer Ring is empty, then no Isoch

transfers shall be scheduled over the USB during the intervening Intervals, the

endpoint shall be removed from the xHC’s Pipe Schedule, and a Ring Underrun

Event shall be generated for the EPs’ Transfer Ring to flag the condition.

For Isoch IN endpoints, if the Transfer Ring is empty, then any Isoch data that

may have been transferred during the intervening Interval(s) shall be lost, the

endpoint shall be removed from the xHC’s Pipe Schedule, and a Ring Overrun

Event shall be generated for the EPs’ Transfer Ring. In either case, the endpoint

shall remain in the Running state. The xHC shall remove the endpoint from the

Isoch Pipe Schedule and restart the Isochronous transfers the next time the

endpoint’s doorbell is rung.

Note: A Ring Underrun or Ring Overrun Event is only generated the first Interval that an

empty Transfer Ring is detected.

Note: Refer to section 4.10.3.1 for a description of Ring Underrun or Ring Overrun

Transfer Events.

An Isoch Transfer Ring will be reinstated on the xHC’s Pipe Schedule the next

time its doorbell is rung.

If the xHC is unable meet an Isochronous deadline, a Missed Service Error Event

shall be generated for the endpoint.

Note: The xHC may not generate a Missed Service Error for each Isochronous deadline

missed, e.g. if the Event Ring is full.

 209

The Ring Underrun, Ring Overrun, and Missed Service Error Events shall utilize a

Transfer Event TRB format.

The Isoch TRB Frame ID field may be used to specify the Service Interval

Boundary that an Isoch transfer may start on. If the Start Isoch ASAP (SIA) flag is

cleared to ‘0’ in the Isoch TRB, the xHC shall schedule the Isoch TD within one

Service Interval of the next match of the Frame ID field with the Frame Index

portion (bits 13:3) of the Microframe Index (MFINDEX) register. Refer to Figure

4-21. The range of possible values for the Frame ID field are 0 to 2047, with the

constraints defined in section 4.11.2.5. If the Start Isoch ASAP (SIA) flag is set to

‘1’ in the Isoch TRB, the Frame ID field is ignored and the Isoch TD is scheduled

as soon as possible.

Service Interval Boundaries are aligned. I.e. if Interval = ‘1’, then the Service

Interval is 2 microframes long and begins when the low order bit of the

MFINDEX register = 0. If Interval = ‘2’, then the Service Interval is 4 microframes

long and begins when the low order two bits of the MFINDEX register = 0, and so

on.

The Isoch TRB Transfer Burst Count (TBC) and Transfer Last Burst Packet Count

(TLBPC) fields may be used by the xHC to identify the exact number of packets

that will comprise an Isoch TD without having to read in the complete TD. The

xHC may use this information to better manage its periodic schedules. If

Extended TBC Capability (ETC) and Extended TBC Enable (ETE) = ‘1’ then TBC

field supports the definition of Burst Counts up to 32 (and the TD Size field is

deprecated in an Isoch TRB), otherwise the TBC field supports the definition of

Burst Counts up to 4 (and the TD Size field is valid). Refer to section 6.4.1.3 for

more information.

The TBC field (Table 6-34) shall be initialized by software. The following method

shall be used to compute TBC, where TDPC is the Transfer Descriptor Packet

Count described in section 4.14.1.

TBC = ROUNDUP (TDPC / (Max Burst Size + 1)) - 1

The TLBPC field (Table 6-34) shall be initialized by software. The following

method shall be used to compute TLBPC, where TDPC is the Transfer Descriptor

Packet Count described in section 4.14.1.

IsochBurstResiduePackets = TDPC MODULUS (Max Burst Size + 1)

TLBPC = IF (IsochBurstResiduePackets == 0)

THEN Max Burst Size

ELSE IsochBurstResiduePackets - 1

Refer to section 6.4.1.3 for the detailed definition of an Isoch TRB.

Note: The ETC shall not be enabled by an xHC implementation if the Large ESIT

Payload Capability (LEC = ‘1’) is not supported.

210

Note: If LEC = ‘1’ and ETC = ‘0’, then the largest Isoch Transfer that the TBC and TLBPC

fields can describe is 64 KB. If the Max ESIT Payload indicates a value greater

than 64 KB, then the TBC and TLBPC fields shall be used as a hint, rather than to

compute an explicit Isoch TD packet count.

4.11.2.4 TD Size

The TD Size field of a TRB defines a number of packets that remain to be

transferred for a TD after processing all Max Packet Sized packets in the current

TRB and all previous TRBs. This field may be used by the xHC to estimate the

size of a TD without requiring it to read ahead TRBs to the end of the TD. The TD

Size field shall be initialized by software in Transfer TRBs, with a value

calculated for a TRB using the following method:

TD Packet Count defines the number of packets that must be transferred to

complete a TD.

TD Packet count = ROUNDUP(TD Transfer Size / Max Packet Size)

where, ROUNDUP (x) rounds fractional x up, away from 0 (zero), to the nearest

integer value.

x is the number of Transfer TRBs in a TD.

n is the index of a Transfer TRB in a TD, where n = 1 for the first Transfer TRB of

a TD.

TRB Transfer Length Sum (n) is the sum of the TRB Transfer Length fields in

TRBs 1 through n.

Packets Transferred (n) defines the number of Max Packet Sized packets that

have been transferred for the TD, up to and including the data described by TRB

(n).

Packets Transferred (n) = ROUNDDOWN(TRB Transfer Length Sum (n) / Max Packet

Size)

TRB Residue (n) defines the number of bytes remaining in TRB (n)'s buffer after

processing all Max Packet Sized packets in the current TRB and all previous

TRBs of a TD.

TRB Residue (n) = TRB Transfer Length Sum (n) - (Max Packet Size * Packets Transferred

(n))

TD Size (n), For all Transfer TRBs except the last in a TD, TD Size identifies the

number of packets that still need to be scheduled to complete this TD after

sending TRB Residue (n) + the data for TRBs n+1 through x. The value of the TD

Size in the last Transfer TRB of a TD (TD Size (x)) shall be cleared to '0' to

explicitly indicate that it is the last Transfer TRB of the TD. Since the TD Size

 211

field is only 5 bits, its value shall be forced to 31 if the number of packets to be

scheduled is greater than 31.

For all Transfer TRBs of a TD except the last (n = 1 through x-1):

TD Size (n) = IF (TD Packet Count - Packets Transferred (n) > 31, then 31,

else TD Packet Count - Packets Transferred (n))

For the last Transfer TRB of a TD:

TD Size (x) = 0.

Note: If the TRB Residue for the last Transfer TRB (TRB Residue (x)) is greater than 0,

then a terminating Short Packet shall be generated for the TD. Also note that the

TRB Residue value is always less than Max Packet Size.

Note: If ETE = ‘1’, then the TD Size is not available in Isoch TRBs. Refer to section 6.4.1.3.

Refer to section 6.4.1 for more information on the TD Size field.

4.11.2.5 Frame ID

The Frame ID field of an Isoch TD identifies the target frame that the Interval

associated with this Isochronous Transfer Descriptor will start on. The Frame ID

is valid only if the Start Isoch ASAP (SIA) field of an Isoch TRB equals ‘0’.

Software shall not schedule an Isoch TD with a Frame ID value that is greater

than the End Frame ID , where:

End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048

This limitation allows the xHC to properly manage Isoch TDs when a Missed

Service Error occurs.

Note: When a Missed Service Error occurs, the Isoch TD that was supposed to be

transferred during the missed service interval is dropped, and the xHC is

expected resynchronize the Isoch pipe by advancing to the next Isoch TD for the

next Interval. If the Frame ID of an Isoch TD is used to identify the specific Frame

associated with a TRB of an Isoch TD, then the scheduling limit on the Frame ID

(i.e. the Valid Frame Window) allows the xHC to unambiguously determine if an

Isoch TD should be skipped or executed.

Software should not schedule an Isoch TD with a Frame ID value that is less than

the Start Frame ID, where:

Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048

This limitation allows the xHC sufficient time to fetch and schedule Isoch TDs.

For more information on the Isochronous Scheduling Threshold (IST), refer to

section 4.14.2.1.4.

Note: The Frame ID value is calculated as the modulus of 2048, i.e. the size of the Frame

Index portion of the MFINDEX register (refer to Figure 4-21).

212

If the Contiguous Frame ID Capability is supported (CFC = '1'), then the xHC shall

match the Frame ID in every Isoch TD with SIA = ‘1’ against the Frame Index of

the MFINDEX register. This rule ensures resynchronization of Isoch TDs even if

some are dropped due to Missed Service Errors or Stopping the endpoint. Note

that the xHC may advance through Isoch TDs faster than the Service Interval

rate to resynchronize the Isoch data flow. Refer to section 4.11.2.5.2 for more

information.

Note: If the Contiguous Frame ID Capability is supported (CFC = '1') by the xHC, then

software should set the Frame IDs (i.e. SIA = '0') in all Isoch TDs. To induce a gap

in the data stream of a Running Isoch endpoint, software simply specifies a gap

in the Frame IDs assigned to the TDs of the data stream, and the xHC will pause

the data stream until the Frame ID matches the Frame Index of the MFINDEX

register.

Contiguous Frame ID Capability support (CFC = '1') is mandatory for all xHCI 1.1

compliant xHCI implementations.

A Valid Frame Window is defined by a Start Frame ID and an End Frame ID.

If the Contiguous Frame ID Capability is not supported (CFC = '0'), then the xHC

may start the Isoch data flow when the MFINDEX Frame Index matches the

Frame ID value specified in the first Isoch TD and ignore the Frame ID fields in

subsequent Isoch TDs until the data flow is terminated, e.g. due to an Overrun or

Underrun condition. A Missed Service Error does not terminate an Isoch data

flow, therefore if a Missed Service Error occurs (i.e. one or more Isoch TDs are

dropped), the xHCI will not be able to determine whether the subsequent Isoch

TDs are within a Valid Frame Window and properly resynchronize the Isoch data

flow.

Note: If the Contiguous Frame ID Capability is not supported (CFC = '0') by the xHC,

then software may set the Frame ID (i.e. SIA = '0') only in the first Isoch TD of an

Isoch data flow, and shall set SIA = '1' in all subsequent Isoch TDs of the data

flow. To induce a gap in the data flow of a Running Isoch endpoint, software must

force a Ring Overrun or Ring Underrun condition (by letting the Transfer Ring go

empty), then specify the starting Frame ID in the first Isoch TD of the next data

flow, and ring the doorbell.

4.11.2.5.1 Frame ID ESIT Rules

The ESIT of an endpoint may be smaller, equal to, or larger than the 1 ms. Frame

period that may be specified by the Frame ID field of an Isoch TD. This section

defines how to defined Frame ID values as a function of the ESIT value.

For endpoints with an ESIT greater than or equal to 1 ms.

• Software shall specify a Frame ID value that begins on an ESIT Boundary. E.g. if the

Interval of an endpoint is 4 ms. (32 microframes) the valid Frame ID values for the

endpoint are 0, 4, 8, 12, and so on.

 213

• The xHC shall transfer an Isoch TD during the ESIT that starts on Frame boundary

specified by the Frame ID. E.g. the TD in the example above with the Frame ID value

of 4, may be transferred over the USB any time during Frames 4, 5, 6, or 7, where the

xHC ensures that the data transfer will not take place before Frame 4 begins or after

Frame 7 ends.

For endpoints with an ESIT less than 1 ms.:

• All Isoch TDs transferred within the same Frame (1 ms.) period shall have the same

Frame ID value. So depending upon the value of the Interval field, up to 8 consecutive

Isoch TDs may have the same Frame ID value. E.g. if the ESIT of an endpoint is 250

µs. (2 microframes) then groups of 4 consecutive Isoch TD shall have the same Frame

ID value; 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, and so on.

• To ensure proper Microframe Alignment of Isoch TDs for ESITs less than 1 ms., the

xHC shall assume that the Frame ID of the first TD posted to a Transfer Ring shall

begin transferring during the first ESIT of a Frame (1 ms.) period. The xHC shall also

assume that when a transition in Frame ID values is detected (e.g. between the 4th

and 5th TDs in the example above), the TD where the transition occurred (i.e. the 5th

TD) should be transferred during the first ESIT of the next Frame period. E.g. in the

above example, 4 Isoch TDs are transmitted each Frame period, where the first TD is

transmitted during Frame 0/microframe 0 or 1, the second TD is transmitted during

Frame 0/microframe 2 or 3, the third TD is transmitted during Frame 0/microframe

4 or 5, etc.

Note: Starting an IN or OUT Isoch data transfer at an ESIT that is not the first ESIT of a

Frame period is currently not supported by this specification.

4.11.2.5.2 Resynchronization

An Isoch Transfer Ring is “synchronized” when the xHC is able to successfully

transfer the data associated with an Isoch TD during the correct ESIT. If the

Frame ID value of an Isoch TD is not valid for a target ESIT, then synchronization

is lost. The rules defining the valid Frame ID values for a specific ESIT are

identified in section 4.11.2.5.1.

If a Missed Service Error occurs then the xHC is required to advance through a

Transfer Ring until it is “resynchronized” or the ring is exhausted. The data

associated with Isoch TDs that are skipped over while attempting to

resynchronize a pipe is not moved, however a Missed Service Error should be

generated for every skipped Isoch TD.

The xHC shall not drop Events associated with TRBs as it attempts to

resynchronize an Isoch pipe, e.g. if IOC = ‘1’ in a Link TRB then it returns

Success, if IOC = ‘1’ in an Event Data or Normal TRB then it returns Missed

Service Error, etc.

214

4.11.3 Event TRBs

Event TRBs shall be found on an Event Ring. A Work Item on an Event Ring is

called an Event Descriptor (ED). An ED shall be comprised of only one Event

TRB data structure. This section describes the operational characteristics of the

event related TRBs.

The xHC is the producer of all Event TRBs and system software is the consumer.

Event TRBs are used to report events associated with the Command Ring and

Transfer Rings, as well as a variety of other host controller related events (Port

Status Change, Bandwidth Requests, etc.).

The field definitions of the Parameter, Length, and the high word of the Control

components of Event TRBs are all Event Type Dependent. Refer to the specific

Event definitions below for more information on these definitions. The Event

Type field shall define the contents of the Event Type Dependent fields.

The Event Type field shall indicate Event Ring TRB Types as defined in Table

6-86. Any Event Type may be found on the Primary Event Ring. Only Transfer,

Bandwidth Request, and Device Notification Events may be found on a

secondary Event Ring. Refer to section 4.9.4.3 for a discussion of Primary and

Secondary Event Rings.

 IMPLEMENTATION NOTE

Event TRB Updating

The xHC shall ensure that all Dwords in an Event TRB are updated before it toggles the

Cycle (C) bit in Dword 3. An xHC implementation may update all 4 Dwords of the Event

TRB as an atomic (single DMA) operation, or if it updates the Event TRB Dwords as

discrete operations, then it shall update Dword 3 (toggling the Cycle bit) last.

4.11.3.1 Transfer Event TRB

Transfer Event TRB generation shall only occur under the following conditions:

• If the Interrupt On Completion (IOC) flag is set.

• When a short transfer occurs during the execution of a Transfer TRB and the

Interrupt-on-Short Packet (ISP) flag is set.

• If an error occurs during the execution of a Transfer TRB.

Several transfer related errors may be detected that cannot be attributed to a

specific TRB, e.g. Ring Overrun, Ring Underrun, etc. In these cases, the xHC shall

set the TRB Pointer to ‘0’ and software shall treat it as invalid.

When the data transfer associated with a Transfer TRB completes, a Transfer

Event shall be generated by the xHC if the TRB IOC or ISP flags are set to ‘1’, or if

an error occurs on the transfer associated with the TRB. And while advancing to

 215

the end the current TD after generating this event, each Transfer TRB

encountered with its IOC flag set to ‘1’ shall generate a Transfer Event. The

Condition Code of the “current” Transfer Event shall be set to the value of the

Condition Code in the original Transfer Event, and the TRB Transfer Length of

the current Transfer Event should be set to value of the TRB Transfer Length

field in the original Transfer Event.

4.11.4 Command TRBs

The Parameter, Status and Length TRB components shall be cleared to ‘0’ by

system software unless otherwise noted by a specific command.

The TRB Type field of the Control component shall indicate the Command Type.

Table 6-86 defines the available Command TRBs, i.e. TRB Types allowed on a

Command Ring.

For every command, the xHC notifies system software of its completion by

placing a Command Completion Event TRB on the Event ring.

When a Command TRB is initialized on the Command ring, the Cycle bit will be

set to the value of the Command Ring’s Producer Cycle State (PCS) flag.

If an endpoint defines Streams, then commands that affect Endpoint Contexts

may also affect the associated Stream Contexts. In cases where both contexts

may be affected, the combined contexts are referred to as the

“Endpoint/Stream” Context.

The remaining fields shall be managed by system software as a function of the

command type, and are described below.

Note: The Address Device, Configure Endpoint, and Evaluate Context Commands

utilize an Input Context data structure.

4.11.4.1 No Op Command TRB

The No Op Command TRB provides a simple means for verifying the operation of

the basic TRB Ring mechanisms offered by the xHC, or to report the current

value of the Command Ring Dequeue Pointer.

The format of the No Op Command TRB is defined in section 6.4.3.1.

Refer to section 4.6.2 for more information on the No Op Command.

4.11.4.2 Enable Slot Command TRB

The Enable Slot Command TRB causes the xHC to select an available Device Slot

and return the ID of the selected slot to the host in a Command Completion

Event.

216

The Enable Slot Command utilizes the same format as the No Op Command TRB,

described in section 6.4.3.1.

Refer to section 4.6.3 for more information on the Enable Slot Command.

4.11.4.3 Disable Slot Command TRB

The Disable Slot Command TRB releases any bandwidth assigned to the

disabled slot, frees any internal xHC resources assigned to the slot, and sets the

Slot State field of the associated Slot Context to Disabled.

The format of the Disable Slot Command TRB is defined in section 6.4.3.3.

Refer to section 4.6.4 for more information on the Disable Slot command.

4.11.4.4 Address Device Command TRB

The Address Device Command TRB transitions the selected Slot Context from

the Default to the Addressed state. It also causes the xHC to select an address

for the USB device and issue a SET_ADDRESS request to the USB device.

The format of the Address Device Command TRB is defined in section 6.4.3.4.

Refer to section 3.3.4 for more information on the Address Device Command.

4.11.4.5 Configure Endpoint Command TRB

The Configure Endpoint Command TRB is used to enabled and/or disable

selected endpoints of a Device Slot. When enabling endpoints the xHC evaluates

the host controller resource and USB bandwidth requirements identified by the

selected Endpoint Contexts in the command. If the requirements can be met,

then the endpoints are enabled.

The format of the Configure Endpoint Command TRB is defined in section

6.4.3.5.

Refer to section 3.3.5 for more information on the Configure Endpoint

Command.

4.11.4.6 Evaluate Context Command TRB

The Evaluate Context Command TRB is used by system software to notify the

xHC that parameters associated with selected contexts have been modified. The

current state of a context is not changed by the execution of an Evaluate

Context Command. Refer to section 4.3 for more information on the use of this

command.

Note: Refer to the Slot and Endpoint Context data structure descriptions (sections 6.2.2

and 6.2.3, respectively) for information on the specific Context fields that are

evaluated by this command. A typical use of this command is immediately after

 217

an Address Device Command to inform that xHC that software has updated the

Max Packet Size field of the Control endpoint. Refer to section 4.3 for more

information on this usage.

The format of the Evaluate Context Command TRB is defined in section 6.4.3.6.

Refer to section 4.6.6 for more information on the Evaluate Context Command.

4.11.4.7 Reset Endpoint Command TRB

The Reset Endpoint Command TRB command is used by system software to reset

an individual endpoint. This command may be used to restart a Halted endpoint.

The format of the Reset Endpoint Command TRB is defined in section 6.4.3.7.

Refer to section 4.6.8 for more information on the Reset Endpoint Command.

4.11.4.8 Stop Endpoint Command TRB

The Stop Endpoint Command TRB command is used by system software to stop

the packet stream of an individual endpoint and transfer ownership of all the

TDs on the associated Transfer Ring to software.

The format of the Stop Endpoint Command TRB is defined in section 6.4.3.8.

Refer to section 4.6.9 for more information on the Stop Endpoint Command.

4.11.4.9 Set TR Dequeue Pointer Command TRB

The Set TR Dequeue Pointer Command TRB command is used by system

software to set the TR Dequeue Pointer field of an individual endpoint to a new

value.

The format of the Set TR Dequeue Pointer Command TRB is defined in section

6.4.3.9.

Refer to section 4.6.10 for more information on the Set TR Dequeue Pointer

Command.

4.11.4.10 Reset Device Command TRB

The Reset Device Command TRB command is used by system software to inform

the xHC that it has reset a USB Device.

The format of the Reset Device Command TRB is defined in section 6.4.3.10.

Refer to section 4.6.11 for more information on the Reset Device Command.

218

4.11.4.11 Force Event Command TRB (Optional Normative)

The Force Event Command TRB allows a VMM to inject an Event TRB on the

Event Ring of a selected Virtual Function. VMMs utilize this command when

emulating a USB device to a VM. Refer to section 8 for more information on

virtualization.

The format of the Force Event Command TRB is defined in section 6.4.3.11.

Refer to section 4.6.12 for more information on the Force Event Command.

4.11.4.12 Negotiate Bandwidth Command TRB (Optional Normative)

The Negotiate Bandwidth Command TRB is used by system software to initiate

Bandwidth Request Events for periodic endpoints. This command may be used

to recover unused USB bandwidth from the system.

If the BW Negotiation Capability (BNC) bit in the HCCPARAMS1 register is ‘1’,

then the xHC shall support this command.

The format of the Negotiate Bandwidth Command TRB is defined in section

6.4.3.12.

Refer to section 4.16 for more information on Bandwidth Negotiation.

Refer to section 4.6.13 for more information on the Negotiate Bandwidth

Command.

4.11.4.13 Set Latency Tolerance Value Command TRB (Optional Normative)

The Set Latency Tolerance Value Command TRB is used by system software to

provide a Best Effort Latency Tolerance (BELT) value to the xHC. This command

is optional normative, however it shall be supported if the xHC also supports a

corresponding host interconnect LTM mechanism.

If the Latency Tolerance Messaging Capability (LTC) bit in the HCCPARAMS1

register is ‘1’, then the xHC shall support this command.

The format of the Set Latency Tolerance Value Command TRB is defined in

section 6.4.3.13.

Refer to section 4.6.14 for more information on the Set Latency Tolerance Value

Command.

4.11.4.14 Get Port Bandwidth Command TRB

The Get Port Bandwidth Command TRB is issued by software to retrieve the

percentage of periodic bandwidth available on each Root Hub Port of the xHC.

This information can be used by system software to recommend topology

 219

changes to the user if they were unable to enumerate a device due to a

Bandwidth Error or a Secondary Bandwidth Error.

The format of the Get Port Bandwidth Command TRB is defined in section

6.4.3.14.

Refer to section 4.6.15 for more information on the Get Port Bandwidth

Command.

4.11.4.15 Force Header Command TRB

The Force Header Command TRB is issued by software to send a Link

Management or Transaction Packet to a USB device. For instance, it may be used

to send a Vendor Device Test LMP.

The format of the Force Header Command TRB is defined in section 6.4.3.15.

Refer to section 4.6.16 for more information on the Force Header Command.

4.11.5 Other TRBs

4.11.5.1 Link TRB

The Link TRB provides support for sizing and non-contiguous Transfer and

Command Rings. A Link TRB indicates the end of a ring by providing a pointer to

the beginning of the ring.

If contiguous Pages cannot be allocated by system software to form a large

Transfer Ring, then Link TRBs may also be used to link together multiple

memory Pages to form a single Transfer Ring.

A non-contiguous TRB Ring is composed of Ring Segments.

Software shall invoke the following rules when constructing a TRB Ring:

• All Transfer Ring Segments shall be aligned to 16-byte (TRB) boundaries.

• All Command Ring Segments shall be aligned to 64-byte boundaries.

• All Transfer and Command Ring Segments are multiples of 16 bytes in size.

• A Link TRB shall be the last TRB of each Transfer or Command Ring Segment

• The Ring Segment Pointer field of a Link TRB shall point to the next Segment of a

multi-segment TRB Ring, or to first segment in a single Segment ring.

• The Link TRB of the last Ring Segment in a ring shall point to the beginning of the

first segment of the ring.

• The Toggle Cycle flag should be set in at least one Link TRB of a ring.

220

Note: The Ring Segment Pointer field in a Link TRB is not required to point to the

beginning of a physical memory page.

Note: A Link TRB may be found on Transfer or Command Rings.

Refer to Figure 4-15 for an illustration of TRB Ring Segments and Link TRBs.

Figure 4-15: Link TRB Example

TRB

TRB

Transfer Ring

Segment 0

Transfer Ring

Segment 1

Dequeue Pointer

Enqueue Pointer

Execution

256

TRBs

244

TRBs

Empty TRB

Pending TRB

Endpoint Context

Ring Base Address

TD

Link TRB

EP State

TRB

TRB

TRB

...
TRB

TRB

TRB

TRB

...
TRB

TRB

Link TRB

Link TRB

Unused

Ring Size = 500

Legend

0

Transfer Descriptors (Chained TRBs) may cross Segment boundaries.

Refer to section 4.11.7 for how the Chain (CH) flag shall be set in a Link TRB. In a

Transfer Ring a Link TRB is always assumed to be linked to the first TRB of the

next segment. If the Chain bit (CH) of the previous TRB is ‘1’, then the multi-TRB

TD that it defines spans segments and shall continue with the first TRB of the

next segment. In a Command Ring the Link TRB Chain bit (CH) is ignored by the

xHC.

As software advances its Enqueue Pointer and advances over a Link TRB, the

Cycle (C) bit shall be updated with the value of the PCS flag.

The Interrupt On Completion (IOC) flag of a Link TRB may be used by system

software to generate an event indicating the Dequeue Pointer has reached the

Link TRB. This feature provides software with the ability to track the Dequeue

Pointer as a function of segment boundary crossings.

 221

Note: A TD Fragment shall not span segments. Refer to section 4.11.7.1.

When the Link TRB resides on a Transfer Ring the Interrupt On Completion (IOC)

flag of a Link TRB may be used by system software to generate a Transfer Event,

where the Transfer Event Slot ID and Endpoint ID shall reflect the slot and

endpoint that the Transfer Ring is associated with, the Length = ‘0’, the TRB

Pointer field shall point to Link TRB, and the Completion Code = Success.

When the Link TRB resides on a Command Ring the Interrupt On Completion

(IOC) flag of a Link TRB may be used by system software to generate a Command

Completion Event , where the Command Completion Event Slot ID = ‘0’, VF ID =

‘0’, the Command TRB Pointer field shall point to Link TRB, and the Completion

Code = Success.

Note: The Primary Interrupter (‘0’) is the target of all Command Completion Events. The

Interrupter Target field shall be ignored by the xHC in Link TRBs found on the

Command Ring.

 IMPLEMENTATION NOTE

xHC TRB Fetching

All TRBs between the Enqueue and Dequeue Pointers of a TRB Ring are owned by the

xHC. No constraints are placed on how many TRBs an xHC implementation may fetch in

a single DMA operation or the order that the xHC may fetch them in. System software

shall not modify a TRB owed by the xHC.

4.11.5.2 Event Data TRB

The Event Data TRB allows system software to generate a software defined

event, and fully specify the Parameter Component of a generated event.

The Event Data TRB has the unique properties of inheriting the Completion Code

of the previous (non-Event Data) TRB executed on a ring, and accumulating the

transfer Lengths of preceding TRBs.

A typical use of the Event Data TRB would be to provide a 64-bit software

defined identifier (or address) upon the completion of a TD. To accomplish this

the Event Data TRB would be chained as the last TRB of the TD, and the IOC flag

would be set only in the Event Data TRB. When the TD completes, an event is

generated where the Completion Code is supplied by the previous TRB

executed, and the Parameter Component of the event is loaded with the value

supplied by the Event Data TRB.

The Event Data (ED) field of a Transfer Event indicates whether the event was

generated by a Transfer TRB or an Event Data TRB. A Transfer Event with its ED

flag equal ‘1’ is referred to as a Event Data Transfer Event.

222

A key feature of a Event Data Transfer Event is its ability to report the number of

bytes transferred by a TD, rather than that of an individual TRB. To accomplish

this the xHC maintains an internal 24-bit Event Data Transfer Length

Accumulator (EDTLA) for each endpoint. The rules for EDTLA management are:

• The EDTLA shall be cleared to ‘0’ immediately prior to executing the first Transfer

TRB of a TD or when a Set TR Dequeue Pointer Command is executed.

• When a Transfer TRB is completed, the number of bytes transferred by the TRB shall

be added to the EDTLA. The EDTLA shall wrap, if the total number of bytes

transferred is greater than 16,777,215 (16MB-1).

• When an Event Data TRB is encountered an Event Data Transfer Event shall be

generated, where the TRB Transfer Length field shall contain the value of the EDTLA.

The EDTLA shall then be cleared to ‘0’ and begin accumulating again.

• If a Stopped Transfer Event is generated and the Condition Code = Stopped - Short

Transfer, then the TRB Transfer Length field of the Transfer Event shall contain the

value of the EDTLA.

Note that for TDs greater than or equal to 16MBytes the EDTLA will roll -over. It

is system software’s responsibility to insert “ Intermediate” Event Data TRBs

periodically within a TD to report transfer lengths before the rollover condition

occurs. Software is also responsible for accumulating the Length fields of Event

Data Transfer Events to determine the total number of bytes transferred by a TD

that declares multiple Event Data TRBs.

Note: Software shall set the IOC flag in all Event Data TRBs. Because the IOC flag must

be set in an Event Data TRB, the possible locations of an Event Data TRBs within

a TD are constrained by the TD Fragment rules described in section 4.11.7.1.

If a Short Packet is detected during the execution of a multi -TRB TD, the xHC

shall advance to the first TRB of the next TD or the Enqueue Pointer (i.e.Cycle bit

transition), whichever is encountered first. If the TD that incurred the Short

Packet is terminated by an Event Data TRB (with its IOC flag is set), then the xHC

shall generate an Event Data Transfer Event , where the Length field shall reflect

the actual number of bytes transferred.

The following rules apply to Event Data TRBs on a Transfer Ring unless

otherwise stated:

• An event shall be generated by an Event Data TRB if its IOC flag is set to ‘1’.

• An event generated by an Event Data TRB (Event Data Transfer Event) shall utilize

the format of the Transfer Event TRB. The Slot ID and Endpoint ID fields shall be set

appropriately for the Transfer Ring that contained the Event Data TRB, and the Event

Data (ED) flag shall be set to ‘1’.

• The event generated when the IOC flag of an Event Data TRB is set to ‘1’ shall report

the Completion Code of the previously executed Transfer TRB of a TD, or Success if

inserted as an Event Data TD (i.e. a TD that consists of just one Event Data TRB) on a

 223

ring. The “previously executed Transfer TRB” is either the last Transfer TRB of the TD

or the Transfer TRB that generated an error which forced a premature completion of

the TD. Intermediate Event Data TRBs shall report “Success”.

• The Parameter Component of the Transfer Event generated by an Event Data TRB

shall contain the value of the Event Data TRB Parameter Component.

• The Length field of a Event Data Transfer Event shall reflect the number of bytes

transferred from the beginning of a TD or since the last Event TRB encountered in a

TD.

Note: The above rules also apply to Intermediate Event Data Transfer Event TRBs.

Note: The Event Data (ED) flag in the Transfer Event TRB indicates to system software

whether the Parameter Component of the respective event should be

interpreted as pointer to system memory or software defined data.

Note: The IOC flag is treated generically by the xHC. If it is set in a TRB, then the xHC

shall generate an Event for that TRB. If the IOC flag is not set in an Event Data

TRB, the xHC will advance past it, clearing the EDTLA in the process.

Note: An Event Data TRB may only be found on a Transfer Ring.

Note: An Event Data TRB shall not immediately follow another Event Data TRB.

Note: Refer to section 4.12.3 for information on how the Evaluate Next TRB (ENT) flag

should be used to manage Event Data TRBs.

Note: Refer to section 4.10.1.1 for more information on the handling of Event Data

TRBs if a Short Packet condition occurs while executing a TD.

Note: Software shall not define a “stand-alone” Event Data TD (i.e. a TD that only

contains a single Event Data TRB) on an Isoch Transfer Ring, however Event Data

TRBs may be included in Isoch TDs.

4.11.6 Vendor Defined TRB Types

xHC vendors may define proprietary TRB Types using the Vendor Defined TRB

Type codes identified in Table 6-86. The Vendor Defined TRB Types may be

used to define Command, Event, or Transfer TRBs.

A vendor shall define proprietary xHCI Extended Capability structures using the

xHCI Extended Capability Codes identified in Table 7-3 to enumerate any vendor

defined TRB types or xHC capabilities.

If an unrecognized Vendor Defined TRB is encountered by the xHC:

• On a Transfer Ring, if a Vendor Defined TRB is preceded by a Transfer TRB and the

Chain bit (CH) of the Transfer TRB is set (‘1’), then the Vendor Defined TRB is also

required to support a valid Chain bit, which the xHC shall evaluate to determine if the

end of the TD has been reached. Otherwise, the xHC shall advance past an

unrecognized Vendor Defined TRB on a Transfer Ring and shall ignore it.

224

• The xHC shall treat Vendor Defined TRBs encountered on a Command Ring like a No

Op Command TRB.

• Software shall advance past and ignore Vendor Defined TRBs encountered on an

Event Ring.

Note: All vendor defined TRBs shall define a Cycle (C) bit at the same bit position as

defined in all xHCI TRBs and manage it as defined in section 4.9 for the respective

ring type.

Note: All vendor defined Event TRBs shall define a Completion Code field at the same

bit position as defined in all xHCI Event TRBs and manage it as defined in section

4.9.4.

Note: Any vendor defined Transfer TRBs that may be included in a multi-TRB TD, shall

define a Chain bit (CH) field at the same bit position as defined in a Normal TRB

and manage it as defined in section 4.9.1.

xHC vendors may use the Vendor Defined TRB Type codes to define proprietary

xHCI commands. All vendor defined commands shall utilize the Command

Completion Event TRB to report completions.

Multiple vendors may define the same xHCI Extended Capability code or Vendor

Defined TRB code to perform different operations. All vendor defined xHCI

Extended Capability codes and TRB Types shall be qualified by system software

with the PCI Configuration Space Header Vendor ID and Subsystem Vendor ID.

Vendors may also define Completion Codes. The Vendor Defined completion

codes are separated into two groups: error and information. This partitioning

allows software to infer the purpose of a Vendor Defined completion code even

if it does not have vendor specific knowledge. Refer to Table 6-85.

If software does not have vendor specific knowledge, completion codes in the

range defined by Vendor Defined Info codes shall be interpreted identically to a

Success completion code.

If software does not have vendor specific knowledge, completion codes in the

range defined by Vendor Defined Error codes shall be interpreted as an

Undefined Error completion code, e.g if a Vendor Defined Error code is reported

in a Command Completion Event software shall assume that the associated

command did not complete successfully.

4.11.7 TD Usage Rules

A Transfer Descriptor (TD) may be composed of 1 or more TRBs. The TRB Chain

flag is used identify the TRBs of a TD, where the Chain flag is set in all the TRBs

of a TD except the last. In the simplest case, a TD consists of a single TRB. Larger

transfers may require TDs that are comprised of many TRBs. If a TD crosses a

TRB Ring Segment boundary it may include one or more Link TRBs.

 225

Setting the TRB Interrupt On Completion (IOC) flag allows the completion of a

TRB to generate an event. An IOC flag may be set in the TRBs of a TD identified

in section 4.11.7.1.

Note: A “Transfer TRB” is any TRB defined in section 6.4.1. Link and Event Data TRBs

are not “Transfer TRBs”.

On an IN endpoint, if the device class allows a device to supply less data than

the host has provided buffer space for, software has two options in forming a

TD.

1. Set the Interrupt-on Short Packet (ISP) flag in all TRBs of a TD, and set

the IOC flag in the last TRB. This action shall cause the xHC to generate a

Transfer Event if a Short Packet condition is detected while executing

any TRB in the TD, or generate a Transfer Event if the device completely

fills the buffer.

To determine the number of bytes actually transferred, software shall

add the TRB Transfer Length fields of all TRBs up to and including the

TRB that generated the Transfer Event, and subtract the Transfer Event

TRB Transfer Length field.

2. Terminate the TD with an Event Data TRB that has its IOC flag set, and

not set the ISP or IOC flag in any Transfer TRB of the TD. This action shall

cause the xHC to generate an Event Data Transfer Event if a Short Packet

condition is detected while executing any TRB in the TD or if the device

completely fills the buffer.

The TRB Transfer Length field of the Event Data Transfer Event identifies

the number of bytes actually transferred, from the beginning of the TD or

since the last Event Data Transfer Event. The TRB Transfer Length field of

the Event Data Transfer Event may define up to a 16,777,215 byte

transfer.

More than one Event Data TRB may be defined within a TD.

If Event Data TRBs are defined within a TD, then the IOC or ISP flags shall not be

set in any Transfer TRB of a TD. i.e. the use of Event Data Transfer Events and

normal Transfer Events to report a TD completion are mutually exclusive.

Note: Software may insert an Event Data TD immediately following a TD to provide

additional information related to the previous TD. An Event Data TD is a TD that

consists of just one Event Data TRB.

If the IDT flag is set in one TRB of a TD, then it shall be the only Transfer TRB of

the TD. An Event Data TRB may be included in the TD.

Software shall specify the same Interrupter Target value in all TRBs of a TD. If an

invalid Interrupter Target value is defined in a TRB, the behavior of the xHC is

226

undefined if the TRB generates a Transfer Event. If virtualization is supported,

an xHC implementation shall ensure that this “undefined behavior” does not

affect another function (PF0 or VFx).

The Transfer TRB TD Size field shall be valid in all Transfer TRBs that define it.

Refer to section 4.11.2.4.

Software shall not define a No Op Transfer TRB within a multi-TRB TD, i.e.

software shall never set the Chain bit of a No Op TRB to '1' and a No Op TRB

shall always be preceded by a TRB whose Chain bit is also set to '0'.

Software shall not define a Link TRB as the first TRB of a multi-TRB TD.

Software shall not define a Link TRB as the last TRB of a multi-TRB TD.

One or more Link TDs may precede or follow a TD. A Link TD is a TD that

consists of just one Link TRB.

Software shall not define consecutive Link TRBs within a TD, i.e. software shall

not set the Chain bit of consecutive Link TRBs to '1'.

Undefined xHC behavior may occur if the requirements defined in this section

are not met.

Note: Besides reporting an error or the completion of a TD, Events may also be used

by software to periodically update the current value of the Dequeue Pointer, to

indicate the crossing of a Transfer Ring Segment boundary so it can add or

remove a segment, etc., so the xHC shall generate an Event every time it

encounters an IOC flag equal to ‘1’, irrespective of any error events that may be

forced for earlier TRBs in a TD that did not have their IOC flag set.

For example, software may periodically set IOC flags in TRBs of a large TD so

that it may update its Dequeue Pointer and reuse the TRBs that have been

consumed by the xHC (rather than having to expand the Transfer Ring). Unless

an error is encountered, all the intermediate events shall report Success. If any

event generated by a TD reports an error, then that Completion Code overrides

any Successful Completion Codes that other TRBs associated with the TD may

have asserted, whether they come before or after the error Event.

Note: Software shall not interpret an error Event as indicating that the TD that it is

associated with is “complete” (i.e. ownership of all the TRBs of the TD have been

relinquished by the xHC), unless the TRB Pointer field of the error Transfer Event

references the last TRB of the TD.

4.11.7.1 TD Fragments

The xHCI architecture allows TRBs to reference buffers of any length; however

hardware works most efficiently when it is dealing with regularly sized buffers,

e.g. Max Packet Size or Max Burst Size. Also the event generation mechanisms

 227

defined for Transfer Rings are extremely flexible, however constraints must be

imposed to ensure that the hardware gate count and validation requirements are

minimized for xHC implementations. TD Fragments require software to organize

the TRBs of a TD in manner that allows the xHC hardware to optimize its internal

buffer management and operation.

TD Fragments are designed to:

• Maximize burst opportunities for the xHC by ensuring that when software adds TRBs

to a Transfer Ring, it does so in burst friendly units.

• Simplify Event generation by limiting the frequency and locations in a TD where the

IOC flag may be set.

The Max Burst Payload (MBP) is the number of bytes moved by a maximum

sized burst, i.e. Max Burst Size * Max Packet Size bytes.

A TD is comprised of one or more TD Fragments. If the TD Transfer Size is an

even multiple of the MBP then all TD Fragments shall define exact multiples of

MBP data bytes. If not, then the only last TD Fragment shall define less than

MBP data (or the Residue) bytes.

Each TD Fragment is comprised of one or more TRBs. The first TRB of a TD

Fragment is written last, ensuring that all the other TRBs of the TD Fragment are

complete and reference valid buffers in host memory.

TD Fragments require software to construct TDs as sequential groups of TRBs. If

the TD Transfer Size is greater than MBP, then the TD consists of 1 or more TD

Fragments.

A TD Fragment may reference more than MBP bytes; if it is the last or only TD

Fragment of a TD, or if it references an integral multiple of MBP bytes.

A TD Fragment may reference less than MBP bytes, if it is the last or only TD

Fragment of a TD.

Software is allowed to construct a single TD Fragment that is an integral

multiple of MPB bytes, or that defines a complete TD.

• The first TRB of a TD Fragment shall always be a Transfer TRB.

• A TD Fragment should not span Transfer Ring Segments.

• Link TRB placement in a TD shall follow the rules described in this section and

section 4.11.7.

• Event Data TRB placement in a TD Fragment shall follow the rules described in this

section and sections 4.11.5.2 and 4.11.7.

• A TRB Packet Boundary in a TD immediately precedes a Transfer TRB in which the

first byte of the buffer referenced by a Transfer TRB is the also the first byte of a USB

packet.

228

• The first TRB of a TD Fragment shall be the first TRB of a TD or immediately follow a

TRB Packet Boundary.

• The last TRB of a TD Fragment immediately precedes a TRB Packet Boundary or is

the last TRB of a TD.

The IOC flag may be set in only one TRB of a TD Fragment, with the following

conditions:

• The IOC flag may be set in a Transfer TRB that immediately precedes a TRB Packet

Boundary or the last Transfer TRB of a TD Fragment.

• The IOC flag may be set in a non-Transfer TRB (e.g. a Link TRB, Event Data TRB, etc.)

that resides between two Transfer TRBs that form a TRB Packet Boundary, or follow

the last Transfer TRB of a TD.

Figure 4-16: TRB Packet Boundary Example

Event Data TRB

Link TRB

Payload 7Payload 6Payload 2

Packet 1

Payload 1

Packet 2 Packet 3 Packet 4 Packet 5

Payload 3 P 4

Packet 6 Packet 7 Packet 8

Payload 5

Transfer TRB 1

Transfer TRB 2

Transfer TRB 3

Transfer TRB 4

Transfer TRB 5

Transfer TRB 6

TD Fragment 1

TD Fragment 2

Packet 9 Packet 10 Pkt 11

Transfer TRB 7

TRB Packet Boundaries TD Fragment Boundaries

Transfer

Descriptor

The example of Figure 4-16 illustrates a TD that consists of two TD Fragments.

TD Fragment 1 ends on boundary that is also a multiple of Max Packet Size

bytes, while TD Fragment 2 ends at the end of the TD. Both TD Fragments end

on a TRB Packet Boundary (red lines). An additional TRB Packet Boundary is

defined in each TD Fragment, i.e. between TRBs 2 and 3 in TD Fragment 1 and

between TRBs 5 and 6 in TD Fragment 2. Following the rules described above,

the IOC flag may be set only once in a TD Fragment, i.e. in Transfer TRB 2,

Transfer TRB 4, or the Link TRB of TD Fragment 1, and in Transfer TRB 5,

Transfer TRB 7, or the Event Data TRB of TD Fragment 2. The IOC flag cannot be

set in Transfer TRBs 1, 3 or 6 because they do not immediately precede a TRB

Packet Boundary.

 229

The TD Fragment rules above also ensure that the last Transfer TRB of a TD

Fragment shall describe a data buffer that ends on a Max Packet Size boundary

(Transfer TRB 4) or terminates the TD (Transfer TRB 7).

Figure 4-17: TD Fragment Examples

31K

Virtual

Buffer

4K

PagesTRB 1K

TRB 4K

TRB 4K

TRB 4K

TRB 3K

TRB 1K

TRB 4K

TRB 4K

TD Fragment 1

MBP bytes

TD Fragment 2

Residue bytes
TRB 4K

TRB 2K

1

2

3

4

5

6

7

8

9

10

TD

Virtual

Memory
Offset = 3KB

2KB

31K

Virtual

Buffer

4K

PagesTRB 1K

TRB 4K

TRB 4K

TRB 4K

TRB 4K

TRB 4K

TRB 4K

TD Fragment 1

TD Size

TRB 4K

TRB 2K

1

2

3

4

5

6

7

8

9

TD

Virtual

Memory
Offset = 3KB

2KB

31K

Virtual

Buffer

4K

PagesTRB 1K

TRB 4K

TRB 3K

TRB 1K

TRB 4K

TRB 3K

TRB 1K

TRB 4K

TD Fragment 1

MBP bytes

TD Fragment 4

Residue bytes

TRB 3K

TRB 1K

1

2

3

4

5

6

7

8

9

10

TD

Virtual

Memory
Offset = 3KB

2KBTRB 4K

TRB 2K

11

12

TD Fragment 2

MBP bytes

TD Fragment 3

MBP bytes

Example 1

Max Burst Size = 16KB

Example 2

Max Burst Size = 16KB or 8KB

Example 3

Max Burst Size = 8KB

31K

Virtual

Buffer

4K

PagesTRB 1K

TRB 4K

TRB 3K

TRB 1K

TRB 4K

TRB 4K

TRB 4K

TD Fragment 1

MBP bytes

TD Fragment 4

Residue bytes

TRB 3K

TRB 1K

1

2

3

4

5

6

7

8

9

10

TD

Virtual

Memory
Offset = 3KB

2KB

TRB 4K

TRB 2K11

TD Fragment 2

MBPx2 bytes

Example 4
Max Burst Size = 8KB

16KB

15KB

31KB

8KB

7KB

16KB

8KB

7KB

8KB

8KB

In Figure 4-17 the TDs in all the examples describe the same Virtual Buffer,

which is 31KB in size, begins at a 3KB offset into the first physical Page, and

spans 9 Pages.

Example 1 illustrates the TD Fragments that would be generated for an endpoint

with a Max Packet Size = 1KB and a Max Burst Size of 16 packets. The first TD

Fragment describes MBP (16K) bytes of buffer space. The second TD Fragment

describes the TD Fragment Residue of the TD, or 15K bytes of buffer space. Note

that two TRBs (5 and 6) are used to split 5th physical memory Page on a MBP

boundary.

Example 2 illustrates a case where the single TD Fragment fully describes the

TD, or 31K bytes of buffer space. In this case the TD is fully formed when TRB 1

is written, and the xHC will generate the Max Burst Size transactions as

appropriate for the endpoint.

Examples 3 and 4 illustrates TD Fragments that may be generated for an

endpoint with a Max Packet Size = 1KB and a Max Burst Size of 8 packets. Each

of the first three TD Fragments in Example 3 describe MBP (8K) bytes of buffer

230

space, and the last TD Fragment describes the Residue of the TD, or 7K bytes of

buffer space. In Example 4 software has decided to use TD Fragment 2 to

describe 2 x MBP bytes of buffer space.

In every case, software shall write the first TRB of a respective TD Fragment last.

For instance the write order in Example 4 would be TRBs: 2->3->1,

5->6->7->8->4, and 10->11->9. And so on. Note that it really doesn’t matter

what order the TRBs of a TD Fragment are written in, as long as its first TRB is

written last.

Note that in each example of Figure 4-17, the data associated with a single page

is split between two TRBs to enforce a TD Fragment boundary, e.g. in example 1,

the 4KB page on the boundary between TD Fragment 1 and 2 is defined by TRB

5 (3KB) and TRB 6 (1KB), where TRB 5 defines the last 3KB of the 16KB TD

Fragment 1 and TRB 6 defines the first 1KB of TD Fragment 2.

Note: Only fully formed TDs may be scheduled on Isoch endpoints, e.g. write the first

TRB of a multi-TRB TD last, irrespective of the number of TD Fragments that

comprise it, and the TD Fragment rules for the assertion of IOC in TRBs described

above apply.

Figure 4-18: Non-aligned TD Fragment Example

TRB 256B

TRB 4K

TRB 4K

30.5K

Virtual

Buffer

4K

Pages

TRB 4K

TRB 3840B

TRB 256B

TRB 4K

TRB 4K

TD Fragment 1

MBP bytes

TD Fragment 2

Residue bytes
TRB 4K

TRB 2304B

1

2

3

4

5

6

7

8

9

10

TD

Virtual

Memory
Offset =

3.75KB

Max Packet Size

Boundary

Max Burst Size = 16KB

Max Packet Size = 1KB

Initial Offset = 3.75KB

2.25KB

16KB

14.5KB

In Figure 4-18 the example defines a TD that transfers 30.5KB of data, where the

packet size (Max Packet Size) = 1KB, the Burst Size = 16 KB, and the initial offs et

of the data in the first 4KB page is 3.75KB (3840B). An important aspect of this

example is that due to the initial offset (3.75KB), page boundaries do not land

on packet boundaries (as they do in Figure 4-17).

Given the rules defined above for where an IOC flag may be set in a TD

Fragment:

 231

• In Figure 4-18 the IOC flag only may be set in TRBs 5 and 10. In TRB 5 because TRBs

5 and 6 split the data in the page that they reference to force a break on a Burst Size

boundary, hence the buffer described by TRB 5 ends on a packet, boundary. The IOC

flag may be set in TRB 10 because it is the last packet of a TD, which forces a packet

boundary. Note that the Link TRB does not land on a packet boundary relative to the

start of TD Fragment 1, so its IOC flag may not be set.

• In Figure 4-17 all TRBs define buffers that end on Packet boundaries, hence an IOC

flag may be set in any TRB of a TD Fragment, but only once per TD.

Note: The TD Fragment rules, that define which TRBs of a TD that an IOC flag may be

set in, apply to Isoch TDs, however a partially formed TD shall not be posted to

an Isoch endpoint. Only fully formed TDs may be posted to Isoch endpoints, e.g.

software shall write the first TRB of a multi-TRB TD last, irrespective of its size.

4.12 Streams

Streams extend the number of Transfer Rings that may be accessible to a SS

Bulk USB endpoint. A standard endpoint defines a single Transfer Ring. Streams

allow an individual endpoint to define up to 6553339 Transfer Rings using Linear

Stream Arrays or Primary/Secondary Stream Arrays.

Streams allow the data flow of a bulk pipe to be multiplexed between multiple

Transfer Rings associated with the endpoint. The USB device determines which

Stream is active at any time, i.e. which Stream Context Transfer Ring is being

used to move data.

The TR Dequeue Pointer field of an Endpoint Context that supports Streams

points to an array of Stream Context data structures called the Stream Context

Array or just Stream Array. A Stream (i.e. Stream Context) is selected with a

Stream ID, where the Stream ID is used to index into a Stream Array.

A Stream Context data structure also contains a TR Dequeue Pointer field, which

points to the Transfer Ring associated with the Stream.

A Stream Protocol maintained between the xHC and a SS USB device allows the

device to establish the Current Stream (CStream) of an endpoint and control the

movement of data for that Stream. At any time the device may terminate a

Stream data transfer and switch to another Stream. Before an endpoint

transitions to the Stopped, Halted, or Error state, the xHC shall ensure that the

Stream Context TR Dequeue Pointer, DCS, and if SEC = ‘1’, Stopped EDTLA40

fields reflect the forward progress of any Stream that entered the Move Data

state while the endpoint was in the Running state, e.g. the Stream Context fields

are updated with the CStream state when a Stream exits the Move Data state

39Stream IDs 0, 65535 (No Stream) and 65534 (Prime) are reserved.

40Stopped EDTLA Capability support (i.e. SEC = '1') shall be mandatory for all xHCI 1.1 compliant xHCs.

232

(e.g. after a Stream switch or due to an error), or before the endpoint enters the

Stopped, Halted, or Error state. Refer to section 3.3.8 for more information on

Stream Context state requirements after a Stopped Endpoint Command.

Because all Streams associated with an endpoint share the same bulk pipe, if the

Current Stream causes the pipe to stall, then all Streams associated with the

pipe are also stalled. There are cases with the Stream Protocol where a Stall may

occur and there is no directly attributable TRB that can be referenced by the

Transfer Event TRB that reports the error (e.g. due to sending a Prime Pipe

transaction). In this case the Slot Context Interrupter Target field shall be used

to generate the Event and the TRB Pointer and TRB Transfer Length fields of the

Transfer Event shall be set to ‘0’. Refer to section 4.17.4.

A Stream Context may be “active” or “non-active”. A non-active Stream Context

shall be identified by an empty Transfer Ring or if, through an out-of-band

(Device Class) defined mechanism, software knows that the Stream Context will

not be selected by a USB device to become the Current Stream (CStream). An

active Stream Context does not meet the criteria described above for a non-

active Stream Context. Reliably determining whether a Stream Context is active

or not, is a Device Class responsibility. There is no xHCI defined method.

For example, a UASP data Stream Context becomes active (i.e. may be selected

at any time by the device and become the Current Stream) after software rings

the doorbell with the DB Stream ID equal to the Stream ID of the Stream

Context. The Stream Context becomes non-active (i.e. shall not be selected by

the device to become the Current Stream) when the UASP command associated

with the Stream Context completes, or after an Abort Task command for the

Stream Context is successfully completed by the UASP device.

Note: The value of CStream is not exposed for a Stream endpoint by the xHC after an

endpoint transitions to the Stopped state (e.g. after to a Stop Endpoint

Command). So if the Transfer Ring of a Stream Context is not empty, then

software shall use an out-of-band mechanism to determine whether a Stream

Context is active or not.

For more information on Streams refer to the section 8.12.1.4 of the USB3

specification.

4.12.1 xHCI Stream Protocol

The USB Stream Protocol adheres to the semantics of the standard SS Bulk

protocol, so the packet exchanges on a SS bulk pipe that supports Streams are

similar to a SS bulk pipe that doesn’t. The Stream Protocol is managed strictly

through manipulation of the packet header Stream ID field.

Stream selection is driven by a USB device. The Stream Protocol allows a device

to switch Streams on packet boundaries.

 233

This section references the General Stream Protocol State Machine (SPSM)

defined in the USB3 specification (Figure 8-19), which applies to both IN and

OUT endpoints. Unless otherwise stated, refer to the USB3 specification for the

specific details of Stream ID and packet management on IN or OUT endpoints.

Refer to USB3 section 8.12.1.4.2 for the IN Stream Protocol, and section

8.12.1.4.3 for the OUT Stream Protocol details.

Figure 4-19: xHC Stream Protocol State Machine (xSPSM)

Idle
Prime

Pipe

Disabled

Start

Stream

Move

Data

EP not

Config d

&

&

&

&

&

Figure 4-19 illustrates the xHCI Stream Protocol state machine, which overlays

the USB Stream Protocol State Machine described in the USB3 spec. This section

describes the xHC’s role in the execution of the Stream Protocol. There is a 1:1

correspondence of the states described in the xSPSM and those defined in the

USB3 SPSM. The xSPSM identifies the xHCI’s role in advancing the USB3 SPSM.

Refer to Appendix E for state machine notation.

The xSPSM associated with an unconfigured endpoint shall enter the Disabled

state when a Configure Endpoint Command is executed and Streams are enabled

(MaxPStreams >0).

The first time the endpoint doorbell is rung after entering the Disabled state,

the xHC shall transition the xSPSM to the Prime Pipe state, and the device

should automatically transition the xSPSM to the Idle state.

234

Note: The USB packet exchanges that transition the SPSM through its states are

described in USB3 specification section 8.12.1.4.

The Prime Pipe state is used by the xHC to inform the USB device that host

memory buffers have been modified or added to the endpoint by system

software. The device may use this information as queue to start or restart

stream activity.

To facilitate the xSPSM management of Prime Pipe transitions, an Idle Prime

Pipe Value (IPPV), LCStream Flow Control Value (LFCV), and Doorbell Pending

Value (DBPV) may be implemented by the xHC as a shadow flags. All three flags

are initially cleared (‘0’). The xSPSM utilizes IPPV. LFCV, and DBPV.

IPPV is cleared (‘0’) when the Idle state is entered from the Start Stream or

Move Data state and set (‘1’) when the Prime Pipe state is entered. IPPV is used

to limit Prime Pipe transitions to one per Idle state entry.

LFCV records if the LCStream was flow controlled by the device. In this case, the

xHC should not generate a Host Initiated Data Move if buffers are posted for the

LCStream. LFCV is updated when the Move Data state is exited. If the Move Data

state was exited due to an NRDY(Stream n) condition then LFCV is set, otherwise

LFCV is cleared. Refer to the IMDSM and OMDSM (Figures 8-30 and 8-32,

respectively) in the USB3 specification for more information on the

NRDY(Stream n) condition.

DBPV is cleared when entering the Start Stream or Move Data states and set if

the doorbell is rung while the xSPSM is in the Start Stream or Move Data states.

DBPV records doorbell rings while the xSPSM is not in the Idle state, so that a

Prime Pipe state may be immediately forced when the Idle state is reentered.

To further accelerate the Stream protocol an xHC implementation may

optionally capture the DB Stream ID value when the doorbell is rung. A fourth

shadow flag, DB Stream ID Captured Value (DSICV) is set if the xHC hardware

captures the DB Stream ID when the doorbell is rung, otherwise it is cleared.

If the doorbell for the endpoint is rung while in the Idle state the following

algorithm shall be applied:

• If Host Initiated transitions are disabled (HID = ‘1’):

• if IPPV = ‘0’, transition to the Prime Pipe state.

• if IPPV = ‘1’, remain in the Idle state.

• If HID = ‘0’:

• If the xHC captures the DB Stream ID when the doorbell is rung (DSICV=1):

• If LFCV = ‘0’ and the DB Stream ID value equals LCStream41, transition to the

41Refer to section 8.12.1.4.1 in the USB3 specification for the definition of LCStream.

 235

Move Data state.

• If LFCV = ‘1’ or the DB Stream ID value does not equal LCStream:

• if IPPV = ‘0’, transition to the Prime Pipe state.

• if IPPV = ‘1’, remain in the Idle state.

• If the DB Stream ID is not captured when the doorbell is rung (DSICV=0), access

the Transfer Ring associated with LCStream to determine whether it is empty:

• If LFCV = ‘0’ and the Transfer Ring is not empty (TD(LCStream)), transition to

the Move Data state.

• If LFCV = ‘1’ or the Transfer Ring is empty (!TD(LCStream)), transition to the

Prime Pipe state.

Note: Due to internal resource or other limitations, an xHC implementation may disable

Host Initiated transitions for an endpoint, i.e. the xSPSM may operate as if HID is

always ‘1’, irrespective of the value of the field in the Endpoint Context.

Refer to section 4.12.1.1 for more information on Host Initiated transitions to

the Data Move state.

When the xSPSM returns to the Idle state from the Prime Pipe state the xHC

shall set the IPPV flag to ‘1’, flagging the fact that a Prime Pipe transition has

been executed while in Idle.

When the xSPSM transitions from the Idle to the Start Stream or the Move Data

state the xHC shall clear the DBPV flag to ‘0’, preparing it to record any Doorbell

rings while it is in the Start Stream or Move Data states.

If the endpoint’s doorbell is rung while in the Start Stream or Move Data state,

the DBPV flag is set to ‘1’.

Note: If an error (USB Transaction, timeout, etc.) is detected in the SuperSpeed ISPSM

(Figure 8-29 in the USB3 specification) Prime Pipe or Prime Pipe Ack state, or

the OSPSM (Figure 8-31 in the USB3 specification) Prime Pipe, Start Stream End,

or the Prime Pike Ack state, the xHC shall generate a Transfer Event with the TRB

Pointer and TRB Transfer Length fields = ‘0’, to the Event Ring identified by the

Slot Context Interrupter Target field.

When the Idle state is entered from the Start Stream or Move Data state, the

IPPV flag is cleared to ‘0’, enabling one Prime Pipe transition while in the Idle

state.

If in the Idle state and the IPPV flag is ‘0’ and DBPV is ‘1’, the xSPSM shall

transition to the Prime Pipe state, informing the device of the recorded doorbell

ring.

A Stream ID is a zero-based value that indexes into the endpoint’s Stream

Context Array starting at offset ‘0’, as illustrated in Figure 4-20.

The xHC uses the value of the Stream ID field, received in a SuperSpeed

Transaction Packet (TP) or Data Packet (DP), as an index into the Stream Context

236

Array(s) to access the Stream Context associated with the packet. Refer to

section 8.2 in the USB3 specification for a discussion of SuperSpeed Packet

Types.

If Streams are defined for an endpoint, then:

• The Endpoint Context MaxPStreams field is > ‘0’.

• The Endpoint Context TR Dequeue Pointer field points to a Primary Stream Context

Array.

• The Primary Stream Context Array shall contain MaxPStreams Stream Context data

structures.

Streams may only be defined for Bulk endpoint types.

The MaxPStreams field in the Endpoint Context identifies the number of Streams

supported by the Primary Stream Array of the endpoint. If MaxPStreams = ‘0’,

then the endpoint is a standard endpoint and its TR Dequeue Pointer field points

to a Transfer Ring. The value of the MaxPStreams field shall not exceed the

value reported in the MaxStreams field of the SuperSpeed Endpoint Companion

Descriptor for the endpoint.

The Stream ID field of USB packets on endpoints that do not define Streams

shall be ignored by the xHC.

Refer to section 3.3.8 for more information on how a Stream is affected by a

Stop Endpoint Command . Refer to section 4.6.10 for more information on how a

Stream is affected by a Set TR Dequeue Pointer Command .

4.12.1.1 Host Initiated Data Move

A Host Initiated transition from the Idle to the Data Move state is described in

the General Stream Protocol State Machine (SPSM) of section 8.12.1.4 in the

USB3 specification. The objective of a Host Initiated transition to Data Move is

to initiate a Data Move operation that has a high probability of being accepted

by the device.

A doorbell is rung when work is added to a Transfer Ring. The DB Stream ID

indicates the specific Stream of the endpoint that the doorbell ring references.

An xHC implementation is not required to capture the value of DB Stream ID

field when the doorbell is rung, however this feature may be used to accelerate

SPSM transitions. When the doorbell is rung in the Idle state, the DB Stream ID

value explicitly identifies the Stream that has had work added to it, thus

eliminating the need to access the associated Transfer Ring to determine this

condition. In Figure 4-19 the DB Stream ID Capture Value (DSICV) shadow flag is

used to indicate whether an xHC implements this feature.

 237

Some Stream usage models may operate more efficiently if the device maintains

full control over Stream selection. Host Initiated transitions from the Idle to the

Move Data state may be disabled by setting the Host Initiated Disable (HID) flag

in the Endpoint Context to ‘1’.

4.12.2 Stream ID Management

The xHCI architecture provides software with the ability to increase or reduce

the number of Streams supported by an xHC Endpoint Context during runtime,

and support for the case where a large number of Streams would cause a Stream

Context Array to exceed a PAGESIZE.

Both of these features are supported through hierarchical Stream Context

Arrays. With this approach, the Endpoint Context references a Primary Stream

Array, which in turn may reference a Secondary Stream Array . Figure 4-20

illustrates the relationship between the Endpoint Context, the Primary Stream

Context Array, and the Secondary Stream Context Array .

If the MaxPStreams field of the Endpoint Context is greater than ‘0’, then

Streams are supported by the endpoint and the TR Dequeue Pointer field points

to a Primary Stream Array with 2MaxPStreams+1 entries. Refer to Table 6-8 for the

definition of MaxPStream.

Note that the MaxStreams field of the SuperSpeed Endpoint Companion

Descriptor identifies the maximum number of Streams that the associated

endpoint supports, however software may configure the Primary Stream Array of

the associated endpoint with less than MaxStreams entries and grow the

number of hardware supported Streams later.

Figure 4-20: Stream Context Data Structures

Slot

Control EP 0

EP1 OUT

(Max Streams = 0)

EP1 IN

(Max PStreams = 3)

EP2 OUT
(Max Streams = 0)

EP2 IN
(Max Streams = 0)

Stream Context 0
(PSID = 0, SSID = 0, SCT = 3)

Stream Context 1
(PSID = 1, SSID = 0, SCT = 1)

Stream Context 2
(PSID = 2, SSID = 0, SCT = 3)

Device Context

Primary

Stream Context Array TR

Ring

TR

Ring

TR

Ring

TR

Ring

TR

Ring

TR

Ring

TR

Ring Stream Context 0
(PSID = 0, SSID = 0, SCT = 0)

Stream Context 1
(PSID = 0, SSID = 1, SCT = 0)

Secondary

Stream Context Array 0

...
Stream Context 15

(PSID = 15, SSID = 0, SCT = 1)

...
Stream Context 15

(PSID = 0, SSID = 15, SCT = 0)

Stream Context 0
(PSID = 2, SSID = 0, SCT = 0)

Stream Context 1
(PSID = 2, SSID = 1, SCT = 0)

Secondary

Stream Context Array 2

...
Stream Context 15

(PSID = 2, SSID = 15, SCT = 0)

TR

Ring

TR

Ring

238

In the example of Figure 4-20, to access a specific Stream Context, the xHCI

splits the Stream ID into two sub-fields; the Primary Stream ID (PSID) and

Secondary Stream ID (SSID). The Primary Stream ID is used as an index into the

Primary Stream Array. If the Secondary Stream ID is equal to ‘0’, then the Stream

Context in the Primary Stream Array shall contain a pointer to a Transfer Ring

(e.g. Primary Stream Context 1 or 15, SCT = ‘1’). If the Secondary Stream ID is

non-zero, then the Stream Context in the Primary Stream Array shall contain a

pointer to a Secondary Stream Array (e.g. Primary Stream Context 0 or 2, SCT =

‘3’), and the Secondary Stream ID is used as an index into the Secondary Stream

Array. Also note that the 0th element in Secondary Stream Context Array 0 (SSID

= 0, PSID = 0) does not point to a Transfer Ring because it Stream ID 0 is

reserved, however the 0th element in Secondary Stream Context Array 2 does

point to a Transfer Ring because it represents Stream ID 2 (SSID = 0, PSID = 2).

The boundary between the PSID and SSID sub-fields is defined by the

MaxPStreams field of the Endpoint Context , Refer to Table 6-8. The PSID resides

in the low order bits of a Stream ID and the SSID resides in the high order bits.

All endpoints that declare Streams shall be initialized to point to a Primary

Stream Array. Secondary Stream Arrays may be defined at initialization or run

time. Software shall coordinate the allocation of Stream IDs with the

Primary/Secondary Stream Array layout of an endpoint. Note that in the example

of Figure 4-20, Stream Contexts 0 and 2 in the Primary Stream Context Array

point to Secondary Stream Context Arrays . To access a Stream Context in the

Secondary Stream Array referenced by Primary Stream Context 0, software shall

set the Primary Stream ID to 0, and the Secondary Stream ID to the index of the

Secondary Stream Context. Note that the Stream ID value ‘0’ (i.e. PSID & SSID =

‘0’) is reserved by the USB3 spec and should never be presented to the xHC by a

device that declares a Stream endpoint. Hence in the example of Figure 4-20,

Stream Context 0 in Secondary Stream Context Array 0 is reserved and shall not

be accessed by the xHC.

Note: If Secondary Stream Arrays are enabled, then Stream Context 0 of the Primary

Stream Context Array shall always reference a Secondary Stream Array (i.e. SCT

> ‘1’). An SCT value of ‘0’ or ‘1’ may result in undefined behavior.

The value of MaxPStreams informs the xHC of the size of the Primary Stream

Array. If Secondary Streams are enabled, then the maximum size of a Primary

Stream Array is 256 entries (MaxPStreams = ‘7’). The Stream Context Type (SCT)

field in each Stream Context identifies whether a context in the Primary Stream

Array points to a Transfer Ring or a Secondary Stream Array . The SCT field also

identifies the number of entries in a Secondary Stream Array . This flexible

mechanism must be carefully managed by software to ensure that the SIDs that

it generates shall not cause the xHC to reference an out-of-range Secondary

Stream Context.

 239

The maximum size Primary Stream Array supported by an xHC implementation is

defined by the MaxPSASize field in the HCCPARAMS1 register (refer to Table

5-13).

The NSS field in the HCCPARAMS1 register (Table 5-13) identifies whether an

xHC implementation supports Secondary Stream Arrays .

4.12.2.1 Stream Array Bounds Checking

Stream Array bounds checking shall be supported by the xHCI. This feature

ensures that an invalid Stream ID presented by a device or a Set TR Dequeue

Pointer Command shall not cause the xHC to reference host memory that it

doesn’t have access to.

The size of the Primary Stream Array shall be determined by MaxPStreams.

If Linear Streams are enabled, then the maximum size of a Primary Stream Array

shall be 64K entries.

Note: The Stream ID values FFFFh (NoStream) and FFFEh (Prime) are reserved by the

USB3 spec. Hence, if 64K Stream Contexts are defined, the last two are reserved

and shall not be accessed by the xHC.

If Streams are enabled (MaxPStreams > ‘0’) then the xHC shall perform the

following checks when parsing a Stream ID presented by a USB packet or a Set

TR Dequeue Pointer Command .

Note: The following tests are defined for a Stream ID presented by a USB packet. If a

boundary error is detected on a Stream ID presented by a Set TR Dequeue Pointer

Command a Command Completion Event shall set its Completion Code to TRB

Error.

• If a Stream ID = ‘0’ the xHC shall generate a Transfer Event with the Completion Code

set to Invalid Stream ID Error and shall halt the endpoint.

• If the TR Dequeue Pointer field of a Stream Context data structure equals ‘0’:

• If the Stream Context Type (SCT) equals Transfer Ring:

• The xHC shall interpret the value as an “empty” Transfer Ring and shall not

attempt to DMA TRBs from the address and reject the request with a

NoStream response.

• If the Stream Context Type (SCT) equals SSA:

• The xHC shall generate a Transfer Event with the Completion Code set to

Invalid Stream Type Error, shall halt the endpoint, and shall not attempt to

DMA a Stream Context data structure from the address.

If Linear Stream Array mode is enabled (Linear Stream Array42 (LSA) flag = ‘1’):

42The Linear Stream Array (LSA) field is defined in Table 6-8.

240

• If a Stream ID is less than the Primary Stream Array size defined by MaxPStreams and

greater than ‘0’, then the xHC shall check Stream Context Type (SCT) of Stream

Context data structure in the Primary Context Array as follows:

• If Primary:Transfer Ring (Stream Context Type43 (SCT) field = ‘1’):

• The Stream Context is valid.

• else

• The Stream Context is not valid and the xHC shall generate a Transfer Event

with the Completion Code set to Invalid Stream Type Error and shall halt the

endpoint.

• If a Stream ID is ‘0’ or greater than or equal to the Primary Stream Array size defined

by MaxPStreams the xHC shall generate a Transfer Event with the Completion Code

set to Invalid Stream ID Error and shall halt the endpoint.

If Secondary Stream Arrays are enabled (LSA = ‘0’):

• Use the MaxPStreams+1 low order bits of the Stream ID to index into the Primary

Stream Array.

• Check SCT field of the Primary Stream Array Stream Context data structure:

• If Secondary:Transfer Ring (SCT = ‘0’):

• The xHC shall generate a Transfer Event with the Completion Code set

to Invalid Stream Type Error and shall halt the endpoint.

• else if Primary:Transfer Ring (SCT = ‘1’):

• If the SSID is not ‘0’:

• The Stream Context is not valid and the xHC shall generate a

Transfer Event with the Completion Code set to Invalid Stream ID

Error and shall halt the endpoint.

• else

• The Stream Context is valid.

• else

• Primary:SSA (SCT = ‘2’ to ‘7’).

• If the SSID is ‘0’ or out of range as defined by the Primary:SCT Secondary

Stream Array Size, then the xHC shall generate a Transfer Event with the

Completion Code set to Invalid Stream ID Error and halt the endpoint.

• Check SCT of secondary Stream Context data structure:

• If not Secondary:Transfer Ring (SCT = ‘0’):

• The Stream Context is not valid and the xHC shall generate a

Transfer Event with the Completion Code set to Invalid Stream

Type Error and shall halt the endpoint.

• else

43The Stream Context Type (SCT) field is defined in Table 6-13.

 241

• It is a Secondary:Transfer Ring type and the Stream Context is

valid.

Note: If a non-CStream SID is received in the Move Data state then the pipe shall halt

with a Invalid Stream Type Error completion code.

Note: If an NRDY with a non-Prime SID is received in the Prime Pipe state then the pipe

shall halt with an Invalid Stream Type Error completion code. The SID shall be

ignored if the Deferred bit is set in a packet, or an ERDY is received, in the Prime

Pipe state, and no Invalid Stream Type Error shall be generated.

4.12.3 Evaluate Next TRB (ENT)

The Evaluate Next TRB (ENT) flag applies to all Transfer Rings, and it is

particularly important for Stream Contexts. It provides a means of forcing the

execution of a terminating Event Data TRB (4.11.5.2) when a Stream is

terminated.

If the device initiates the xSPSM (4.12.1) transition from the Move Data to the

Idle state, the xHC does not have visibility to the conditions that caused it. If the

transition is due to a temporary condition e.g. the device needed to switch to a

higher priority Stream or flow control the current Stream, then the Stream will

be rescheduled at a later time by the device. However, if the transition was due

to the device completing the data transfer associated with the Stream, then the

Stream may not be scheduled again by the device.

When the transition to the Idle state occurs, the xHC is expected to save the

state of the Stream (e.g. the Transfer Ring Dequeue Pointer) so that it may pick

up where it left off the next time the Stream is scheduled. Note that the

transition to the Idle state may occur in the middle of a TD, so the saved Stream

state shall support the ability to continue a partially completed TD.

If the transition to the Idle state was due to one of the temporary conditions

described above, then the xHC should wait for the device to reschedule the

Stream. However, if the transition to the Idle state was due to a completed

transfer, then the xHC should complete the TD before saving the Stream state.

If a TD is comprised of one or more Normal TRBs and terminated with an Event

Data TRB, then the transition to the Idle state (and associated Stream state save)

could occur after all the data for the TD has been moved (e.g. after Transfer

Event TRBs have been executed), but before the Event Data TRB is executed.

Under these conditions, the execution of the Event Data TRB necessary to

complete the TD will not occur until the next time the Stream is scheduled. This

could lock up the Stream if software was waiting for the TD to complete before

scheduling the Stream again.

Before the transitioning a Stream pipe to the Idle state, then the xHC shall

evaluate the ENT flag in the last TRB completed, and if the ENT flag is set (‘1’),

then the xHC shall evaluate the next TRB before saving the Stream state.

242

Setting the ENT flag in the last Normal TRB of the TD described above, allows

the xHC to execute the terminating Event Data TRB and complete the TD before

saving the Stream state, thus eliminating the lock up condition.

Note: System software shall set the ENT flag in the last Transfer TRB before a

terminating Event Data TRB in a TD. This action ensures the timely execution of

an Event Data TRB if the Transfer Ring is flow controlled.

When the xHC detects the Chain and ENT bits both set to ‘1’ in a TRB, it shall

evaluate the next TRB. If the next TRB is an Event Data TRB, the xHC shall

generate the associated Event Data Transfer Event before saving the Stream

state. If the next TRB is not an Event Data TRB , the xHC shall save the Stream

state, i.e. evaluate the next TRB the next time the associated Stream is

scheduled.

Note: System software should only set the ENT flag in a TRB if the next TRB is an Event

Data TRB and the Event Data TRB is the last TRB in a TD. The ENT flag does not

span TDs, therefore the ENT flag is valid only if the Chain bit (CH) is ‘1’.

Note: The ENT flag shall “span” a Link TRB if there is a Link TRB between the TRB with

the ENT flag set and the next Transfer TRB. i,e, if the ENT flag is set in a TRB that

it is immediately followed by a Link TRB, the xHC shall execute the Link TRB and

evaluate the TRB that the Link TRB points to, before advancing to the next

endpoint in the Pipe Schedule.

Note: If an endpoint is Halted due to an error while executing a TRB, a Transfer Event

shall be generated for that TRB and the xHC is not required to evaluate the ENT

flag of the TRB that generated the error.

4.13 Device Notifications

The USB3 specification defines a Device Notification Transaction Packet. The

Notification Type field in this packet defines 16 possible notification types.

Some notification types are handled directly by the xHC and others may be

reported to software. The Device Notification Control (DNCTRL) register allows

system software to individually select which notifications are important to it and

shall generate a Device Notification Event. Refer to section 6.4.2.7 for more

information on the Device Notification Event TRB.

Refer to section 7.5.1.6 in the USB3 spec for a complete definition of the various

Device Notification packet format and types.

Note: To support debugging, the DNCTRL register allows Device Notification Events to

be generated for notification types that are normally only handled by the xHC.

Note: The xHC shall use the Device Slot’s Slot Context Interrupter Target field to

determine the Event Ring that shall receive the event.

 243

4.13.1 Latency Tolerance Message Handling

Latency Tolerance Messaging (LTM) represents a new, more robust, system

technique for managing power consumption on a platform. Current platform

power management policies are forced to guess when and for how long to sleep.

These guesses usually force the platform to trade power savings at the expense

of platform performance, in particular performance of attached devices. LTM

adds the capability for attached devices to provide information that can improve

the host platform's ability to select when and how long to sleep. This is

accomplished by an attached device informing the host of its acceptable service

latency between accesses, the device's latency tolerance.

The xHC's role in supporting this new platform capability is to accept latency

tolerance values from USB3 devices, evaluate the values and forward the lowest

value to the host platform, using the host platform’s Latency Tolerance

Reporting (LTR) mechanism. LTM is optional normative, however shall be

supported by any xHC implementation that also supports a corresponding host

interconnect LTR mechanism. The form of the LTR mechanism used by the xHC

to forward these latency tolerance values to system will be host-specific and will

vary based on the interconnect architecture used by the host platform for device

communications (e.g. PCI Express, AMBA, etc.). The actual host-specific LTM

mechanism for a given platform is outside the scope of this specification.

USB3 defines a complimentary Latency Tolerance Messaging (LTM) mechanism.

USB3 LTM is an optional normative USB power management feature that utilizes

reported Best Effort Latency Tolerance (BELT) values to enable more power

efficient platform operation. These messages are supported by USB3 devices

(excluding hubs) using an optional USB3 “Device Notification

(DEV_NOTIFICATION)” Transaction Packet (TP) with a Notification_Type =

LATENCY_TOLERANCE_MESSAGE (LTM). This USB message is also referred to as

a Latency Tolerance Message (LTM) TP. The LTM TP contains the BELT value that

indicates the current tolerable service latency for that device. Refer to the USB3

Specification (section 8.5.6) for detail on DEV_NOTIFICATION Transaction

Packets and the BELT Messaging mechanism.

The Latency Tolerance Messaging Capability (LTC) bit in the HCCPARAMS1

register identifies whether the xHC shall support LTM handling. If LTC = '1', then

an xHC implementation shall support the LTR mechanism as described by the

appropriate system bus spec, USB LTM as described in section 8.5.6.4 of the

USB3 spec, and the Set LTV Command as described in section 4.6.14. If an xHC

implementation is designed for a bus/system that does not support an LTR

mechanism or decides not to support LTM, then LTC shall be '0', and the xHC

244

will not maintain internal LTM related variables described below, and software

shall not enable LTM in USB devices.44

When the host bus of the platform implements a host-specific LTM mechanism,

the xHC shall:

• Maintain an internal Current BELT variable, which represents the last BELT value

reported to the host. This variable is initialized to the value of tBELTdefault (as

defined in section 8.13 of the USB3 spec.).

• For each configured USB device, maintain an internal Device BELT variable. These

variables are initialized to the value of tBELTdefault.

• Recognize receipt of an USB LTM TP.

Upon receiving an LTM TP the xHC shall determine the lowest service latency

value for the attached USB subsystem by performing the following actions:

1. Extract the BELT value and multiplier from the LTM TP.

2. Record the value received for the device in the Device BELT variable

associated with the device.

3. Compare the Current BELT value to each Device BELT value.

a. If a device’s Device BELT value represents a smaller latency than

Current BELT, then set Current BELT equal to the smallest Device

BELT.

4. If the Current BELT value has been modified, then:

a. Format a host-specific Latency Tolerance Reporting (LTR)

message for transmission to the host.

b. Place the Current BELT value in the LTR message defined for the

host interconnect.

Note: Based on the host interconnect used by the platform and

the associated LTR mechanism, it may be necessary to translated

the BELT value into multiple forms before forwarding to the host.

c. Send the LTR message the host.

Step Record the value received for the device in the requiring that the xHC keep

a record of the value received is necessary to enable the comparison operation

in step Compare the . In addition, this value shall also be recorded in the event

44For example, If LTC = '1', then a PCIe xHC implementation is required to support PCIe Latency Tolerance
Reporting (LTR) as described in section 6.18 of the PCIe spec, USB LTM, and the Set LTV Command. If the xHC is
implemented on a non-PCIe bus then it would use the equivalent LTR mechanism defined for that bus.

 245

that the device is removed and under these circumstances the xHC shall set the

Current BELT value to tBELTdefault and re-evaluate for the lowest latency of the

remaining Device BELT values by executing Step Compare the and step If the

above.

Note: The manner in which the Current BELT and Device BELT variables are stored is

implementation specific and as such falls outside the scope of this specification.

The Set LTV Command TRB provides a means for host software to provide its

own “Device BELT” value. This command is optional normative, however it shall

be supported if the xHC also supports a corresponding host interconnect LTM

mechanism.

xHCI Device BELT is an internal variable that maintained by the xHC. The xHCI

Device BELT value is initialized to an “unconfigured” state. While the xHCI Device

BELT variables is “unconfigured”, it is not compared with the other Device BELT

variables in Step 3 above.

When a Set LTV Command is executed by the xHC:

• The BELT field of the Set LTV Command TRB is copied to the xHCI Device BELT

variable. This action transitions the xHCI Device BELT variable from “unconfigured”

to “configured”. When xHCI Device BELT is “configured”, it is compared with the other

Device BELT variables in Step 3 above.

• Re-evaluate for the lowest latency by executing Step 3 and step 4 above.

Refer to section 4.6.14 for more information on the Set LTV Command.

Refer to section 6.4.3.13 for more information on the Set LTV Command TRB.

Note: The xHC hardware automatically handles LATENCY_TOLERANCE_MESSAGE

Device Notifications (Notification Type = 2) so there is no need to enable Device

Notification Event generation for this notification type.

4.13.2 Function Wake

A USB3 device sends a FUNCTION_WAKE Device Notification Transaction Packet

to inform the host of a “Function Remote Wake”. Software should set flag N1 in

the DNCTRL register to enable the generation of Device Notification Events when

FUNCTION_WAKE Device Notifications are received.

Note: The FUNCTION_WAKE Device Notification Transaction Packet is used to indicate

“Function Remote Wake”. A Function Remote Wake is distinct from a “Remote

Wake” 45 that is initiated by a low level USB signaling.

45 Note that section 9.2.5.4 of the USB3 spec defines “remote wake” as being device level wake signaling, “enabled
when any function within a device is enabled for function remote wakeup”, however the USB2 LPM ECN
defines “remote wake” as link level Device Initiated L1 Exit signaling.

246

Refer to section 8.5.6 of the USB3 spec for more information on

FUNCTION_WAKE Device Notification Transaction Packets.

4.14 Managing Transfer Rings

This section presents an overview of how the host controller interacts with

Transfer Rings.

A number of terms that are used throughout this section are described below.

System software shall translate the device Endpoint Descriptor (and SuperSpeed

Endpoint Companion Descriptors) fields into the appropriate Endpoint Context

Interval, Max Packet Size , Max Burst Size , and Mult values. Refer to section 6.2.3

for the definition of Endpoint Context.

The xHC uses the Max Packet Size and Max Burst Size fields in the Endpoint

Context to manage transactions on the USB.

Transfer Descriptors (TDs) allow software to define contiguous blocks of data,

constructed from non-contiguous host memory buffers, that shall be passed to

or from a USB device.

The TD Transfer Size is defined by the sum of the TRB Transfer Length fields in

all TRBs that comprise the TD.

For IN pipes, a device may truncate the data transfer associated with a TD by

issuing a Short Packet before the TD is exhausted. In this case the xHC shall

retire the TD that received the Short Packet and advance to the next TD on the

Transfer Ring or the Enqueue Pointer (i.e.Cycle bit transition), whichever is

encountered first.

If the Interrupt On Completion (IOC) or Interrupt-on Short Packet (ISP) flags are

set in the TRB that received the Short Packet, a Transfer Event shall be

generated with the Completion Code set to Short Packet.

An endpoint is considered Active when it is on the xHC’s Pipe Schedule, and

Inactive if it is not. Ringing the Doorbell of an endpoint in the Running state will

activate it, and the xHC shall place the endpoint in its Pipe Schedule. While the

endpoint is Active the xHC shall actively process TDs on its Transfer Ring. If the

Transfer Ring for the endpoint is exhausted or the endpoint exits the Running

state, the endpoint is pulled from the xHC’s Pipe Schedule and placed in Inactive

state. Software may ring the Doorbell of an endpoint in the Running state to

reactive an inactive endpoint.

A Bus Instance (BI) represents a “unit” bus bandwidth at the speed that the BI

supports. The bit rate cited for a USB bus (e.g. SS 5Gb/s. HS 480Mb/s, etc.)

should not be confused with the “Total Available Bandwidth”, which is the

maximum bandwidth available for actually moving data through a BI.

 247

The Total Available Bandwidth identifies a BI’s ability to move real data. As rule

of thumb, the Total Available Bandwidth will be at least 20% lower than the

cited bit rate of a BI, or more depending on the mix of packet sizes. Also note

that multiple Root Hub ports may share the bandwidth of a single BI. The

mapping of BI to Root Hub ports is xHC implementation dependent and not

exposed to software.

During each IN transaction, the xHC shall use the Max Packet Size to detect

Packet Babble errors. If a babble error is detected, a Transfer Event shall be

generated for the offending TRB, with the Completion Code set to Babble

Detected Error.

When the xHC detects that a Transfer Ring will be exhausted after the execution

of a TP or DP (e.g. the last packet of the last TRB of the last TD on a Transfer

Ring), it should clear the ACK TP or DP Packet Pending (PP) bit to ‘0’. If Max Exit

Latency is greater than ‘0’, then the xHC should clear the Packet Pending flag in

the last packet of each Isoch TD. The Packet Pending bit shall be set to ‘1’ in all

other ACK TPs or DPs generated by the xHC.

4.14.1 General Scheduling Model

When a doorbell is rung for a Running endpoint, the xHC places the endpoint on

a Pipe Schedule. An xHC will typically maintain two Pipe Schedules per Bus

Instance, one for periodic pipes (Isoch and Interrupt endpoints) and another for

async pipes (Control and Bulk).

Each pass through a Pipe Schedule an endpoint is given one “Service

Opportunity”. A Service Opportunity (SO) is a block of time that the xHC

allocates for moving packets on USB, for a specific endpoint.

Depending on the endpoint type and settings,1 to 3 USB Transactions may be

executed during a Service Opportunity (SO). USB Standard Transactions transfer

a single Data Packet (DP), however a single USB Burst Transaction may transfer

multiple DPs.

The Max Service Opportunity Packet Count (MSOPC) is the maximum number of

DPs that the xHC shall schedule during one Service Opportunity (SO). The

MSOPC value for an endpoint is set by the number of packets defined by the

Endpoint Context Max Burst Size field times the Mult field.

The Transfer Descriptor Packet Count (TDPC) is the number of packets required

to move all the data defined by a TD. Note that a partial or a zero-length packet

increments this count by 1.

The Transfer Ring Packet Count (TRPC) is the sum of the TDPCs for all TDs on a

Transfer Ring.

248

The Service Opportunity Packet Count (SOPC) is the number of packets actually

scheduled by the xHC during a SO. The SOPC value shall be initialized at the

beginning of a SO, and decremented as each transaction or retry of the SO is

completed. When SOPC reaches zero the SO for the current endpoint is

complete, the xHC shall initiate a SO for the next endpoint in the schedule.

Retries may terminate the current SO and continue on the next SO.

Normally SOPC is less than or equal to MSOPC, however the xHC is allowed to

limit the SOPC to a value less that MSOPC. And if only one endpoint is in the

Pipe Schedule SOPC may be greater than MSOPC, e.g. a continuous burst on the

bus. Refer to the individual pipe type discussions below for more details on

SOPC usage.

The endpoints assigned to a periodic schedule are closely controlled by the xHC

through the Address Device and Configure Endpoint Commands to ensure that

the periodic Pipe Schedule consumes no more than a maximum percentage of

the Total Available Bandwidth. Any USB bandwidth not consumed by periodic

pipes, is available to async pipes.

Note: The “maximum percentage” of the Total Available Bandwidth depends on the

speed of the periodic pipe. Refer to section 4.14.2 for more information.

The endpoints assigned to an async schedule are considered “Best Effort” and

may consume any USB bandwidth not consumed by periodic pipes. Each

endpoint in an async Pipe Schedule is given one Service Opportunity (SO) per

pass through the schedule.

4.14.1.1 System Bus Bandwidth Scheduling

System bus bandwidth is limited, especially in cases where the xHC is connected

to a system by a bus that provides less bandwidth than the USB bus instances

that it supports. To ensure consistent and reliable operation of USB endpoints

the xHC shall manage the system bus activity associated with an endpoint using

methods that are similar to the way that it manages the USB bandwidth

associated with an endpoint.

For example, given the system bus bandwidth available to the xHC it shall

distribute that bandwidth across its active endpoints. Periodic endpoints will

have priority over async endpoints, and all async endpoints will be given fair

access to the remaining system bus bandwidth.

The xHC uses the value of the Average TRB Length field in the Endpoint Context

as a metric to help compute the system bus bandwidth requirements of an

endpoint. The accuracy of this parameter is particularly important for periodic

endpoints. An xHC will use the Average TRB Length and other metrics to

allocate/distribute system bus bandwidth to endpoints. These “other” metrics

are xHC implementation specific and outside the scope of this specification. The

Average TRB Length field is computed by dividing the average TD Transfer Size

 249

by the average number of TRBs that are used to describe a TD, including Link,

No Op, and Event Data TRBs.

A Configure Endpoint Command may be rejected by the xHC with a Bandwidth

Error or a Secondary Bandwidth Error if it determines that there is not enough

system bandwidth available for it.

 IMPLEMENTATION NOTE

TRB Lengths and System Bus Bandwidth

System buses are most efficient when they are moving large transfers. As transfer sizes

become smaller, the throughput of a bus can fall off rapidly.

The xHCI supports byte granularity for the TRB Data Buffer Pointer and Length fields,

which enables “fine-grain” scatter/gather operations. The threshold where it is more

efficient to declare many small TRBs and allow the xHC to use DMA to scatter/gather

data vs. having software copy that data to/from larger buffers will depend on many

factors (e.g. the xHC implementation, system I/O bus performance, system memory

performance, etc.). The xHCI does not place lower limits on TRB sizes, which could

constrain the ability of a system developer to optimize the performance/throughput of

their entire system. However, an xHC will place limits on the system bus bandwidth

allocated to an individual endpoint, to ensure that other endpoints are not affected by

an endpoint that requires disproportionately large number of system bus transactions

to complete its USB transactions.

A programmer should assume that defining large numbers of small TRB Data Buffers

will affect USB throughput and design accordingly. The extent to which the system

bandwidth demands of a single endpoint will affect that endpoint or other endpoints is

xHC implementation dependent.

Note that an Average TRB Length of 16 implies that 50% of the system bus bandwidth

consumed by an endpoint moving TRBs, i.e. each 16 byte TRB defines 16 bytes of data.

And an Average TRB Length of 1024 implies that 1.5% of the system bus bandwidth

consumed by an endpoint moving TRBs. Ideally the Average TRB Length represents the

true average size of the data buffers that the TRBs of an endpoint reference, which will

generally be a class specific or application specific value. If precise values for the Average

TRB Length of an endpoint are not available, software may calculate a running average

of the size of TRBs scheduled for an endpoint in real-time and periodically updating

Average TRB Length. Reasonable initial values of Average TRB Length for Control

endpoints would be 8B, Interrupt endpoints 1KB, and Bulk and Isoch endpoints 3KB.

4.14.2 Periodic Transfer Ring Scheduling

Isoch and Interrupt endpoints define “periodic” transfers. Periodic transfers

provide guaranteed bandwidth on the USB.

250

A Periodic TD is an Isoch TD or a TD scheduled on an interrupt endpoint

Transfer Ring.

A Periodic Pipe is an Isoch or interrupt endpoint.

The Microframe Index Register (MFINDEX) is advanced at the Minimum Interval

Time (MIT). The MIT is equal to 125 µs., corresponding to High-Speed and

SuperSpeed microframe timing. The time that the Microframe Index Register is

advanced, is defined as the MIT Boundary.

The MIT multiplied by the Endpoint Context Interval field as a base 2 exponent,

defines Endpoint Service Interval Time (ESIT).

 ESIT = 2Interval * 125 µs.

All ESITs are temporally aligned with MIT Boundaries.

The xHC uses the Max Endpoint Service Time Interval Payload (Max ESIT

Payload) and Interval fields in the Endpoint Context to compute the USB

bandwidth that it shall reserve for a periodic endpoint. A periodic pipe may, on

an ongoing basis, use less bandwidth than that reserved. A USB device reports, if

necessary, the actual bandwidth used via its normal, non-USB defined

mechanisms.

Software shall define the maximum periodic payload per ESIT as follows for

USB2 periodic endpoints:

 Max ESIT Payload in Bytes = Max Packet Size * (Max Burst Size + 1).

Software shall define the maximum periodic payload per ESIT as follows if the

SuperSpeed Endpoint Companion:bmAttributes:SSP ISO Companion bit is

cleared (0):

 Max ESIT Payload in Bytes = SuperSpeed Endpoint Companion

Descriptor:wBytesPerInterval.

Software shall define the maximum periodic payload per ESIT as follows if the

SuperSpeed Endpoint Companion:bmAttributes:SSP ISO Companion bit is set (1):

 Max ESIT Payload in Bytes =

SuperSpeedPlus Isochronous Endpoint Companion

Descriptor:dwBytesPerInterval.

Refer to section 6.2.3.8 for more information on Max ESIT Payload .

Note: Undefined behavior may result if an Isoch TD is encountered which defines more

that Max ESIT Payload bytes.

The xHC bandwidth calculation for a periodic endpoint is defined as follows:

Reserved Bandwidth in MBytes/s = Max ESIT Payload / (2Interval * 0.000125)

 251

Per the USB specifications, the Maximum Allowed ESIT Payload of a FS

Interrupt, FS Isoch, HS Interrupt, HS Isoch, SS Interrupt, or SS Isoch periodic

pipe are defined as 64B, 1KB, 3KB, 3KB, 3KB, and 48KB, respectively.

The maximum percentage of Total Available Bandwidth depends on the speed

of the BI. The USB requires that no more than 90% of any frame be allocated for

periodic (isochronous and interrupt) transfers for SuperSpeed and full-speed

endpoints. High-speed endpoints shall allocate at most 80% of a microframe for

periodic transfers.

The xHC is free to schedule a isoch transfer at any time within an ESIT as long as

the complete TD shall have an opportunity to complete within the ESIT.

For SuperSpeed pipes, if the Endpoint Context Max Exit Latency field is greater

than ‘0’, the xHC shall transmit a PING packet a minimum of Max Exit Latency

prior to initiating an Isoch transfer, to transition the links in the path between

the xHC and the device to the U0 state. PING generation is optional for Interrupt

endpoints. Refer to section 4.23.5.2 for more information on Max Exit Latency

and its computation.

The Microframe Index (MFINDEX) register is incremented at the beginning of

each microframe. Figure 4-21 illustrates the required relationships between the

USB2 SOF FrameNumber and the SS Isoch Timestamp (ITS) Bus Interval Counter

field (refer to section 8.7 of the USB3 spec) 1/8th ms. counter values, and the

MFINDEX register. Figure 4-21 also illustrates the partitioning of the Frame

Index and µFrame Index fields of the MFINDEX register.

Figure 4-21: Microframe Index (MFINDEX) Register Mapping

USB2 SOF FrameNumber

Microframe Index Register

13 10 9 3 2 0

µFrame

Index
Frame Index

10 0

SS Isoch Timestamp Bus Interval Counter

To enable software computation of larger Microframe Index values, MFINDEX

Wrap Events may be enabled. If enabled, a MFINDEX Wrap Event is inserted on

the Event Ring of the Primary Interrupter every time the MFINDEX register wraps

from 03FFFh to 0. Refer to section 6.4.2.8 for a description of the MFINDEX

Wrap Event. Refer to the definition of the USBCMD register (5.4.1) for details on

252

the Enable Wrap Event (EWE) flag that may be used to enable MFINDEX Wrap

Events.

Note: If the target Event Ring is full, MFINDEX Wrap Events shall be dropped by the

xHC.

If all Root Hub ports are in the Disconnected , Disabled, Training, or Powered-

off state the MFINDEX counting action may be stopped by the xHC to reduce

power consumption. The EU3S flag in the USBCMD register may be used to

optionally add the U3 state to list of port states that enable the counting action

to be stopped. Exiting any of these states on any port shall automatically restart

the MFINDEX counting action.

Refer to section 4.11.2.5 for more information on the use of the MFINDEX

register.

4.14.2.1 Isochronous Transfer Ring Scheduling

This section defines the xHCI operational model for isochronous Transfer Rings.

If an Isoch Endpoint Context is Active, the xHC shall process one Isoch TD from

its Transfer Ring each ESIT.

Software shall not define a TD Transfer Size for a TD of an Isoch endpoint that

exceeds the Max ESIT Payload.

The xHC may schedule multiple Service Opportunities (SOs) per ESIT.

SOPC is set to the smaller of TDPC or MSOPC.

The xHC shall compute the TD Transfer Size as it processes a TD. If in the

process of executing the TRBs of the TD the TD Transfer Size exceeds the Max

ESIT Payload or the Maximum Allowed ESIT Payload, then a Bandwidth Overrun

Error shall be generated for the offending TRB and the xHC shall advance its

Dequeue Pointer to the next Isoch TD boundary or the Enqueue Pointer

(i.e.Cycle bit transition), whichever is encountered first. Note that the pipe

remains Active after this error, the xHC simply truncates the transfer and

advances to the next TD.

If the Transfer Ring is empty and there is no TD defined to receive Isoch IN data,

the xHC shall remove the endpoint from the periodic schedule and generate a

single Transfer Event with the Completion Code set to Ring Overrun.

If the Transfer Ring is empty and there is no TD defined to transmit Isoch OUT

data, the xHC shall remove the endpoint from the periodic schedule and

generate a single Transfer Event with the Completion Code set to Ring Underrun.

Ringing the doorbell of a periodic endpoint that has encountered a Ring Overrun

or Ring Underrun condition shall place it on back on the periodic schedule.

 253

Interval values are limited to base 2 multiples. An ESIT Boundary is defined by

when the least significant bits of the MFINDEX register transition to ‘0’. e.g. if the

Interval equals 2 microframes, the ESIT Boundary is defined by the transition of

the least significant bit of the MFINDEX register to ‘0’. If the Interval equals 4

microframes, the ESIT Boundary is defined by the transition of the least

significant two bits of the MFINDEX register to ‘0’. And so on.

Note: Section 8.12.6 of the USB3 spec states that “If there is no data to send to an

isochronous OUT endpoint during a service interval, the host does not send

anything during the interval.” The USB2 spec is silent on this subject. When xHC

encounters a zero-length Isoch OUT TD on a Transfer Ring, it shall transmit a

zero-length DP to the USB bus regardless bus speed, consuming the Isoch TD

for the Service Interval. If the Transfer Ring is empty when the xHC attempts to

service an Isoch TD, no DPs shall be sent, and an Underrun Event shall be

generated.

4.14.2.1.1 High-speed endpoints

The USB Endpoint Descriptor (refer to section 9.6.6 in the USB2 spec.)

wMaxPacketSize field for a high-speed isochronous endpoint is divided into two

fields: the Maximum Packet Size (bits 0-10), and the Multiplier field (bits 11-

12). High-speed USB devices support “high-bandwidth” pipes via the Multiplier

field. The USB2 Maximum Packet Size and Multiplier bit fields of the

wMaxPacketSize fields are separated and passed to the xHC through the

Endpoint Context Max Packet Size and Max Burst fields respectively.

For high-speed devices, the xHC shall execute the specified number of Max

Packet Sized bus transactions specified by the Max Burst Size field in a single

microframe (MIT). The TD is used to service all transactions indicated by the Max

Burst field.

The maximum sized High-speed isochronous packet size supported is 1024

bytes. The Max Burst Size field may define up to up to 3 contiguous packets in a

burst.

For OUT transfers, the xHC shall transmit data packets with data fields less than

or equal to the endpoint’s Max Packet Size . If a TD defines more information

than will fit into the Max Packet Size and the Max Burst Size is greater than ‘0’,

the xHC shall transmit up to Max Burst Size+1 consecutive packets on the USB to

move the TD data. If more than one Max Packet Size packet is required to move

the data defined by a TD, then all packets associated with the TD are

transmitted as a contiguous burst in a single microframe of the ESIT. When all

bytes have been transmitted for an Isoch TD the xHC advances its Dequeue

Pointer to the next TD and waits for the next ESIT delay before scheduling the

endpoint again.

For IN transfers, the xHC may issue up to Max Burst Size+1 IN transactions of

Max Packet Size for a single Isoch TD. It is assumed that software has properly

254

initialized the Isoch TD to accommodate all of the possible data that may be

received in an ESIT. During each IN transaction, the xHC shall use Max Packet

Size to detect Packet Babble errors.

For IN transfers, the xHC keeps the sum of bytes received in an internal TD

Payload Length register. After all transactions for the endpoint have completed

for the ESIT, the local TD Payload Length register contains the total bytes

received. If the final value of local TD Payload Length register is less than the

value of TD Transfer Size, then less data than was allowed for was received from

the associated endpoint. This Short Packet condition shall assert a Short Packet

completion code only if the ISP or IOC flag was set on the TRB that the Short

Packet condition was detected on. If the device sends more than Max Packet

Size bytes, then the xHC shall generate a Transfer Event with the Completion

Code set to Babble Detected Error for the TRB that the error was detected on.

Refer to section 4.10.2.4 for more information on Babble Error handling.

If the Max Burst Size field is greater than ‘0’, then the xHC shall automatically

attempt to execute Max Burst Size+1 transactions on the USB. The xHC shall not

execute all Max Burst Size transactions if:

• The endpoint is an OUT and the TD is exhausted before all the transactions of the

burst have executed (e.g. ran out of data).

• The endpoint is an IN and the endpoint delivers a Short Packet, or an error occurs on

a transaction before all the transactions of the burst have been executed.

• The endpoint is an IN and the TD is exhausted before all the transactions of the burst

have executed (e.g. ran out of buffer space). This condition shall result in the xHC

terminating the Isoch TD with a Isoch Buffer Overrun Transfer Event.

Note: The Isoch Buffer Overrun condition shall force a Transfer Event for the TRB,

irrespective of the state of the IOC flag. System software may determine whether

to treat this condition as an error or not.

Refer to Appendix B for a table summary of the host controller required

behavior for all the High-speed USB2 high-bandwidth transaction cases.

4.14.2.1.2 Full-speed or High-speed endpoints

The end of a microframe may occur before all packets have been executed for a

high-speed or full-speed endpoint. When this happens, the xHC shall terminate

the Isoch TD with a Missed Service Error Transfer Event.

4.14.2.1.3 SuperSpeed endpoints

If the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor is

greater than ‘0’, the SuperSpeed endpoint supports “high-bandwidth” pipes.

Software shall pass the bMaxBurst value to the xHC through the Endpoint

Context Max Burst Size field.

 255

Additionally, the Mult value defined in bits 1:0 of the SuperSpeed Endpoint

Companion Descriptor bmAttributes field identifies the number of Bursts within

an ESIT that the device supports. This value is passed to the xHC through the

Endpoint Context Mult field. Note that the range of values for the Mult field is

limited by the USB3 spec to ‘0’ to ‘2’, or 1 to 3 bursts.

The maximum sized SuperSpeed isochronous packet size supported is 1024

bytes. The Max Burst Size field may define up to up to 16 contiguous packets in

a burst, and the Mult field may allow up to 3 bursts in an ESIT, allowing for up to

48KB per ESIT.

For OUT transfers, the xHC shall transmit data packets with data fields less than

or equal to the endpoint’s Max Packet Size . If a TD defines more information

than will fit into the Max Packet Size and the Max Burst Size is greater than ‘0’,

the xHC may transmit a burst of up to Max Burst Size+1 consecutive packets in a

single MIT. If a TD defines more information than will fit into a single burst and

Mult is greater than ‘0’, the xHC shall transmit up to Mult+1 bursts in an ESIT.

When all bytes have been transmitted for an Isoch TD the xHC advances its

Dequeue Pointer to the next TD and waits for the next ESIT delay before

scheduling the endpoint again.

For IN transfers, the xHC may issue up to (Max Burst Size + 1) * (Mult + 1) IN

transactions of Max Packet Size for a single Isoch TD. It is assumed that software

has properly initialized the Isoch TD to accommodate all of the possible data

that may be received in an ESIT. During each IN transaction, the xHC shall use

Max Packet Size to detect Packet Babble errors.

Refer to section 8.12.6.1 of the USB3 spec for more information on xHC

execution of SuperSpeed isochronous transactions.

For IN transfers, the xHC keeps the sum of bytes received in an internal TD

Payload Length register. After all transactions for the endpoint have completed

for the ESIT, the local TD Payload Length register contains the total bytes

received. If the final value of local TD Payload Length register is less than the

value of TD Transfer Size, then less data than was allowed for was received from

the associated endpoint. This Short Packet condition shall assert a Short Packet

completion code only if the ISP or IOC flag was set on the TRB that the Short

Packet condition was detected on. If the device sends more than TD Transfer

Size or Max Packet Size bytes (whichever is less), then the xHC shall generate a

Transfer Event with the Completion Code set to Babble Detected Error for the

TRB that the error was detected on. Note, that the xHC is not required to update

the Transfer Event TRB Transfer Length field in this error scenario. Refer to

section 4.10.2.4 for more information on Babble Error handling.

The host controller shall not execute all (Max Burst Size + 1) * (Mult + 1)

transactions if:

256

• The endpoint is an OUT and the TD is exhausted before all the transactions of the

burst have executed (ran out of data), or

• The endpoint is an IN and the endpoint delivers a Short Packet, or an error occurs on

a transaction before all the transactions of the burst have been executed.

• The endpoint is an IN and the TD is exhausted before all the transactions of the burst

have executed (e.g. ran out of buffer space). This condition shall result in the xHC

terminating the Isoch TD with a Isoch Buffer Overrun Transfer Event.

In addition to the Microframe Index (MFINDEX) register, the xHC shall maintain a

13 bit Delta Time down-counter that is cleared to ‘0’ at the MIT boundary and

incremented every 16.666~ ns. (i.e. 8 HS bit times). The Delta Time counter

identifies the delay, in 16.666~ ns. increments, between the start of the current

packet to the previous MIT Boundary. Note: A value of 7500 is reported if the

Delta Time counter is sampled exactly on a MIT Boundary.

The value of the Microframe Index (MFINDEX) register shall be written to bits

13:0 and the value of the Delta Time register shall be written to bits 26:14 of the

Isochronous Timestamp (ITS) field of Isochronous Timestamp Packets (ITP) when

they are sent. Refer to the USB3 specification section 8.7 for more information

on the ITP and the required accuracy of the ITS field.

• If an Isoch IN Transfer Ring is Active and the xHC is unable to send an isochronous IN

request (ACK TP) during an ESIT, (due to problems such as internal buffer overrun,

excessive DMA access latency, etc.) the xHC shall set the Completion Code to Data

Buffer Error in the Transfer Event generated for the associated Isoch TD. Note that

this is an error condition that should never occur.

• If an Isoch OUT Transfer Ring is Active and the xHC is unable to send an isochronous

OUT DP data during an ESIT (due to problems such as internal buffer overrun,

excessive DMA access latency, etc.), the xHC discards the data and notifies software

by setting the Completion Code to Data Buffer Error in the Transfer Event generated

for the associated Isoch TD. Note that this is an error condition that should never

occur.

• If the xHC receives a corrupted data packet, it discards the data and informs software

by setting the Completion Code to USB Transaction Error in the Transfer Event

generated for the associated Isoch TD.

Note: An IN Isoch endpoint may set the Completion Code to Isoch Buffer Overrun if the

Last Packet Flag (LPF) is not set in the last DP received in a Service Interval. Refer

to section 8.6 in the USB3 spec for more information on LPF.

4.14.2.1.4 Isochronous Scheduling Threshold

The Isochronous Scheduling Threshold (IST) field in the HCSPARAMS2 capability

register is an indicator to system software as to how the host controller pre-

fetches and caches TRB structures. It is used by system software when adding

isochronous work items. The value of this field indicates to system software the

minimum distance (in time) that it is required to stay ahead of the host

 257

controller while adding TRBs in order to have the host controller process them

at the correct time. In other words, software shall add a TRB to the ring some

period of time before that TRB is required to be executed, and the IST indicates

a minimum value for this period of time as required by the specific host

controller hardware implementation.

Software shall determine the host controller's current frame/microframe by

reading the MFINDEX register, to account for the uncertainty in the actual read

latency and position within the microframe, software shall always add a value of

one microframe to the value read.

It is recommended that software post sufficient TRB(s) to the ring to allow

uninterrupted processing by the host controller. This may be accomplished by

always placing multiple TD(s) on the ring that either exceed the time window

represented in the IST field or exceeds the round-trip delay in the host software,

which ever is greater.

The Isochronous Scheduling Threshold (IST) field definition can be found in

section 5.3.4.

A value of ‘2’ in the Isochronous Scheduling Threshold (IST) field indicates that

software can add a TRB no later than 2 microframes before that TRB is due to be

executed.

If bit [3] of IST is cleared to '0', software can add a TRB no later than IST[2:0]

Microframes before that TRB is scheduled to be executed.

If bit [3] of IST is set to '1', software can add a TRB no later than IST[2:0] Frames

before that TRB is scheduled to be executed.

Note: Undefined behavior may result if a partially formed Isoch TD is encountered, i.e.

the enqueue pointer (Cycle bit transition) is encountered before the end of the

TD (Chain = ‘0’). This condition may occur if software fails to honor the IST.

Note: Ideally the IST value declared by an xHC implementation represents a worst case

latency, however the xHC may encounter system latencies that cause it to skip a

scheduled Isoch TD even if software has met the IST requirements. These

conditions are normally indicated as a Missed Service Error. If Missed Service

Errors persist, software may choose to use a larger value for IST than that

reported by the xHC.

4.14.3 Interrupt Transfer Ring Scheduling

The value of the Endpoint Context Interval field is treated as a throttling

parameter or a deadline by the xHC for Interrupt endpoints. The following rules

apply to Interrupt Transfer Ring scheduling:

• If an interrupt transfer ring has been idle, the maximum time between the xHC

receiving a doorbell ring for the endpoint and scheduling the first associated

258

interrupt transaction on USB for the first TD posted to Transfer Ring shall be equal

to IST + ESIT.

• If multiple Interrupt TDs are posted to an Interrupt endpoint Transfer Ring, the xHC

should consume no more than one TD per ESIT.

• Software may define a TD Transfer Size for a TD of an Interrupt endpoint that exceeds

the Max ESIT Payload.

• An Interrupt pipe executes a single SO per ESIT.

• SOPC is set to the smaller of TDPC or MSOPC.

• An Interrupt pipe shall transmit or receive no more that one Max ESIT Payload per

ESIT, e.g. if the Interrupt TD Transfer Size is greater than the Max ESIT Payload, then

the TD may take multiple ESITs to complete.

• A Short Packet shall terminate an IN Interrupt TD and the next TD (if present) shall

be scheduled in the next ESIT.

• Unexpected ERDYs shall be silently dropped.

Note: Since Interrupt pipes provide reliable data delivery but the number of packets

(including retries) per ESIT is limited by the value of MSOPC, packet retries may

cause an Interrupt TD to require more ESITs than expected to complete. If a

second TD is pending on the Transfer Ring when this condition occurs, it shall

be delayed until the first TD is successfully transferred.

To minimize the latency impact of retries on an Interrupt pipe, up to MSOPC

packets (including retires) may be transferred in an ESIT even if the initial SOPC

value was less than MSOPC.

An xHC implementation may exceed MSOPC packets per ESIT if it can

guarantee that additional packets do not affect the bandwidth guarantees that

have been established with other periodic endpoints.

4.14.3.1 Low-, Full-, and High-speed Endpoints

• Interrupt IN pipes

• If an IN transaction is NAKed, then the Interrupt TD will be retried in the next

ESIT.

• If the IN transaction times out, then the xHC shall retry the transaction for the

endpoint CErr times in the same ESIT if possible, or if the maximum number of

transactions per microframe has been reached, the xHC shall retry the

transaction in the next ESIT. If Bus Error Counter = 0, the endpoint shall halt.

• Interrupt OUT pipes

• If an OUT transaction is NAKed, then the xHC shall not issue another transaction

for the endpoint until 1 ESIT later.

 259

• If the OUT transaction times out, then the xHC shall retry the transaction for the

endpoint CErr times in the same ESIT if possible, or if the maximum number of

transactions per microframe has been reached, the xHC shall retry the

transaction in the next ESIT. If Bus Error Counter = 0, the endpoint shall halt.

For High Bandwidth endpoints, the Endpoint Context Max Burst Size field

specifies the maximum number of desired transactions per microframe. If the

maximum number of transactions per microframe has not been reached, the xHC

may immediately retry a transaction that failed during the current microframe. If

possible an xHC implementation should attempt an immediate retry of a failed

transaction since this minimizes impact on devices that are bandwidth sensitive.

If the maximum number of transactions per microframe has been reached, the

xHC shall retry the failed transaction at the next ESIT for the endpoint.

Note that for a high-bandwidth interrupt OUT endpoint, the host controller may

optionally immediately retry the transaction if it fails.

The xHC is allowed to issue less than the maximum number of transactions to an

endpoint per microframe only if the TD Transfer Size is less than the Max ESIT

Payload.

Normal DATA0/DATA1 data toggle sequencing is used for each interrupt

transaction during a microframe.

Refer to Table 4-7 for HS/FS Interrupt pipe actions based on Endpoint Response

and Residual Transfer State.

Refer to Appendix B for a table summary of the host controller required

behavior for all the high-bandwidth transaction cases.

4.14.3.2 SuperSpeed Endpoints

• ESIT*2 defines the maximum latency between an ERDY and an OUT DP or IN TP being

scheduled to a SS Interrupt endpoint.

• Interrupt IN pipes

• If Interrupt IN TDs are available, the xHC shall issue ACK TPs to the interrupt

endpoint at one ESIT or less intervals.

• If an IN request is responded to with an NRDY, then the xHC shall wait indefinitely

for a ERDY from the endpoint. System software is responsible for any timeouts.

The only exception to this rule is when an endpoint that has been flow controlled

by an NRDY is stopped with a Stop Endpoint Command then restarted by ringing

its doorbell. When the endpoint transitions to the Running state, it checks its

Transfer Ring and if a TD exists, it shall issue an IN.

• Once the xHC receives the ERDY TP, it shall send an IN request (via an ACK TP)

to the device no later than 2 x ESIT.

260

• If the xHC is unable to accept a valid Data Packet from a device due to internal

issues (e.g. internal buffer overrun, etc.), it shall set the ACK TP Host Error (HE) bit

to ‘1’.

• Interrupt OUT pipes

• If an OUT DP is responded to with an NRDY, then the xHC shall wait indefinitely

for a ERDY from the endpoint. System software is responsible for any timeouts.

The only exception to this rule is when an endpoint that has been flow controlled

by an NRDY is stopped with a Stop Endpoint Command then restarted by ringing

its doorbell. When the endpoint transitions to the Running state, it checks its

Transfer Ring and if a TD exists, it shall issue an OUT.

• If a DP was received by the device with an error, the Retry bit shall be set in the

returned ACK TP and the xHC should retry the same DP by the next ESIT at the

latest.

• If an OUT DP is responded to with a STALL TP, the xHC shall set the Halted flag

for the EP to ‘1’ and pull the endpoint from the Pipe Schedule. USB System

Software intervention is required to recover from the error.

Refer to Table 4-8 for SS Interrupt pipe actions based on Endpoint Response

and Residual Transfer State.

4.14.4 Asynchronous Transfer Ring Scheduling

Control and Bulk endpoints define “Asynchronous” transfers. Async endpoints

provide “best effort” delivery of their data. As such, their delivery delays are not

bounded.

An Async TD is a TD scheduled on a control or bulk endpoint Transfer Ring.

An Async Pipe is a control or bulk endpoint.

To ensure fairness across the pipes in the async schedule, the xHC shall

schedule Service Opportunities for each Async Pipe using a round-robin

algorithm. The maximum amount of async data moved for an Async Pipe during

a Service Opportunity is called the Max Service Transfer Size , and is defined by

an Endpoint Context’s Max Packet Size and Max Burst Size fields.

 Max Service Transfer Size = Max Packet Size * Max Burst Size

If the Max Service Transfer Size is greater than or equal to the TD Transfer Size

then one Service Opportunity is used to move the TD data. If the Max Service

Transfer Size is smaller than the TD Transfer Size then multiple service

opportunities will be necessary to move the TD data.

The xHC is allowed to schedule less packets during an Async Pipe Service

Opportunity than allowed for by the Max Burst Size .

 261

If async schedule execution is interrupted by periodic transfers, the xHC shall

retain an identifier for the next Async Pipe to be executed. When the

asynchronous schedule is restarted, this shall be the first Async Pipe that will be

serviced.

The order of Async Pipe execution on the async schedule is xHC determined.

Each Async Pipe is only given one Service Opportunity per pass through the

async schedule.

Each Stage of a control transfer is a different Async TD, and may be scheduled

during different Service Opportunities.

If there is more than one endpoint in the async schedule the xHC shall limit the

number of packets transferred during a Service Opportunity (SO) to MSOPC.

However, if only one endpoint is in the async schedule, the xHC may exceed the

default MSOPC and continuously stream packets to an endpoint. The xHC shal l

interrupt a continuous stream when a second endpoint is scheduled and revert

to the MSOPC packet limit per endpoint SO.

Note: Retries are counted against the EPs SOPC. e.g. If an error is detected on the last

packet of the SO, then the xHC shall advance to the next EP and the packet shall

be retried at the beginning of the next SO for the endpoint.

Table 4-7: USB2 Pipe Actions based on Endpoint Response and Residual Transfer State

Direction Endpoint Response

Transfer State after
Transaction

(Bytes to transfer)

Pipe Action

IN Data Packet

Max Packet Size

Not Zero Decrement SOPC.

If SOPC = 0:

Advance to next endpoint.

else

Continue moving endpoint
packets.

Zero Retire TD.

Advance to next endpoint.

Data Packet

Short

Don’t care Retire TD.

Advance to next endpoint.

NAK Don’t care Advance to next endpoint.

Stall or Babble Don’t care Note 8-1.

262

CRC or Bad PID error Don’t care Discard packet.

Note 8-2.

Timeout Don’t care Note 8-2.

OUT ACK Not Zero Decrement SOPC.

If SOPC = 0:

Advance to next endpoint in

schedule.

else

Continue moving endpoint

packets.

Zero Retire TD.

Advance to next endpoint.

NYET, NAK Don’t care Advance to next endpoint.

Stall or Babble Don’t care Note 8-1.

CRC, Timeout, or Bad
PID error

Don’t care Note 8-2.

PING ACK Not Zero Allowed to transfer up to SOPC

packets.

NAK Don’t care Advance to next endpoint.

Stall Don’t care Note 8-1.

CRC, Timeout, or Bad

PID error

Don’t care Note 8-2.

Note 8-1:

If Stall

 Generate Stall Error Transfer Event.

else

 Generate Babble Detected Error Transfer Event.

Set endpoint to the Halted state.

Pull endpoint from Pipe Schedule.

Advance to next Async Pipe.

Note 8-2:

Decrement the Bus Error Counter.

If Bus Error Counter = ‘0’:

 263

Generate USB Transaction Error Transfer Event

Set endpoint to the Halted state.

Pull endpoint from Pipe Schedule.

Advance to the next endpoint in the Pipe Schedule.

else

If IN or OUT endpoint, do not advance Data Toggle.

Decrement SOPC.

If SOPC = 0:

Advance to the next endpoint in the Pipe Schedule.

else

Retry the packet.

Note: When retiring a TD, if its Transfer Ring is empty, pull the endpoint from the Pipe

Schedule.

Table 4-8: USB3 Pipe Actions based on Endpoint Response and Residual Transfer State

Direction Endpoint Response

Transfer State
after

Transaction

(Bytes to
transfer)

Pipe Action

IN DP

Max Packet Size

Not Zero Decrement SOPC.

If SOPC = 0:

Advance to next endpoint.

else

Continue moving endpoint
packets.

Zero Retire TD.

Advance to next endpoint.

DP

Short

Don’t care Retire TD.

Advance to next endpoint.

DP(EOB = ‘1’) Don’t care Pull endpoint from Pipe
Schedule.46

Advance to next endpoint.

NRDY Don’t care Pull endpoint from Pipe

Schedule.

Advance to next endpoint.

46The assertion of EOB on a Short Packet may also retire the TD.

264

Stall Don’t care Generate Stall Error Transfer

Event.

Set the endpoint to the Halted
state. Pull endpoint from

schedule.

Advance to next endpoint.

DPP Error47 Don’t care Discard data.

Decrement the Bus Error
Counter,

If Bus Error Counter = ‘0’:

Generate USB Transaction Error
Transfer Event.

Set endpoint to the Halted state.

Pull endpoint from Pipe
Schedule.

Advance to next endpoint.

else

Decrement SOPC.

If SOPC = 0:

Advance to next endpoint.

DPH Error48 Don’t care Discard data and send no
acknowledgement.

DPP exceeds
Max Packet Size or remaining

TD Transfer Size Error

Don’t care Discard data.

Generate Babble Detected Error

Transfer Event.

Set endpoint to the Halted state.

Pull endpoint from schedule.

Advance to next endpoint in
schedule.

IN

(continued)

tHostTransactionTimeout49
Error

Don’t care Generate USB Transaction Error
Transfer Event.

Set endpoint to the Halted state.

Pull endpoint from schedule.

Advance to next endpoint in

schedule.

47DPP Error may be due to one or more of the following conditions: CRC incorrect, DPP aborted, DPP missing, ACK

TP with the Retry Data Packet (rty) bit set, or the data length in the DPH does not match the actual data payload
length.

48DPH Error may be due to one or more of the following conditions: an incorrect Device Address, the Endpoint

Number and Direction does not refer to an endpoint that is part of the current configuration, or the DPH does not
have an expected sequence number. A DPH Error may result in a tHostTransactionTimeout if a expected DPH is
not received.

49Refer to section 8.13, Table 8-36 in the USB3 spec for the range of valid tHostTransactionTimeout values.

 265

OUT ACK TP Not Zero If SOPC exhausted:

Advance to next endpoint.

else

Continue moving endpoint

packets.

Zero Retire TD.

Advance to next endpoint.

ACK TP w/Rty Don’t care Decrement the Bus Error
Counter.

If Bus Error Counter = ‘0’:

Generate USB Transaction Error
Transfer Event.

Set endpoint to the Halted state.

Pull endpoint from Pipe
Schedule.

Advance to next endpoint.

else

Backup DPH sequence number

to value indicated by the ACK TP
Sequence Number.

If SOPC exhausted:

Advance to next endpoint.

else

Continue moving endpoint

packets.

NRDY Don’t care Pull endpoint from schedule.

Advance to next endpoint in
schedule.

Stall Don’t care Generate Stall Error Transfer
Event.

Set the endpoint to the Halted
state.

Pull endpoint from Pipe

Schedule.

Advance to next endpoint.

tHostTransactionTimeout49 Don’t care Generate USB Transaction Error
Transfer Event.

Set endpoint to the Halted state.

Pull endpoint from Pipe
Schedule.

Advance to next endpoint.

266

ACK TP Error50 Don’t care Discard.

N/A ERDY N/A Place endpoint on schedule.

N/A TP Error51 N/A Discard.

Note: When retiring a TD, if its Transfer Ring is empty, pull the endpoint from the Pipe

Schedule.

The xHC shall concatenate buffers referenced by TRBs in a TD, moving Max

Packet Size transfers for all but possibly the last packet of a TD. The size of the

last packet is determined by the TD Residue.

 TD Residue = TD Transfer Size - (Max Packet Size *

 ROUNDDOWN(TD Transfer Size / Max Packet Size))

4.14.4.1 SuperSpeed Burst Transactions

The USB3 Specification, section 8.10.2 defines bMaxBurst as “The number of

packets an endpoint on a device can send or receive at a time without an

intermediate acknowledgement packet”.

For a SuperSpeed bulk endpoint, the xHC shall use Max Burst Size (which is set

to bMaxBurst, refer to section 6.2.3.4) to determine the maximum number of

outstanding acknowledgement packets that are allowed for an endpoint. It may

also use Max Burst Size to identify the number of packets the endpoint should

send or receive in a Service Opportunity. If more than one async endpoint has

data to move, the xHC should advance to the next endpoint when Max Burst Size

packets have been moved for an endpoint. However if there is only one

endpoint with data to move in the async Pipe Schedule, then the xHC may

exceed Max Burst Size packets to an endpoint and stream packets to/from the

endpoint until either the Transfer Ring is exhausted or the device terminates the

burst by asserting NumP = 0 (OUT pipe ACK TP) or EOB = ‘1’ (IN pipe DP), or fl ow

controls the pipe by returning an NRDY TP.

Note: Section 8.13 in the USB3 Spec states, “If the host does not see a response to a

Data Transaction (either IN or OUT) within 10 μs, it shall assume that the

transaction has failed and halt the endpoint. No retries shall be performed.” The

50ACK TP Error may be due to one or more of the following conditions: an incorrect Device Address, the Endpoint

Number and Direction does not refer to an endpoint that is part of the current configuration, or the ACK TP does
not have an expected sequence number. An ACK TP Error may result in a tHostTransactionTimeout if the expected
ACK TP is not received.

51TP Error may be due to one or more of the following conditions: Reserved Type or SubType, an incorrect Device
Address, or the Endpoint Number and Direction does not refer to an endpoint that is part of the current
configuration.

 267

xHC shall timeout a Burst Transaction if acknowledgements for all packets of the

burst are not received by 10 μs. after the last packet of the Burst Transaction is

transferred. e.g. For an OUT pipe if Max Burst Size = 4, then the xHC shall timeout

the burst if the first framing symbol of the ACK response to the last DP is not

received with 10 μs. after the last framing symbol of the last DPP (4th) of the burst

is transmitted.

Note: Section 8.13 in the USB3 Spec defines tHostACKResponse as the “Time between

host reception of the last framing symbol for a DPP and the first framing symbol

of an ACK response”. For a Burst Transaction, the xHC shall not delay the first

framing symbol of an ACK response for the first DPP of a burst more than

tHostACKResponse (3 μs.) after the last framing symbol of the last DPP of the

burst is received.

Note: When a packet retry occurs, an xHC implementation may choose to limit a Burst

Transaction to Max Burst Size packets, which may cause a retried packet to be

transferred in the next Burst Transaction, or it may choose to allow packet retries

to complete in the Burst Transaction that the error occurred in, possibly

extending Burst Transaction to more than Max Burst Size packets.

Note: If a Deferred TP or DP is received during a burst, the xHC should advance to the

next endpoint in its Pipe Schedule.

• For non-ISOC endpoint, the xHC should internally flag the endpoint as being

flow controlled and wait for an ERDY to place the endpoint back on the Pipe

Schedule.

• For an ISOC endpoint, the xHC should terminate the current Isoch TD and

advance to the next TD which will be processed during the next ESIT.

4.15 Suspend-Resume

The xHC provides an equivalent suspend and resume model as that defined for

individual ports in a USB Hub. Control mechanisms are provided to allow system

software to suspend and resume individual ports. The mechanisms allow the

individual ports to be resumed completely via software initiation. Other control

mechanisms are provided to parameterize the host controller's response (or

sensitivity) to external resume events. In this discussion, host-initiated, or

software initiated resumes are called Resume Events/Actions. Bus-initiated

resume events are called Wake-up Events. The classes of wakeup events are:

• Remote-wakeup enabled device asserts resume signaling, similar to USB Hubs, The

xHC shall always respond to explicit device resume signaling and wake up the system

(if necessary).

• Port connect and disconnect and over-current events. Sensitivity to these events can

be turned on or off by using the per-port control bits in the PORTSC registers.

Selective suspend is a feature supported by every PORTSC register. It is used to

place specific ports into a suspend mode. This feature is used as a functi onal

268

component for implementing the appropriate power management policy

implemented in a particular operating system.

When system software intends to suspend the entire bus, it should selectively

suspend all enabled ports, then shut off the host controller by setting the

Run/Stop (R/S) bit in the USBCMD register to a ‘0’. The xHC can then be placed

into a lower device state via the PCI power management interface (refer to

Appendix A and PCI PM).

When a wake event occurs system software will eventually set the Run/Stop

(R/S) bit to a ‘1’ and resume the suspended ports by writing a ‘0’ to their PLS

field. Software shall not set the Run/Stop (R/S) bit to a ‘1’ until it is confirmed

that the clock to the host controller is stable. This is usually confirmed in a

system implementation in that all of the clocks in the system are stable before

the CPU is restarted. So, by definition, if software is running, clocks in the

system are stable and the Run/Stop (R/S) bit in the USBCMD register can be set

to ‘1’. There are also minimum system software delays defined in the PCI PM

Specification. Refer to this specification for more information.

Note: LTSSM Clock Stopped refers to a condition where the xHC is in a D3 state and a

Root Hub port is unable to transition a link with a Connect Detect to the Enabled

state, e.g. the LTSSM clocks are stopped. The occurrence of LTSSM Clock

Stopped is xHC implementation dependent, e.g. it may occur only while the xHC

is in the D3cold state, or it may not occur at all.

Note: Software should transition all Root Hub ports, where it has acknowledged a

Connect (CCS = '1'), to the U3 or Disabled states before placing the xHC into the

D3 state, and unless a Device Initiated Resume or a Disconnect occurred the port

should be in the same state when Main Power is restored. Note, a port is allowed

to be in the Error state when the xHC is transitioned to the D3 state.

• If the port transitioned to the Resume state, CAS shall be asserted when Main

Power is restored.

A disconnected Root Hub port may be in a one of several states when Main Power

is restored.

• If no device was attached while in D3 the port will be in the Disconnected

state when power is restored.

• If a device was attached after entering D3 but before entering LTSSM Clock

Stopped, then when power is restored the CAS bit shall be set and the value

of the PLS field should be ignored.

• If the port had been able to successfully train and transition to the U0

state before entering LTSSM Clock Stopped then the upstream facing

port of the attached device should be in the USDPORT.Disabled state,

and a USB2 Port reset (PR = '1') will be required to cause the USB3 port

to retrain and transition to the U0 state.

 269

• If the port was not able to successfully train and transition to the U0 state

before entering LTSSM Clock Stopped then the upstream facing port of

the attached device may be in one of many states, and USB2 or USB3

Port reset may be required to cause the USB3 port to retrain and

transition to the U0 state.

• If a device was attached after entering LTSSM Clock Stopped, then when

power is restored the CAS bit shall be set and the value of the PLS field

should be ignored. The upstream facing port of the attached device should

be in the USDPORT.Disabled state, and USB2 Port reset will be required to

cause the USB3 port to retrain and transition to the U0 state.

If an overcurrent condition exists (OCA = '1') when Main Power is restored, the

condition must be cleared before the port will be usable.

Note: Any Root Hub port that is in the Resume or U3 state when the xHC is transitioned

to the D0 power state shall require software to drive the port to the U0 state. The

xHC shall not automatically transition a root hub port from the Resume or U3

state to the U0 state.

4.15.1 Port Suspend

System software places individual ports into suspend mode by writing a ‘3’ into

the appropriate PORTSC register Port Link State (PLS) field (refer to section

5.4.8). Software should only set the PLS field to ‘3’ when the port is in the

Enabled state.

The xHC may evaluate a PLS field write immediately or wait until a microframe

or frame boundary occurs. If evaluated immediately, the port is not suspended

until the current transaction (if one is executing) completes. Therefore, there

may be several microframes of activity on the port until the xHC evaluates the

PLS field. The xHC shall evaluate the PLS field at least every frame boundary.

Refer to the description of PLS in Table 5-26 for more information.

When the PLS field is written with U3 (‘3’), the status of the PLS bit will not

change to the target U state U3 until the suspend signaling has completed to the

attached device (which may be as long as 10 ms.). Software should not attempt

to suspend a port unless the port reports that it is in the enabled (PED = ‘1’, PLS

< ‘3’) state (refer to Section 5.4.8 for more information in PED and PLS). Note,

the Port Link State Write Strobe (LWS) bit shall be set to ‘1’ to write the PLS

field.

Software is required to wait for U3 transitions to complete before it puts the

xHC into a low power state, and before resuming the port. Software can poll the

PLS field for the completion of a U3 transition; however a tight polling loop may

prevent any other activity on the processor, slowing the power down process.

Enabling an OS timer can also slow the power down process, because the

minimum OS timeout (~15 ms.) is long compared to the U3 transition time, so

software either ends up hogging a CPU, or adding a significant delay to the D3

270

entry of the host controller. The U3 Entry Capability (U3C) eliminates these

delays by asserting PLC when there is a transition of PLS to U3, where the

assertion of PLC generates a Port Status Change Event. If the U3 Entry Capability

(U3C) is supported (U3C = '1') in the HCCPARAMS2 register, then software may

enable the assertion of PLC on a transition of PLS to U3 by setting the U3 Entry

Enable (U3E) flag to '1' in the CONFIG register.

Note: U3 Entry Capability support (i.e. U3C = '1') shall be mandatory for all xHCI 1.1

compliant xHCs.

4.15.1.1 Selective Suspend

Software shall stop all endpoints of a device using the Stop Endpoint Command

and setting the Suspend (SP) flag to ‘1’ prior to selectively suspending a device.

After the device is resumed software shall ring an endpoint’s doorbell to restart

it. Refer to section 3.3.8 for more information on the use of the Stop Endpoint

Command.

4.15.1.2 Function Suspend

Software shall stop the endpoints of a device associated with the function by

using the Stop Endpoint Command and setting the Suspend (SP) flag to ‘1’ prior

to issuing a SetFeature(FUNCTION_SUSPEND) request to a device. After the

function is resumed software shall ring an endpoints’ doorbell to restart it. Refer

to section Sto for more information on the use of the Stop Endpoint Command.

4.15.2 Port Resume

The following subsections describe typical device initiated and host initiated

resume process

4.15.2.1 Device Initiated

The following steps describe a typical device initiated port resume process:

1. When a port is in the U3 state and resume signaling is detected from a

device, the port transitions to the Resume state (PLS = ‘15’) and the Port

Link State Change (PLC) flag is set to ‘1’. If the assertion of PLC results in

a ‘0’ to ‘1’ transition of PSCEG (4.19.2), the xHC shall generate a Port

Status Change Event.

Note that an LFPS Handshake52 is required for a USB3 U3 wakeup. A

device generates LFPS to initiate the resume process. The detection of

LFPS while in the U3 state shall transition a USB3 port to the Resume

52Refer to section 6.9.2 in the USB3 spec for more information on the LFPS Handshake.

 271

state53. The xHC shall not respond with LFPS to the device, which would

allow the LFPS Handshake to complete, until directed by software.

2. Upon receipt of a Port Status Change Event system software evaluates

the Port ID field to determine the port that generated the event.

3. System software then reads the PORTSC register of the port that

generated the event.

PLC = ‘1’ and PLS = Resume if the event was due to a device initiated

resume:

a. For a USB3 protocol port, software shall write a ‘0’ to the PLS

field to direct the xHC to initiate LFPS to the device and initiate

the LFPS Handshake.

b. For a USB2 protocol port, when a resume signaling is detected

from a device the xHC shall transmit the resume signaling within

1 ms (TURSM). Software shall ensure that resume is signaled for at

least 20 ms (TDRSMDN). Refer to section 7.1.7.7 of the USB2 spec.

Software shall start timing TDRSMDN from the notification of the

transition to the Resume state. After TDRSMDN is complete,

software shall write a ‘0’ to the PLS field.

4. The completion of the resume signaling shall cause the port to transition

to the U0 state, i.e. the PORTSC register PLS field shall to be set to U0

(‘0’) and PLC flag to ‘1’. If the assertion of PLC results in a ‘0’ to ‘1’

transition of PSCEG (4.19.2), the xHC shall generate a Port Status Change

Event.

Note: Software shall ensure that the xHC is in Run (R/S = ‘1’) mode prior to transitioning

a root hub port from the Resume to the U0 state. This action ensures that the

xHC is capable of transmitting ITPs and immediately receiving packets when the

device enters the U0 state.

4.15.2.2 Host Initiated

System software can initiate a resume on a selectively suspended port by writing

the PLS field (refer to section 4.15.2). Software shall not attempt to resume a

port that it has initiated the suspend process on, unless the port reports that it

is in the suspended (PED = ‘1’, PLS = ‘3’) state (refer to Section 5.4.8).

If system software writes the PLS field with a ‘0’ when the port is not in the

suspended state (U3), but in a low power link state (e.g. U2 or U1), the port shall

53Refer to section 4.19.1.2.13 for more information on the Resume state.

272

generate the appropriate signaling and if successful, shall then transition to the

U0 state (PLS = ‘0’).

A U3 to U0 transition of the PLS field shall cause the Port Link State Change

(PLC) bit to transition from ‘0’ to ‘1’. If the assertion of PLC results in a ‘0’ to ‘1’

transition of PSCEG (Port Status Change Generation), a Port Status Change Event

shall be generated to reflect the change in link state. If Interrupter 0 is not

masked the generation of the event will also result in an interrupt to the host.

The following steps describe a typical host initiated port resume process:

1. When a port is in the U3 state:

a. For a USB3 protocol port, software shall write a ‘0’ (U0) to the PLS

field to initiate resume signaling. The port shall transition to the

U3Exit substate and the xHC shall immediately initiate LFPS

generation to the device.

b. For a USB2 protocol port, software shall write a ‘15’ (Resume) to

the PLS field to initiate resume signaling. The port shall transition

to the Resume substate and the xHC shall transmit the resume

signaling within 1 ms (TURSM). Software shall ensure that resume

is signaled for at least 20 ms (TDRSMDN). Software shall start

timing TDRSMDN from the write of ‘15’ (Resume) to PLS. After

TDRSMDN is complete, software shall write a ‘0’ (U0) to the PLS

field.

2. The completion of the resume signaling shall cause the port to transition

from the U3 to the U0 state, i.e. the PORTSC register PLS field shall to be

set to U0 (‘0’) and PLC flag to ‘1’. If the assertion of PLC results in a ‘0’ to

‘1’ transition of PSCEG (Port Status Change Generation), the xHC shall

generate a Port Status Change Event .

4.15.2.3 Wakeup Events

An external USB event may also initiate a system level resume. The system

wake-up events are defined below. When resume signaling is detected by a

suspended port, a system wake-up event occurs and the port transitions to the

Resume state.

For a USB2 protocol port:

• If the resume signaling is detected it is reflected downstream by the xHC to all

enabled ports within 1 ms. (TURSM), and maintained until software transitions the

port from the Resume state to the U0 state.

For a USB3 protocol port:

 273

If the resume signaling (reception of a LFPS that meets the valid t12-t10

specification in Table 6-22 of the USB3 spec) is detected, the port shall

transition to the Resume state immediately, and the Port Link State Change

(PLC) bit is set to a ‘1’.

Software may determine that the port is enabled (not suspended) by sampling

the PORTSC register and observing that the Port Enabled/Disabled (PED) flag is

‘1’ and the Port Link State (PLS) field is < ‘3’.

Table 4-9 summarizes the system wake-up events, defining the state of the Port

Link State (PLS), Current Connect Status (CCS), Port Enabled/Disabled (PED),

Over-Current Active (OCA) fields in the PORTSC register and the Port Change

Detect (PCD) bit in the USBSTS register as function of the respective Wake

Enable flag (WDE, WCE, WOE). The table values indicate the state of the fields

after the respective event. The xHC State column indicates the response of the

xHC to the system as function of its (PCIe) power state when the event occurs.

Note: A port resume is not gated by a Wake Enable flag.

Table 4-9: Behavior During System Wake-up Events

Port Status and
Signaling Device State Type

Port State After Event
xHC State

Note

PLS CCS PED OCA PCD D0 not
D0

Port is in the Disabled state. Resume

signaling received.

No Effect N/A N/A

Port is in the U3 substate. Resume

signaling is received.

Resume 1 1 0 1 [10-

1]

[10-
2]

[10-

2]

A port is in a state that may detect a
disconnect54, and the port's WDE bit

is ‘1’. A disconnect is detected.

RxDetect 0 0 0 1 [10-
1]

[10-
2]

[10-
2]

A port is in a state that may detect a
disconnect54, and the port's WDE bit

is ‘0’. A disconnect is detected.

RxDetect 0 0 0 1 [10-
1]

[10-
3]

[10-
3]

54A USB2 port may detect a disconnect when the port is in the Disabled, Enabled, or Reset states. A USB3 port may

detect a disconnect when the port is in the Loopback, Compliance, Error, Polling, Enabled, or Reset states.

274

Port is in the Disconnected state and

the port's WCE bit is ‘1’. A connect is
detected.

U0

(SS)

Polling
(USB2)

1 1

(SS)

0
(USB2)

0 1 [10-

1]

[10-
2]

[10-

2]

Port is in the Disconnected state and
the port's WCE bit is ‘0’. A connect is

detected.

U0
(SS)

Polling
(USB2)

1 1
(SS)

0
(USB2)

0 1 [10-
1]

[10-
3]

[10-
3]

If a port is in a state that may detect
an over-current condition55 and the

port's WOE bit is ‘1’.An over-current
condition occurs.

Disabled 0 0 1 1 [10-
1]

[10-
2]

[10-
2]

If a port is a state that may detect an
over-current condition55 and the
port's WOE bit is a ‘0’. An over-

current condition occurs.

Disabled 0 0 1 1 [10-
1]
[10-

3]

[10-
3]

4.16 Bandwidth Management

In past generations of USB host controller implementations, there was a 1:1

correspondence between a host controller interface and USB bandwidth. The

xHCI diverges from this model in that it enables vendors to tailor the bandwidth

available through its root hub ports to the needs of the vendor’s target

application space. The xHCI can support the legacy model where the bandwidth

of a single USB is shared across all its root hub ports, a “bus per port” model

where the full bandwidth of a USB is available on every root hub port, or any

combination in between.

The determination of the bandwidth available through an xHCI is further

complicated because the interface is capable of supporting multiple USB

speeds, each with their own bandwidth constraints. Computation of the

bandwidth available when enumerating a USB device depends on which internal

55A port may detect an over-current condition in any state except Powered-off.

Note 10-1:If the assertion of change bit results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a Port Status Change Event

is generated.

Note 10-2:PME# asserted if enabled (i.e. the PCI PM PMCSR PME_En bit = ‘1’). Note: The PCI PM PMCSR PME_Status

bit shall be written with a ‘1’ to stop asserting PME#.

Note 10-3:PME# not asserted.

 275

USB instance of the xHCI that a root hub port is allocated to, and the bandwidth

requirements of the other devices already connected to that USB instance.

An example xHC implementation may define an 8 port implementation with 1

SS, 4 HS, and 8 LS/FS USB instances, for a total of 13 independent USB

instances. Or if an implementation chose to focus on performance, it may define

a “bus per port”, i.e. 8 SS, 8 HS and 8 LS/FS USB instances, i.e. 24 independent

USB instances.

The xHCI architecture hides the internal complexities of a host controller

implementation from system software. Given the set of USB instances supported

by an xHC, it is responsible for managing and allocating the available USB

bandwidth. Software uses the Configure Endpoint Command to ask the xHC if

the bandwidth required for a specific device configuration is available. The xHC

is responsible for evaluating the request as a function of its internal

organization and the bandwidth available on the particular USB instance that

the device is attached to.

If a Configure Endpoint Command fails due to a Bandwidth Error or a Secondary

Bandwidth Error, system software may retry the command with other endpoint

settings, or issue a Negotiate Bandwidth Command. The Negotiate Bandwidth

Command allows software to identify the devices with periodic endpoints

attached to the same USB instance in the xHC. The Negotiate Bandwidth

Command generates a Bandwidth Request Event for each device attached to the

same USB instance which is currently consuming periodic bandwidth, i.e.

declared Isoch or Interrupt endpoints. Using this information, software may

target the reassignment of bandwidth to allow the initial device to be

configured.

Refer to section 4.6.13 for more information on the Negotiate Bandwidth

Command and section 6.4.2.4 for more information on the Bandwidth Request

Event TRB.

A Disable Slot Command will cause any bandwidth allocated to the periodic

endpoints of a device slot to be freed.

4.16.1 Bandwidth Negotiation

Many USB devices offer multiple configurations and/or alternate interface

settings to meet a variety of bandwidth demands. For instance, a USB camera

may present a dozen Alternate Interface settings that match the various

resolutions and frame rates that it supports. Typically the Video Class Driver will

select an interface setting that will provide the highest quality image for the

user, however if this setting is rejected, because there is not enough bandwidth

available, the Class Driver will attempt to set a lower quality setting that

requires less bandwidth. If all alternate settings are tried and the Class Driver is

still unable to enumerate the camera, it may decide to issue a Negotiate

Bandwidth Command.

276

The Negotiate Bandwidth Command generates a Bandwidth Request Event for

each device slot with periodic endpoints on the same USB instance.

When a Bandwidth Request Event is received for a device slot, system software

should treat it as a request to evaluate the current bandwidth requirements of

device and free some of the bandwidth if the device is able to effectively

perform its tasks on a reduced bandwidth budget. There is no requirement that

a device give up bandwidth due to a Bandwidth Request Event, however a “good

citizen” will do their best to comply. To free bandwidth, the software may select

another configuration or an alternate interface setting for the periodic

endpoints of the device. As devices reconfigure themselves they will issue

Configure Endpoint Commands which will free part or all of their currently

assigned bandwidth. As the xHC processes the commands it shall recompute the

available bandwidth of the USB instance. The Negotiate Bandwidth command

may allow a device to enumerate that would not have been able to without it.

The Negotiate Bandwidth Command uses the value of the Slot ID field in the

Negotiate Bandwidth Command TRB to identify the USB instance that the device

requiring the bandwidth is attached to.

The Negotiate Bandwidth command does not block Command Ring execution,

e.g the command should not wait for all BW Requests to be delivered before

generating the associated Command Completion Event.

The Negotiate Bandwidth Command is acknowledged by the xHC with a Success

Completion Code. Bandwidth Request Events shall be generated for the selected

device slots. The selection of the device slots that are targeted by Bandwidth

Request Events shall be determined by an xHC implementation specific

algorithm.

After a system defined delay, the software that initiated the negotiation process

may reissue the Configure Endpoint Command that failed, to test whether

enough bandwidth has been freed to allow a successful completion.

Note: The initiator of the Negotiate Bandwidth Command should allow enough time

for system software to receive the Bandwidth Request Events and to reconfigure

or choose alternate interface settings for the target device, before attempting to

issue a Configure Endpoint Command.

Whether an xHC implementation supports Bandwidth Negotiation, is identified

by the BW Negotiation Capability (BNC) flag in the HCCPARAMS1 register.

Note: A important use of the Negotiate Bandwidth Command is with virtualization. It

allows one VF to ask the other VFs for BW. Which means that an OS shall expect

to receive a Bandwidth Request Event asynchronously, e.g. without having

previously issued a Negotiate Bandwidth Command.

 277

Refer to section Negotiate Bandwidth Command TRB (Optional Normative) for

more information on the Negotiate Bandwidth Command TRB and Bandwidth

Request Event TRB .

4.16.2 Bandwidth Domains

Each Bus Instance (BI) represents a “unit” bandwidth at the speed that the BI

supports or a Bandwidth Domain. The Transaction Translator (TT) of a USB2

hub creates one or more Secondary Bandwidth Domains on its downstream

facing ports. For a High-speed hub, a Secondary Bandwidth Domain is

equivalent to a Full-speed BI, or for a SuperSpeedPlus hub, a Secondary

Bandwidth Domain is equivalent to a SuperSpeed BI . The downstream facing

ports of a single-TT hub creates a single Secondary Bandwidth Domain, whose

bandwidth is shared across all Full- or Low-speed devices attached to the hub. A

multi-TT hub creates a separate Secondary Bandwidth Domain for each

downstream facing port attached to a Full- or Low-speed device.

The xHC bandwidth allocation algorithm shall comprehend Secondary

Bandwidth Domains and reject a Configure Endpoint Command with a Secondary

Bandwidth Error if the configuration would have exceeded the Total Available

Bandwidth of the domain. e.g. if a Full-speed isochronous Device A that requires

60% of the FS bandwidth is attached to a HS Hub which supports a single TT

and already has a FS isoch Device B attached to one of its ports that has been

allocated 50% of the TT bandwidth, the configuration request for Device A will

be rejected by the xHC. Note that the HS Bandwidth Domain above the hub may

have plenty of bandwidth available to service the configuration.

A Configure Endpoint Command shall return an event with the Completion Code

set to Secondary Bandwidth Error if there was insufficient bandwidth in the

Secondary Bandwidth Domain to enable the configuration. Refer to section 3.3.5

for more information on the Configure Endpoint Command .

Software may determine the bandwidth available in a Secondary Bandwidth

Domain by issuing a Get Port Bandwidth Command with the Hub Slot ID field set

to the Slot ID of the target hub. Refer to section 4.6.15 for more information on

the Get Port Bandwidth Command . Note that if the hub specified by the Hub Slot

ID does not reside on a Secondary Bandwidth Domain boundary (e.g. the hub

does not contain a TT), undefined behavior may occur, e.g. the values in the Port

Bandwidth Context may be invalid.

Note: When evaluating a Configure Endpoint Command, the xHC shall check the

upstream High-speed Bandwidth Domain of a hub first. If there is enough

bandwidth available in the primary (HS) Bandwidth Domain then the xHC shall

check the Secondary (FS) Bandwidth Domain of the hub.

278

4.17 Interrupters

An Interrupter manages events and their notification to the host. The xHCI

supports up to 1024 Interrupters. The MaxIntrs field in HCSPARAMS1

determines the Number of Interrupters implemented in the xHC. Each Interrupter

consists of an Interrupter Management Register, an Interrupter Moderation

Register and an Event Ring. Each Interrupter shall be mapped to a single MSI or

MSI-X interrupt vector. An Interrupter shall assert an interrupt if it is enabled

and its associated Event Ring contains Event TRBs that require an interrupt.

 IMPLEMENTATION NOTE

PCI MSI and MSI-X Interrupts

MSI-X defines a separate optional extension to basic PCI MSI functionality.

Compared to MSI, MSI-X supports a larger maximum number of vectors per

function, the ability for software to control aliasing when fewer vectors are

allocated than requested, plus the ability for each vector to use an independent

address and data value, specified by a table that resides in Memory Space.

However, most of the other characteristics of MSI-X are identical to those of

MSI. For more information on MSI-X, refer to the PCI Specification.

MSI-X maps each of the xHC Interrupters to an interrupt vector that is conveyed

by xHC as a posted-write PCI Express (PCIe) transaction. Each MSI-X interrupt

vector has some attributes assigned to it, such as the address and data for its

posted-write message. These are described in section 5.2.8.2 that described the

PCI aspects on MSI-X configuration.

Interrupters and PCI Interrupt Mechanisms

When the PCI Pin Interrupt is activated:

• Interrupter 0 may assert the INTx# pin.

• Interrupters 1 to MaxIntrs-1 shall be disabled.

When MSI is activated:

• If MaxIntrs > 32, then Interrupters 0 to 31 may each trigger a unique interrupt vector,

and Interrupters 32 to MaxIntrs-1 shall be disabled.

• If MaxIntrs <= 32, then Interrupters 0 to MaxIntrs-1 may each trigger a unique

interrupt vector.

• The MSI Message Control register Multiple Message Capable field reported by the

xHC shall be equal to or less than MaxIntrs.

The Interrupt Vector associated with an Interrupter shall be defined as function

of the value of the MSI Message Control register Multiple Message Enable field

using the following algorithm.

 279

Interrupt Vector = (Index of Interrupter) MODULUS (MSI Message

Control:Multiple Message Enable)When MSI-X is activated:

• Interrupters 0 to MaxIntrs-1 may each trigger a unique interrupt vector. i.e. there is a

1:1 mapping of the index of an Interrupter to the index of the MSI-X vector in the

MSI-X Table Structure or to the associated Pending Bit in the MSI-X PBA Structure.

Refer to section 6.8.2 in the PCI spec for more information.

• The value of the MSI-X Message Control register Table Size field reported by the xHC

shall be equal to the value of MaxIntrs.

• The allocation of MSI-X vectors is set by the enabling of the respective Interrupter

using the MSI-X Enable field in the Vector Control Dword of the MSI-X Table

Structure. (If Interrupter 0 is enabled, the vector defined by MSI-X Table[0] is

allocated, if Interrupter 1 is enabled, the vector defined by MSI-X Table [1] is

allocated, etc.).

The Number of Interrupters (MaxIntrs) is implementation dependent. An xHC

implementation shall implement at least one Interrupter.

xHC generated interrupts to the system may be enabled by setting the

Interrupter Enable (INTE) flag in the USBCMD register to ‘1’.

An xHC implementation that supports virtualization shall implement at least one

Interrupter for the Physical Function and a minimum of one Interrupter per

Virtual Function. Refer to section 8 for more information on virtualization.

Note: The xHC is not required to maintain event ordering across Event Rings. e.g. If

events that are generated sequentially within the xHC target separate Event

Rings, the events may not be placed on the respective Event Rings in the same

temporal order.

4.17.1 Interrupter Mapping

An xHC implementation may support Interrupter Mapping. Interrupter Mapping

is the ability to target an Interrupter and its Event Ring, with the Transfer Events

generated by a specific Transfer Request Block.

If the Number of Interrupters (MaxIntrs) field is greater than 1, then Interrupter

Mapping shall be supported.

The value of the Interrupter Target field in the Transfer TRB determines which

Interrupter shall receive the Transfer Events generated by the respective Device

Slot or Transfer TRB.

If Interrupter Mapping is not supported, the Interrupter Target field shall be

ignored by the xHC and all Events targeted at Interrupter 0.

280

Valid values for a Slot Context or TRB Interrupter Target field are between 0 and

MaxIntrs-1. If an Interrupter Target field is out of range for a TRB the behavior of

the xHC shall be undefined. It is recommended that the xHC does not generate

any event if this condition is detected, and let software timeouts detect the error

for the endpoint. If virtualization is supported, an xHC implementation shall

ensure that this “undefined behavior” does not affect another function (PF0 of

VFx).

The Slot Context Interrupter Target value shall be checked for a valid range

when a command inputs the Input Slot Context.

Refer to section 6.4.1 for more information on the Interrupter Target field.

This mechanism may be used to facilitate distribution of interrupts across cores

in a multi-core platform.

4.17.2 Interrupt Moderation

Interrupt Moderation allows multiple events to be processed in the context of a

single Interrupt Service Request (ISR), rather than generating an ISR for each

event.

The interrupt generation that results from the assertion of the Interrupt Pending

(IP) flag may be throttled by the settings of the Interrupter Moderation (IMOD)

register of the associated Interrupter. The IMOD register consists of two 16-bit

fields: the Interrupt Moderation Counter (IMODC) and the Interrupt Moderation

Interval (IMODI).

Software may use the IMOD register to limit the rate of delivery of interrupts to

the host CPU. This register provides a guaranteed inter-interrupt delay between

the interrupts of an Interrupter asserted by the host controller, regardless of

USB traffic conditions.

The following algorithm converts the inter-interrupt interval value to the

common 'interrupts/sec' performance metric:

Interrupts/sec = (250×10-9sec × IMODI) -1

For example, if the IMODI is programmed to 512, the host controller guarantees

the host will not be interrupted by the xHC for at least 128 microseconds from

the last interrupt. The maximum observable interrupt rate from the xHC should

not exceed 8000 interrupts/sec.

Inversely, inter-interrupt interval value can be calculated as:

Inter-interrupt interval = (250×10-9sec × interrupts/sec) -1

The optimal performance setting for this register is very system and

configuration specific. An initial suggested range for the moderation Interval is

651-5580 (28Bh - 15CCh).

 281

The IMODI field shall default to 4000 (1 ms.) upon initialization and reset. It may

be loaded with an alternative value by software when the Interrupter is

initialized.

The xHC implements interrupt moderation to reduce the number of interrupts

that SW processes. The moderation scheme is based on the IMOD register and

the ERDP Event Handler Busy (EHB) flag56. When an Interrupter is enabled it

begins looking for two conditions: 1) Interrupt Pending Enable (IPE = ‘1’) and 2)

the Event Handler not busy (EHB = ‘0’). If these conditions are true, the Interrupt

Pending (IP) bit in the Interrupter Management (IMAN) register and the Event

Handler Busy (EHB) flag in the Event Ring Dequeue Pointer (ERDP) register are

set to ‘1’, IMODC is loaded with IMODI, and moderation counter starts counting

down. Another interrupt message will not be asserted to the host bus by the xHC

until 1) the IMODC of the associated Interrupter has counted down to ‘0’, 2) the

Interrupt Pending Enable is asserted (IPE = ‘1’), and 3) the Event Handler is not

busy (EHB = ‘0’). When all three conditions are met, IMODC is reloaded with the

value of the IMODI and the process repeats again. Refer to section 5.5.2.2 for

more information on the IMOD register and the IMODC clocking rate. The

interrupt flow should follow the diagram below:

56EHB enables Interrupt Mitigation. High-speed serial interface operation can create thousands of interrupts per
second, all of which tell the system something it already knew: it has lots of TRBs to process. The EHB allows the
driver to run with interrupts disabled during times of high traffic, with a corresponding decrease in system load.

282

Figure 4-22: Interrupt Throttle Flow Diagram

Load Counter with Interval

Start count down

Counter = 0 ?
No

Yes

Interrupt

Pending

Enable?No

Yes

IMODI

Delay

Counter written to 0

Interrupt Pending = 1

Event Handler Busy = 1

Interrupt Enable

= 1 ?

Yes

No
Interrupt Enable= 0

Event Handler

Busy?
Yes

No

Interrupt Enable = Interrupter Management

Register Interrupt Enable field (IM)

Interrupt Pending = Interrupter Management

Register Interrupt Pending field (IP)

Interrupt Pending Enable = Interrupter

Interrupt Pending Enabled flag (IPE)

Counter = Interrupter Moderation Register

Counter field (IMODC)

Interval = Interrupt Moderation Register

Interval field (IMODI)

Event Handler Busy = Event Ring Dequeue

Pointer Register Event Handler

Busy field (EHB)

If PCI Message Signaled Interrupts (MSI or MSI-X) are enabled, then the

assertion of the Interrupt Pending (IP) flag in Figure 4-22 generates a PCI Dword

write. The IP flag is automatically cleared by the completion of the PCI write.

If the PCI Interrupt Pin mechanism is enabled, then the assertion of Interrupt

Pending (IP) asserts the appropriate PCI INTx# pin. And the IP flag is cleared by

software writing the IMAN register.

 283

Figure 4-23: Heavy load, interrupts moderated

Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 8 Event 9

ISR ISR ISR

IMODI

Delay
IMODI

Delay

DPC processes

2 Events and

reenables the

Interrupter

Interrupt Pending Enable

Interrupt Pending

IMODC > 0

If Interrupt Pending Enable & IMODC == 0 & !Event Handler Busy,

assert Interrupt Pending

Initial

Event

Event Handler Busy

DPC

DPC processes

4 Events and

reenables the

Interrupter

DPC

Under heavy load conditions (Figure 4-23), Interrupt Pending Enable (IPE) is

asserted almost constantly, so if IPE = ‘1’ when the IMODC counts down to ‘0’

and the Event Handler is not busy (EHB = ‘0’), an interrupt is generated

immediately, i.e. Interrupt Pending (IP) is set to ‘1’. When IP is asserted, the

IMODC is reloaded with the IMODI and the IMODC begins counting down again.

Thus, the next interrupt event will be delayed by the IMODI delay. Also note that

in this example, the assertion of Interrupt Pending (IP) triggers the Interrupt

Service Routine (ISR). The ISR schedules a Deferred Procedure Call (DPC) that

will process the events on the Event Ring at a later time. The DPC processes

events until Event Ring is empty then clears the Event Handler Busy (EHB) flag.

Interrupt Pending Enable is cleared when the Event Ring goes empty, i.e. the

DPC writes the Event Ring Dequeue Pointer (ERDP) register with a value that is

equal to the Event Ring Enqueue Pointer.

284

Figure 4-24: Light load, interrupts not moderated

IMOD Delay ExpiredIMOD Delay Expired.

Wait for

Interrupt Pending Enable

Event 1 Event 2 Event 3 Event 5 Event 6 Event 7

ISR
No

ISR

IMODI

Delay

IMODI

Delay

Interrupt Pending Enable

Interrupt Pending

ISR

If no Interrupt Pending Enable,

do not set Interrupt Pending

IMODC > 0

Event Handler Busy

DPC DPCDPC

Event 4

No

ISR

If Event Handler Busy,

do not set Interrupt Pending

DPC processes

2 Events and

reenables the

Interrupter

DPC processes 1

Event, more on ring

so it reschedules

itself

DPC processes

4 Events and

reenables the

Interrupter

Under light load conditions (Figure 4-24) it is desirable to fire off interrupts with

minimum latency. In this case, when the IMODC counts down to ‘0’ and no

interrupts are pending (IPE = ‘0’), the IMODC is not reloaded with the IMODI but

stays at ‘0’. Thus, the next assertion of Interrupt Pending Enable will trigger an

interrupt immediately. Triggering the interrupt will also cause the IMODC to be

reloaded with the IMODI and begin counting down again.

In the first case where the IMOD Delay Expires, Interrupt Pending (IP) is not set

(so the ISR is not triggered) because the Event Ring is empty. Since IMODC = 0

when event 3 is posted, Interrupt Pending (IP) is asserted immediately.

In the second case, Interrupt Pending (IP) is not set because the Event Handler is

busy (EHB = ‘1’). The DPC was not able to empty the Event Ring the first time it

was scheduled (i.e. it only processed event 3), so it rescheduled itself to process

the remaining events in the ring (i.e. event 4). While waiting for the DPC to be

scheduled, events 5, 6, and 7 are posted. The rescheduled DPC processes events

until Event Ring is empty then clears the Event Handler Busy (EHB) flag, re-

enabling an immediate interrupt the next time an event is posted.

4.17.3 Interrupt Pin Support

PCI Interrupt Pins are optional. Four Interrupt Pins are supported by PCI,

however PCI only allows one Interrupt Pin to be assigned to a single PCI

Function. If an xHC implementation supports a PCI INTx# interrupt pin, xHC

asserts its INTx# line when requesting attention from its device driver unless the

xHC is enabled to use Message Signaled Interrupts (MSI, i.e. the MSI Message

Control MSI Enable or MSI-X Message Control MSI-X Enable flags are true) (refer

to Sections 5.2.8.1 and 5.2.8.2 for more information). Once the INTx# signal is

asserted, it remains asserted until the device driver clears the Interrupt Pending

 285

(IP) flag. When Interrupt Pending (IP) is cleared, the device deasserts its INTx#

signal.

If Interrupt Pin support is enabled, then only Interrupter 0 is enabled and any

other Interrupters are disabled.

The Interrupt Pin register in the PCI Configuration Space Header (refer to

Interrupt Pin description in section 6.2.4 of the PCI specification) identifies

which interrupt pin the device (or device function) uses. A value of 1

corresponds to INTA#, 2 corresponds to INTB#, and so on. If the xHC

implementation does not use an interrupt pin it shall declare a ‘0’ in this

register.

4.17.4 Interrupter Target Identification

The target Interrupter of an event is determined in one of three ways:

1. Fixed and always the Primary Interrupter.

2. Defined by the Interrupter Target field in the TRB data structure.

3. Defined by the Slot Context Interrupter Target field.

Each Event TRB described in section 6.4.2 specifies which of the three methods

described above it uses. The exception is the Transfer Event. There are some

conditions related endpoints or transfers which are reported using a Transfer

Event TRB, however the condition that they are reporting cannot be associated

with a specific Transfer Event TRB. In these cases the Slot Context Interrupter

Target field shall be used to identify the Interrupter that shall receive the event.

These conditions are indicated by the following Completion Codes:

• USB Transaction Error - due to detecting a Transaction Timeout while in the Stream

Protocol HISPSM Prime Pipe state or HOSPSM Prime Pipe or Start Stream End state.

• Stall Error - due to detecting a STALL condition while in the Stream Protocol HISPSM

Prime Pipe state or HOSPSM Prime Pipe or Start Stream End state.

• Invalid Stream ID Error.

• Invalid Stream Type Error.

• Stopped - Length Invalid. Note that the Slot Context Interrupter Target field is only

applied to the “Stopped while waiting for more TRBs to be posted for TD” Condition

in Table 4-2, not to the conditions “Stopped on Link TRB within a TD” and “Stopped

on No Op TRB within a TD”

• Ring Overrun.

• Ring Underrun.

286

4.17.5 Interrupt Blocking

Normally, placing an Event TRB on an Event Ring causes an interrupt to be

asserted to the host immediately if an Event Ring is empty or at the next

interrupt threshold. However there are cases where software requires the

Completion Status and TRB Transfer Length of a Transfer TRB reported by a

Transfer Event TRB, but it does not want the Transfer Event to generate an

interrupt. To facilitate this usage, The Normal and Isoch Transfer TRBs, and

Event Data TRBs support a Block Event Interrupt (BEI) flag that allows them to

place an Event TRB on an Event Ring but not assert an interrupt to the host.

An example of where the BEI flag can eliminate unwanted system interrupts is

with Isoch transfers. For a USB microphone that declares ESIT of 1 ms. and

generates 16-bit samples at a 44.1 KHz rate, software may post 10 Isoch TDs at

a time to the device’s Isoch IN Transfer Ring. The fractional sample rate means

that over a 10 ms. period, the microphone completes 9 Isoch TDs with 44

samples (88 bytes) each, and a 10th TD with 45 samples (90 bytes). Since the

number of samples per Isoch TD varies software must set the ISP or IOC flag in

each Isoch TD to generate a Transfer Event to report the number of bytes

transferred. However since software is able to schedule 10 TDs at a time, it only

needs an interrupt every 10th TD. By setting the BEI flag in 9 of every 10 TDs,

the interrupt rate due to the Isoch transfers can be reduced.

Note that software could drop the interrupt rate by adjusting the Interrupt

Moderation Interval (IMODI) of the Interrupter, however this would affect the

interrupt latency for all endpoints that shared an Event Ring. The BEI flag allows

software to selectively reduce interrupt rates of transfers, without affecting

latency sensitive transfers.

• If BEI = ‘1’ in a TRB, then the event generated by the TRB is considered to be a

“Blocking Event”.

• If BEI = ‘0’, then the event generated by the TRB is considered to be a “Non-blocking

Event”.

• Any TRB type that does not define a BEI flag always generates Non-blocking Events.

• If an error is detected which generates an event while processing a TRB with BEI = '1',

then BEI shall be ignored and the event generated by the TRB shall be a Non-blocking

Event.

• Any Transfer Event TRB that is not associated with a Transfer or Event Data TRB shall

be a Non-blocking Event.

To facilitate Interrupt Blocking an Interrupt Pending Enable (IPE) flag may be

implemented by the xHC for each Interrupter. IPE is an internal Interrupter flag

that is not exposed through any register. Refer to section Interrupt Moderation

for how IPE affects interrupt generation and the Interrupt Moderation

mechanism.

 287

The IPE flag of an Interrupter is managed as follows:

• IPE shall be cleared to ‘0’:

• When the Event Ring is initialized.

• If the Event Ring transitions to empty.

• When an Event TRB is inserted on the Event Ring and BEI = ‘0’ then:

• IPE shall be set to ‘1’.

Note: Only Normal, Isoch, and Event Data TRBs support a BEI flag.

The Interrupt Pending (IP) flag of an Interrupter shall be managed as follows:

• When IPE transitions to ‘1’:

• If Interrupt Moderation Counter (IMODC) = ‘0’ and Event Handler Busy (EHB) = ‘0’,

then IP shall be set to ‘1’.

• When IMODC transitions to ‘0’:

• If EHB = ‘0’ and IPE = ‘1’, then IP shall be set to ‘1’.

• If MSI or MSI-X interrupts are enabled, IP shall be cleared to ‘0’ automatically when

the PCI Dword write generated by the Interrupt assertion is complete.

• If PCI Pin Interrupts are enabled then, IP shall be cleared to ‘0’ by software.

Note: A Transfer Event not associated with a Transfer TRB (i.e. a Transfer Event that

uses the Slot Context Interrupter Target) is always a Non-blocking Event.

4.18 Transfer Definition and Attributes

4.18.1 No snoop

This feature is optional for PCIe implementations.

If the Enable No Snoop bit (Bit Location 11, Table 7-12) in the PCI Express

Capability Structure (5.2.8) Device Control Register (PCIe spec section 7.8.4) is

set, the xHC is permitted to set the No Snoop bit in the Requester Attributes of

PCIe transactions it initiates that do not require hardware enforced cache

coherency (refer to Section 2.2.6.5 of the PCIe spec). Note that setting this bit to

‘1’ will not cause the xHC to set the No Snoop attribute on all PCIe transactions

that it initiates. Even when this bit is ‘1’, the xHC is only permitted to set the No

Snoop attribute on a PCIe transaction when it can guarantee that the address of

the transaction is not stored in any cache in the system.

If Enabled in the PCI Express Capability Structure and directed by software in

(e.g. TRB No Snoop (NS) flag is set to ‘1’), then the xHC may set the No Snoop bit

in the Requester Attributes of PCIe transactions it initiates that do not require

288

hardware enforced cache coherency. Refer to Table 4-10 for recommended No

Snoop behavior.

The xHC shall not assert the No Snoop attribute on PCIe transactions for

memory requests that are Message Signaled Interrupts, and Message Requests

(except where specifically permitted).

4.18.2 No Snoop and Relaxed Ordering for USB Traffic

SW may configure the No Snoop/Relaxed Ordering PCIe attributes for each TRB

by setting the respective No Snoop (NS) flag in the TRB.

Table 4-10 defines the recommended behavior of the No Snoop and Relaxed

Ordering PCIe Requester Attributes for PCIe transactions generated by the xHC.

xHC implementations may choose other settings for these PCIe Requester

Attributes. The PCIe Transaction No Snoop attribute is also conditioned for IN

Data Writes by the TRB No Snoop (NS) bit.

Table 4-10: xHC Traffic Attributes

Transfer Type No
Snoop

Relaxed
Ordering Comments

TRB Read N Y Command, Transfer IN or OUT

IN Data Write,

TRB No Snoop
flag = 1
TRB No Snoop

flag = 0

Y
N

N
N

Refer to section 4.18.2.1.

Snooping is dynamically controlled by the
Transfer TRB No Snoop flag.

OUT Data Read,

TRB No Snoop
flag = 1
TRB No Snoop

flag = 0

Y
N

Y
Y

Snooping is dynamically controlled by the

Transfer TRB No Snoop flag.

Command Data
Write

N N e.g. Port Bandwidth Context

TRB Write N N Events

Context Read N Y Any Context read, including Opaque area

Context Write N N Any Context write, including Opaque area

Opaque Read Y Y Scratchpad Opaque area read

Opaque Write Y N Scratchpad Opaque area write

 289

Note: “N” means that the respective Requester Attribute is not set in the PCIe

Transaction. “Y” means that the respective Requester Attribute is set in the PCIe

Transaction.

Section 2.2.6.4 of the PCIe spec describes the Relaxed Ordering Attribute field.

And this attribute is discussed further in section 2.4 of the PCIe spec.

4.18.2.1 No Snoop option for payload

Under certain conditions, system software knows that it is safe to DMA a new

data into a certain buffer without snooping. This scenario would occur when

software is posting an IN buffer to the xHC that the CPU has not accessed since

the last time it was owned by the xHC. This might happen if the data was

transferred to an application buffer by the xHC DMA engine. In this case,

software should be able to set a bit in the IN TRB indicating that the xHC should

perform a “no-snoop” DMA when it eventually writes a packet to this buffer.

When a non-snoop transfer is activated, the TRB will have a non-snoop flag in

the TRB Control field. This is triggered by the No Snoop (NS) bit in the IN TRB.

4.18.2.2 No Snoop option for Scratchpad references

The Scratchpad Buffer Array and the Scratchpad Buffers that it references are

exclusively owned by the xHC. To eliminate unnecessary system bus operations,

the xHC should perform a “no-snoop” DMA when accessing the Scratchpad

Buffer Array or Scratchpad Buffers.

4.19 Root Hub

This section describes the Root Hub and Root Hub Port operational models.

The protocols supported by a xHC implementation are identified by the declared

xHCI Supported Protocol Capability structures, Refer to section 7.2. The xHCI

Supported Protocol Capability structures identify the number of Port Status and

Control (PORTSC) registers supported by an xHC implementation. Refer to

section 4.19.7 for more information on xHCI protocol to PORTSC register

mapping.

Note: Refer to section Suspend-Resume for how to manage a port when Main Power is

removed.

4.19.1 Root Hub Port State Machines

The following state machines utilize the following notation:

290

State Name

Port Link State

Signal State

Where the State Name is an informative name defined by the xHCI spec., the

Port Link State identifies the possible values for the PORTSC PLS field, and

Signal State values are:

Port Power (PP), Current Connect Status (CCS), Port Enabled/Disabled (PED),

and Port Reset (PR), respectively, e.g. 0,0,0,0 all signals are ‘0’.

Note: Transitions associated with the large bubble may occur from any state defined

within the bubble as long as the Conditions match.

Refer to Appendix E for state machine notation.

Note: In each state, the Signal State values defined by the state are forced when

entering the state, so actions are not declared for changing the respective bits

when transitioning from another state. e.g. If the Disconnected State is entered

from the Enabled state, the CCS and PED flags are cleared. If the Disconnected

State is entered from the Reset state, the CCS and PR flags are cleared. Notice

that the big bubble to Disconnected state transition does define any actions

related to these flags.

Note: For transition Actions: The notation Wr(Field Name=value) indicates a software

write to the PORTSC register of “value” to the respective field, and Field

Name=value without the “Wr()” wrapper indicates a transition of the respective

field to the “value”.

Note: The figures in this section are provided to illustrate state transition conditions

and actions, however refer to the textual descriptions of the respective states for

their explicit definition.

Note: The Root Hub Port state machines in the following subsections only references

the Port Link State Change (PLC) flag, refer to section 4.19.2 for information on

how the remaining change flags are affected by the Root Hub Port state

machines.

Note: The xHCI state machines describe the exit conditions from a state and entry

conditions to a state. Only conditions specifically described as an entry or exit

condition shall result in a state transition, e.g. setting the PR flag in the

Disconnected state has no effect on the state of a port because that condition is

not cited in section 4.19.1.1.2.

Refer to section 5.4.8 for the details of change bit operation

 291

4.19.1.1 USB2 Root Hub Port

Figure 4-25: USB2 Root Hub Port State Machine

Disabled

Polling

1,1,0,0

Reset

Undefined

1,1,0,1

Enabled

U0, U2, U3,

or Resume

1,1,1,0

Disconnected

RxDetect

1,0,0,0

Test Mode

Test Mode

1,x,x,0

Powered-off

Disabled

0,0,0,0

Figure 4-25 illustrates the top level transitions in a USB2 Protocol Root Hub

state machine.

Note: The “Change” flags (CSC, PEC, POCC, PRC, PLC, and CEC) are set to ‘1’ upon the

detection of the respective condition. Refer to Table 5-26 for the definition of

the change flags.

The initial state is Disconnected.

4.19.1.1.1 Powered-off

A write to the PORTSC register with PP set to ‘0’ or an Over-current condition

shall transition from any state to the Powered-off state.

A write to the PORTSC register with PP set to ‘1’ shall transition from the

Powered-off state to the Disconnected state.

A write to the USB2 PORTPMSC register with Test Mode greater than ‘0’ shall

transition from the Powered-off state to the Test Mode state.

A write to the PORTSC register with PP cleared to ‘0’, or an over-current

condition (OCA => ‘1’) shall transition from the port from any state to the

Powered-off state.

4.19.1.1.2 Disconnected

This is the initial state after initial xHC Aux Power-up or HCRST.

292

A device connect detect (CCS = ‘1’) shall transition the port from the

Disconnected state to the Disabled state and set the CSC flag to ‘1’.

A disconnect detect (CCS = ‘0’) in the Disabled or Enabled state57 shall

transition the port to the Disconnected state, set the CSC flag to ‘1’, and if PR or

PED flags are set to ‘1’, they shall be cleared to ‘0’.

4.19.1.1.3 Disabled

A write to the PORTSC register with PR set to ‘1’ shall transition the port from

the Disabled state to the Reset state.

4.19.1.1.4 Reset

When the Reset operation completes (PR = ‘0’), the port shall automatically

advance to the Enabled state, setting PED and PRC to ‘1’.

Software shall ignore the value of the Port Link State (PLS) field while in the

Reset state.

4.19.1.1.5 Test Mode

Refer to section Port Test Modes for operation of Port Test Modes.

Note: The Current Connect Status (CCS) and Port Enabled/Disabled (PED) Signal States

vary as function of the selected Test Mode.

4.19.1.1.6 Enabled

While in the Enabled state a write to the PORTSC register with PED set to ‘1’, or

a Port_Error (refer to section 11.8.1 of the USB2 spec for conditions that may

cause a Port_Error) shall transition the port from any Enabled substate to the

Disabled state. If the transition was due to a Port_Error the PEC flag shall be set

to ‘1’.

57Note that a disconnect cannot be detected by a USB2 port in the Reset state because the host is driving the bus.

 293

Figure 4-26: USB2 Root Hub Port Enabled Substate Diagram

U0

U0

1,1,1,0

U2

U2

1,1,1,0

U3

U3

1,1,1,0

Resume

Resume

1,1,1,0

Disabled

Reset

Disconnected

Powered-off

U2Entry

U0

1,1,1,0

U3Entry

U0

1,1,1,0

U2Exit

U2

1,1,1,0

RExit

Resume

1,1,1,0

Reset

Figure 4-26 illustrates the Enabled substate transitions in a USB2 Protocol Root

Hub state machine.

While in any of the Enabled substates:

• If the PORTSC register is written with PP = ‘0’ or and over-current condition is

detected (OCA = ‘1’) then the respective substate shall exit to the Powered-off state.

• If a Disconnect condition is detected (CCS = ‘0’) then the respective substate shall

exit to the Disconnected state.

• If the PORTSC register is written with PR = ‘1’ then the respective substate shall exit

to the Reset state.

4.19.1.1.7 U0

Entry to the Enabled state always transitions to the U0 substate.

A write to the PORTSC register with the PLS field set to U2 and LWS set to ‘1’

shall cause the xHC to issue an LPM transaction to the device and transition the

port to the U2Entry substate.

A write to the PORTSC register with the PLS field set to U3 and LWS set to ‘1’

shall cause the xHC to suspend the device, and transition the port to the

U3Entry substate.

If the entry to the U0 state was from the U2Exit substate due to a write to the

PORTSC register with the PLS field set to U3 and LWS set to ‘1’ in the U2

294

substate, then the port shall automatically transition the port to the U3Entry

substate, and suspend the device.

4.19.1.1.8 U2Entry

In this state the xHC shall attempt to transition the device to the L1 suspend

state by issuing an LPM transaction to the device:

• If the device responds with an ACK handshake (the L1 suspend attempt was

successful), the port shall set the L1S field to Success (‘1’) and transition to the U2

substate, and the device shall enter the L1 standby state.

• If the device responds with a NYET handshake (the L1 suspend attempt was rejected

by the device), the port shall set the L1S field to Not Yet (‘2’) and transition to the U0

substate and set the PLC flag to ‘1’ (PLC Condition: L1 Entry Reject), and the device

shall remain in the L0 state. Note that in this case there is no PLS transition, it shall

remain in the U0 state.

• If the device responds with a STALL handshake (the L1 suspend attempt was not

recognized by the device), the port shall set the L1S field to Not Supported (‘3’),

transition to the U0 substate, and set the PLC flag to ‘1’ (PLC Condition: L1 Entry

Reject).

• If a Timeout occurs or a Transaction Error is detected (the L1 suspend attempt was

unsuccessful), the port shall set the L1S field to Timeout/Error (‘4’), transition to the

U0 substate, and set the PLC flag to ‘1’ (PLC Condition: L1 Entry Reject).

Note that when the STALL, Timeout, or transaction Error cases above occur

software may inspect the USB2 PORTPMSC register L1S field to determine the

specific cause of the transition. Refer to section 4.23.5.1.1 for more information

on the L1S result values.

Refer to sections 4.15.2 and 4.23.5 for more information on USB2 LPM

operation.

4.19.1.1.9 U2

The port is in the L1Suspended state and shall remain in the U2 substate until a

Host or Device Initiated Resume occurs.

Host Initiated L1 Resume - A write to the PORTSC register with the PLS field set

to U0 or U3 and LWS set to ‘1’ shall cause the port to initiate resume signaling to

the device and transition to the U2Exit substate.

Device Initiated L1 Resume - If Resume Signaling is generated by the device,

then the port shall transition to the U2Exit substate.

If the entry to the U0 state was from the U2Exit substate due to a write to the

PORTSC register with the PLS field set to U3 and LWS set to '1' in the U2

substate, then the port shall automatically transition the port to the U3Entry

substate, and suspend the device.

 295

4.19.1.1.10 U2Exit

When the resume signaling is complete and the device has entered the L0 state,

the port shall transition to the U0 substate and set the PLC flag to ‘1’ (PLC

Condition: USB2 L1 Resume complete).

4.19.1.1.11 U3Entry

In this state the xHC shall wait for transfers associated with the current

microframe or other internal operations to complete before Idling the bus and

suspending the device. When the enters the Idle state, the port shall transition

to the U3 substate, and if U3C and U3E = ‘1’, set PLC flag to ‘1’ (PLC Condition:

U3 Entry complete).

4.19.1.1.12 U3

The port is in the Idle state (i.e. suspended) and shall remain in the U3 state

until a Host or Device Initiated Resume occurs.

Note: Section 7.1.7.6 of the USB2 specification states that devices begin to transition

“into the Suspend state after they see a constant Idle state on their upstream

facing bus lines for more than 3.0 ms. The device must actually be suspended,

drawing only suspend current from the bus, after no more than 10 ms of bus

inactivity on all its ports.“

The PLS field of a USB2 Root Hub port reflects the Idle state of the port’s bus

lines, not whether the attached device has actually transitioned to the Suspend

state.

Host Initiated Resume - A write to the PORTSC register with the PLS field set to

Resume and LWS set to ‘1’ shall cause the xHC to initiate resume signaling to the

device and transition to the Resume substate.

Device Initiated Resume - If Resume Signaling is generated by the device, the

port shall transition to the Resume substate, initiate resume signaling to the

device, and set the PLC flag to ‘1’ (PLC Condition: Wakeup signaling from a

device).

4.19.1.1.13 Resume

A write to the PORTSC register with the PLS field set to U0 and LWS set to ‘1’

shall cause the port to transition to the RExit substate and complete the resume

signaling.

Note: Software shall time the duration of the Resume state. Software shall remain in

the Resume state long enough to ensure the resume sequence, as specified in

the USB2 spec, completes successfully.

296

4.19.1.1.14 RExit

When the resume signaling is complete and the device has entered the L0 state,

the port shall transition to the U0 substate and set the PLC flag to ‘1’ (PLC

Condition: USB2 Device Resume complete).

4.19.1.2 USB3 Root Hub Port

Figure 4-27 illustrates the top level transitions in a USB3 Protocol Root Hub

state machine.

Refer to Table 5-26 for the conditions that affect the change flags.

Figure 4-27: USB3 Root Hub Port State Machine

Reset

Undefined

1,1,0,1

Compliance

Compliance

1,0,0,0

Error

Inactive

1,0,0,0

Loopback

Test Mode

1,0,0,0

Enabled

U0, U1, U2,

U3, Resume,

or Recovery

1,1,1,0

Disabled

Disabled

1,0,0,0

Disconnected

RxDetect

1,0,0,0

Polling

Polling, U0,

RxDetect, or

Disabled

1,0,0,0

Powered-off

Disabled or

RxDetect

0,0,0,0

The initial state is Disconnected.

Note: The dashed arrows represent optional state transitions that may occur if the

Debug Capability is supported. Refer to section 4.19.1.2.4.3 for more

information.

Note: Figure 4-27 does not illustrate a transition from the Enabled state to the

Loopback state, which may occur. Refer to note in section 4.19.1.2.14 for

additional information on transitions to the Loopback state.

4.19.1.2.1 Disabled

A write to the PORTSC register with the PED field set to ‘1’ shall transition the

port, from any state except Powered-off, to the Disabled state.

 297

A write to the PORTSC register with the PLS field set to RxDetect and LWS set to

‘1’ shall transition the port to the Disconnected state.

A write to the USBCMD register with the HCRST flag set to ‘1’ shall transition the

port to the Disconnected state.

A write to the PORTSC register with PP cleared to ‘0’ or an over-current

condition (OCA = ‘1’) shall transition the port to the Powered-off state.

4.19.1.2.2 Powered-off

A write to the PORTSC register with PP cleared to ‘0’ shall transition from the

port from any state to the Powered-off state.

An over-current condition (OCA = ‘1’) shall transition from the port from any

state to the Powered-off state, and if the CCS, PR or PED flags are set to ‘1’, they

shall be cleared to ‘0’.

A write to the PORTSC register with PP set to ‘1’ shall transition the port to the

Disconnected state.

A write to the USBCMD register with the HCRST flag set to ‘1’ shall transition the

port to the Disconnected state.

4.19.1.2.3 Disconnected

This is the initial state after initial xHC Aux Power-up.

Note: If a port has transitioned to this state from the Powered-off or Disabled states

due to the assertion of HCRST by software, then a Hot or Warm Reset shall be

issued by the port when its LTSSM enters to the Rx.Detect state or after a receiver

detection in the Rx.Detect state.

Note: The completion of Host Controller Reset (i.e. the HCRST ‘1’ to ‘0’ transition) does

not depend on the completion of any port activity other than entering the

Disconnected state.

The assertion of HCRST = ‘1’ shall cause the port to remain in the Disconnected

state.

Note: An xHC implementation may assert WPR or PR to reflect the associated reset

operation if HCRST is asserted while the port is in the Disconnected state.

A device Connect Detect58 shall transition the port to the Polling state.

58SuperSpeed far-end receiver terminations are detected. Refer to section 6.11 in the USB3 spec.

298

A Disconnect Detect59 in the any state, except Powered-off or Disabled shall

transition the port to the Disconnected state.

4.19.1.2.4 Polling

While in the Polling state the port may transition between the Training,

CfgExcg, and DbC substates.

Figure 4-28: USB3 Root Hub Port Polling Substate Diagram

CfgExcg

U0

1,0,0,0

Training

Polling

1,0,0,0

Disconnected

Enabled

Loopback

Compliance

Disconnected

Error

DbC

Disabled or

RxDetect

x,0,0,0

Disabled

Powered-off

Figure 4-28 illustrates the Polling substate transitions in a USB3 Protocol Root

Hub state machine.

Note: The dashed arrows represent optional state transitions that may occur if the

Debug Capability is supported. Refer to section DbC for more information.

4.19.1.2.4.1 Training

Entry to the Polling state always transitions to the Training substate.

A Connect Detect shall cause the port to transition to the Training substate.

If Training completes successfully, the substate shall transition to the CfgExcg

substate.

59A LTSSM transition from the any state to the Rx.Detect state due to Removal(DS Port Only). Refer to section 7.5 in
the USB3 spec.

 299

If Training fails due to a Link Timeout60 or a Disconnect Detect59, the substate

shall exit to the Disconnected state.

If the Compliance Transition Capability (CTC) flag in the HCCPARAMS2 register =

‘1’, then the xHC supports software control of the transition to the Compliance

state and Compliance Transition Enabled (CTE) flags. The CTE flag is an internal

xHCI flag associated with each Root Hub port, i.e. CTE is not software visible. If

CTE = ‘1’ then the transition path to the Compliance substate shall be enabled,

otherwise the transition is disabled. Upon Chip Hardware Reset, the assertion of

HCRST = ‘1’, or a Warm Reset (WPR = ‘1’), CTE shall be cleared to ‘0’. Only if the

port is in the Disconnected state, then a write to the PORTSC register with the

PLS field set to Compliance Mode and LWS set to ‘1’ shall set CTE to ‘1’.

If CTE = ‘1’, then the detection of the first LFPS Timeout shall transition the

substate to the Compliance state.

The reception of a TS2 Ordered Set with the Loopback bit set shall transition

the substate to the Loopback state.

4.19.1.2.4.2 CfgExcg

In this state, the Port Capabilities and Port Configuration LMPs are exchanged as

described in sections 8.4.5 and 8.4.6 of the USB3 spec.

If the port is successfully configured as a downstream facing port (Downstream

Config Successful), the substate shall exit to the Enabled state.

If the port is successfully configured as an upstream facing port (Upstream

Config Successful), the substate shall transition to the DbC substate. Note that

this transition shall never occur if the xHC does not support the xHCI Debug

Capability.

Note: If the xHCI Debug Capability is enabled and a Debug Host has not been detected

yet, the Direction field of the Port Capabilities LMP shall be set to ‘3’ for all ports,

indicating that the Root Hub port is both upstream and downstream capable. An

Upstream Config Successful condition indicates that a downstream facing port is

attached to a Root Hub port and implies that a Debug Host is attached. Once a

port is mapped to the Debug Capability, all remaining ports shall assert ‘1’ (i.e.

the port shall only be configured as downstream) in the Direction field of

subsequent Port Capabilities LMPs. Refer to section 7.6 for more information on

the operation of the xHCI Debug Capability.

Note: If a Debug Host and a Debug Target are cabled together, but the xHCI Debug

Capability has not yet been enabled, then the Direction field of the Port

60Refer to section 7.5.4 in the USB3 spec for the LTSSM conditions that shall transition a downstream port from the
Polling to the Rx.Detect state. Note, the LTSSM Rx.Detect state maps to the USB3 Port state machine
Disconnected state.

300

Capabilities LMP shall be set to ‘1’ for all ports, indicating that the Root Hub ports

on both the Debug Host and the Debug Target are only downstream capable.

After the link trains, a Config Error condition will occur because two downstream

ports are connected together (i.e. an undefined Port Type selection occured),

causing the port to transition to the Error state. If software resets the port to

recover from the error, this Config Error scenario will repeat until the cable is

disconnected or the DbC is enabled.

If the port fails to successfully configure (Config Error), the substate shall set the

CEC flag to ‘1’ and exit to the Error state.

Note: In Figure 4-28, the Upstream and Downstream “Config Successful” transitions

may require the resolution of a “Tiebreaker” with the exchange of one or more

Port Capability LMPs if the link partner also asserts the Upstream and

Downstream Direction flags in the Port Capability LMP and the Tiebreaker fields

are equal, refer to section 8.4.5 in the USB3 spec.61

4.19.1.2.4.3 DbC

In this substate, the port is mapped to the Debug Capability and the DbgCap

substates shall emulate a port that never detects an attach

Note: This substate is optional, and shall only exist for xHC implementations that

support the xHCI Debug Capability.

While in the DbC (Debug Capability) substate the port may transition between

the DbC Disconnected, DbC Disabled, and the DbC Powered-off substates.

Note: Section 7.5 of the USB3 spec describes the behavior of the LTSSM for upstream

and downstream facing ports. The default behavior of an xHC Root Hub is that

of a downstream facing port. However, while in the DbC state the LTSSM of a

Root Hub port is mapped to the Debug Capability and shall behave as an

upstream facing port.

61A DbC enabled port may bias the Port Capability LMP exchange so that it becomes an upstream facing port by
randomly choosing low Tiebreaker values, e.g. < 8.

 301

Figure 4-29: USB3 Root Hub Port DbC Substate Diagram

CfgExcg
Disconnected

DbC

Disconnected

RxDetect

1,0,0,0

DbC

Powered-off

Disabled

0,0,0,0

DbC

Disabled

Disabled

1,0,0,0

Disabled

Powered-off

Figure 4-29 illustrates the DbC substate transitions in a USB3 Protocol Root Hub

state machine.

4.19.1.2.4.3.1 DbC Disconnected

Entry to the DbC substate always transitions to the DbC Disconnected substate.

A write to the PORTSC register with the PED field set to ‘1’ shall transition the

port to the DbC Disabled substate.

A write to the PORTSC register with the PP field set to ‘0’ shall transition the

port to the DbC Powered-off substate.

A write to the DCCTRL register with the DCE field set to ‘0’ or a Disconnect

Detect59, shall transition the port to the Disconnected state.

4.19.1.2.4.3.2 DbC Disabled

A write to the PORTSC register with the PLS field set to RxDetect and LWS set to

‘1’ shall transition the port to the DbC Disconnected substate.

A write to the PORTSC register with the PP field set to ‘0’ shall transition the

port to the DbC Powered-off substate.

A write to the DCCTRL register with the DCE field set to ‘0’ or a Disconnect

Detect59, shall transition the port to the Disabled state.

302

4.19.1.2.4.3.3 DbC Powered-off

A write to the PORTSC register with the PP field set to ‘1’ shall transition the

port to the DbC Disconnected substate.

A write to the DCCTRL register with the DCE field set to ‘0’ or a Disconnect

Detect59, shall transition the port to the Disconnected state.

4.19.1.2.5 Reset

A write to the PORTSC register with PR or WPR set to ‘1’ or a write to the

USBCMD register with HCRST set to ‘1’, shall transition the port from any state

except the Disconnected , Powered-off, or Disabled states, to the Reset state.

If the Reset operation completes successfully, the port shall transition to the

Enabled state, clearing PR to ‘0’ and setting PED to ‘1’.

If the Reset operation does not complete successfully, the port shall transition

to the Disconnected state.

Note: If a port has transitioned to this state due to the assertion of HCRST by software,

then a Hot or Warm Reset shall be issued by the port when its LTSSM enters to

the Rx.Detect state. Depending on the link state when HCRST is asserted, an xHC

implementation may choose to issue a Hot Reset rather than a Warm Reset to

accelerate the USB recovery process.

Note: PRC shall be set upon exiting the Reset state. However the WRC flag shall also

be set, if software set the PR flag and the “Hot” Reset transitioned to a Warm

Reset or if software set the WPR flag initially to enter the Reset state. Refer to the

note section 10.3.1.6 of the USB3 spec for more information on a Hot Reset to

Warm Reset transition.

A Disconnect Detect59 shall transition the port to the Disconnected state.

Software shall ignore the value of the Port Link State (PLS) field while in the

Reset state.

4.19.1.2.6 Error

The port shall transition to the Error state if a serious error condition (SError)

occurs while attempting to operate the link, i.e. the LTSSM transitions to the

SS.Inactive state, an unsuccessful LTSSM Loopback.Exit, etc. Refer to section

10.3.1.4 “DSPORT.ERROR” of the USB3 spec for the SError conditions that shall

cause a Root Hub port to transition to the Error state.

The transition to the Error state shall set the PLC flag to ‘1’ (PLC Condition:

Error).

A Disconnect Detect59 shall transition the port to the Disconnected state.

 303

4.19.1.2.7 Compliance

A write to the PORTSC register with the PED field set to ‘1’ shall transition the

port, to the Disabled state.

A write to the PORTSC register with WPR set to ‘1’ or the assertion of HCRST =

‘1’ shall transition the port to the Reset state.

Refer to section 4.19.1.2.2 for the conditions that shall transition the port to the

Powered-off state.

4.19.1.2.8 Loopback

A successful Exit (LFPS handshake in the LTSSM Loopback.Exit state) or a

Disconnect Detect59 shall transition the port to the Disconnected state.

Refer to section 4.19.1.2.2 for the conditions that shall transition the port to the

Powered-off state.

A Timeout in the LTSSM Loopback.Exit state (tLoopBackExitTimeout) shall

transition the port to the Error state.

Note: Refer to note in section Recovery for additional information on transitions to

the Loopback state.

4.19.1.2.9 Enabled

While in the Enabled state a the port may transition between the U0, U1’, U2’,

U3’ and Recovery substates.

304

Figure 4-30: USB3 Root Hub Port Enabled Substate Diagram

U0

U0

1,1,1,0

Recovery

Recovery

1,1,1,0

Error

Reset

Disconnected

Powered-off

U2'

U0 or U2

1,1,1,0

U1'

U0 or U1

1,1,1,0

U3'

U0, U3,

Resume or

Recovery

1,1,1,0

Figure 4-30 illustrates the Enabled substate transitions in a USB3 Protocol Root

Hub state machine.

While in any Enabled substates:

• If the PORTSC register is written with PP = ‘0’ or and over-current condition is

detected (OCA = ‘1’), then the respective substate shall exit to the Powered-off state.

• If a Disconnect condition is detected (CCS = ‘0’), then the respective substate shall

exit to the Disconnected state.

• If the PORTSC register is written with PR = ‘1’ or WPR = ‘1’, then the respective

substate shall exit to the Reset state.

• If a condition62 transitions the Port Link State (PLS) to the Inactive state, then the

respective substate shall exit to the Error state.

Refer to sections 4.19.1.2.10, 4.19.1.2.11, 4.19.1.2.12, 4.19.1.2.13, and

4.19.1.2.14 for more information on the Enabled substates.

Note: Figure 4-30 does not illustrate a transition from the Recovery or U3’ states to

the Loopback state, however they may occur. Refer to note in section Recovery

for additional information on transitions to the Loopback state.

62e.g. if a Ux_EXIT_TIMER timeout occurs in the Recovery state while attempting to transition from the U1’ or U2’
state to the U0 state.

 305

4.19.1.2.10 U0

Entry to the Enabled state always transitions to the U0 substate.

The reception of an LGO_U1 from the link partner or a U1 Timeout shall cause

the port to transition to the U1’ substate.

The reception of an LGO_U2 from the link partner, or a U2 Timeout shall cause

the port to transition to the U2’ substate.

A write to the PORTSC register with the PLS field set to U3 and LWS set to ‘1’

shall cause the port to transition to the U3’ substate.

If the entry to the U0 state was from the Recovery substate due to a write to the

PORTSC register with the PLS field set to U3 and LWS set to '1' in the U1 or U2

substate, then the port shall automatically transition the port to the U3'

substate, and suspend the device.

The port shall transition to the Recovery substate if errors defined in section 7.3

of the USB3 spec occur.

4.19.1.2.11 U1’

Figure 4-31: USB3 Root Hub Port U1’ Substate Diagram

&
U1

U1

1,1,1,0

U1_Tx

U0

1,1,1,0

U1_Rx

U0

1,1,1,0

U0

RecoveryU0

U2'

Error

Figure 4-31 illustrates the U1’ substate transitions in a USB3 Protocol Root Hub

state machine.

If the transition to the U1’ substate was due to an LGO_U1 received from the

device, the xHC shall transition to the U1_Rx substate.

If the transition to the U1 substate was due to a U1 Timeout, the xHC shall

transition to the U1_Tx substate.

306

Refer to sections 4.19.1.2.11.1 , 4.19.1.2.11.2 , and 4.19.1.2.11.3 for more

information on the U1’ substates.

4.19.1.2.11.1 U1_Rx

xHC implementation specific power management policies determined whether

to accept or reject the LGO_U1 request. If the request is accepted the xHC shall

transmit an LAU and transition to the U1 substate. If the request is rejected the

xHC shall transmit an LXU and transition to the U0 substate.

4.19.1.2.11.2 U1_Tx

Device implementation specific power management policies determined

whether the LGO_U1 request from the host shall be accepted or rejected. If the

request is accepted the xHC shall receive an LAU and transition to the U1

substate. If the request is rejected the xHC shall receive an LXU and transition to

the U0 substate.

4.19.1.2.11.3 U1

The port is in the LTSSM U1 state.

Host Initiated U1 Resume - A write to the PORTSC register with the PLS field set

to U0 or U3, and LWS set to ‘1’ shall cause the xHC to initiate an LFPS

Handshake with the device. If the handshake is successful, the device has

entered the U0 state, the port shall exit the U1’ substate machine and transition

to the U0 substate.

Device Initiated U1 Resume - If an LFPS Handshake is initiated by the device

completes successfully, the port shall exit the U1’ substate machine, and

transition to the U0 substate.

A U2 Timeout shall cause the port to transition to the U2’ substate.

An SError shall cause the port to transition to the Error state.

 307

4.19.1.2.12 U2’

Figure 4-32: USB3 Root Hub Port U2’ Substate Diagram

&

U2

U2

1,1,1,0

U2_Tx

U0

1,1,1,0

U2_Rx

U0

1,1,1,0

U1'

U0

U0

Recovery

Error

Figure 4-32 illustrates the U2’ substate transitions in a USB3 Protocol Root Hub

state machine.

If the transition to the U2’ substate was due to an LGO_U2 received from the

device, the xHC shall transition to the U2_Rx substate.

If the transition to the U2’ substate was due to a U2 Timeout, the xHC shall

transition to the U2_Tx substate.

If the transition to the U2’ substate was from the U1’ state (due to an L2

Timeout), the xHC shall transition to the U2 substate.

Refer to sections 4.19.1.2.12.1 , 4.19.1.2.12.2 , and 4.19.1.2.12.3 for more

information on the U2’ substates.

4.19.1.2.12.1 U2_Rx

xHC implementation specific power management policies determined whether

to accept or reject the LGO_U2 request. If the request is accepted the xHC shall

transmit an LAU and transition to the U2 substate. If the request is rejected the

xHC shall transmit an LXU and transition to the U0 substate.

4.19.1.2.12.2 U2_Tx

Device implementation specific power management policies determined

whether the LGO_U2 request from the host shall be accepted or rejected. If the

request is accepted the xHC shall receive an LAU and transition to the U2

substate. If the request is rejected the xHC shall receive an LXU and transition to

the U0 substate.

308

4.19.1.2.12.3 U2

The port is in the LTSSM U2 state.

Host Initiated U2 Resume - A write to the PORTSC register with the PLS field set

to U0 or U3, and LWS set to ‘1’ shall cause the xHC to initiate an LFPS

Handshake with the device. If the handshake is successful, the device has

entered the U0 state, the port shall exit the U2’ substate machine, and transition

to the U0 substate.

Device Initiated U2 Resume - If an LFPS Handshake is initiated by the device

completes successfully, the port shall exit the U2’ substate machine, and

transition to the U0 substate.

An SError shall cause the port to transition to the Error state.

4.19.1.2.13 U3’

Figure 4-33: USB3 Root Hub Port U3’ Substate Diagram

U3

U3

1,1,1,0

Resume

Resume

1,1,1,0

U3Entry

U0

1,1,1,0

RExit

Recovery

1,1,1,0

U0

U0

U3Exit

Recovery

1,1,1,0

Figure 4-33 illustrates the U3’ substate transitions in a USB3 Protocol Root Hub

state machine.

Upon entry into the U3’ substate machine transitions to the U3Entry substate.

Refer to sections 4.19.1.2.13.1 , 4.19.1.2.13.2 , 4.19.1.2.13.3 , and 4.19.1.2.13.4

for more information on the U3 substates.

Note: Figure 4-33 does not illustrate a transition from the RExit or U3Exit

states to the Loopback state, however it may occur. Refer to note in section

4.19.1.2.14 for additional information on transitions to the Loopback state.

 309

4.19.1.2.13.1 U3Entry

The port shall remain in this substate until a LAU is received from the device,

then transition to the U3 substate, and if U3C and U3E = ‘1’, set PLC flag to ‘1’

(PLC Condition: U3 Entry complete).

4.19.1.2.13.2 U3

The port is suspended and shall remain in the U3 substate until a Host or Device

Initiated Resume occurs.

Host Initiated Resume - A write to the PORTSC register with the PLS field set to

U0 and LWS set to ‘1’ shall cause the xHC to initiate Link Activity (LFPS

Handshake) with the device and transition to the U3Exit substate.

Device Initiated Resume - If Link Activity (LFPS Handshake) is initiated by the

device, the port shall not respond, exit the U3 substate machine, transition to

the Resume substate, and set the PLC flag to ‘1’ (PLC Condition: Wakeup

signaling from a device).

4.19.1.2.13.3 Resume

A write to the PORTSC register with the PLS field set to U0 and LWS set to ‘1’

shall cause the xHC to initiate Link Activity (LFPS Handshake) with the device

and transition to the RExit substate.

4.19.1.2.13.4 RExit

The LTSSM is in the Recovery state. Refer to section 7.5.10 in the USB3 spec.

When the handshake is successful; the port shall exit the U3’ substate machine,

transition to the U0 substate, and set PLC flag to ‘1’ (PLC Condition: USB3

Device Resume completion). Note that a USB device is not allowed to reject a

resume request from the host.

If a TS2 Ordered Set is received with the Loopback bit set, the port shall

transition to the Loopback state.

If a TS2 Ordered Set is received with the Reset bit set, the port shall transition to

the Reset state.

Note: Refer to note in section Recovery for additional information on transitions to

the Loopback state.

4.19.1.2.13.5 U3Exit

The LTSSM is in the Recovery state. Refer to section 7.5.10 in the USB3 spec.

When the handshake is successful; the port shall exit the U3’ substate machine,

transition to the U0 substate, and set PLC flag to ‘1’ (PLC Condition: USB3

310

Software Resume complete). Note that a USB device is not allowed to reject a

resume request from the host.

If a TS2 Ordered Set is received with the Loopback bit set, the port shall

transition to the Loopback state.

If a TS2 Ordered Set is received with the Reset bit set, the port shall transition to

the Reset state.

Note: Refer to note in section Recovery for additional information on transitions to

the Loopback state.

4.19.1.2.14 Recovery

The LTSSM is in the Recovery state. Refer to section 7.5.10 in the USB3 spec.

If the recovery completes successfully; the port shall transition to the U0

substate.

If the recovery does not complete successfully; the port shall transition to the

Error state.

If a TS2 Ordered Set is received with the Loopback bit set, the port shall

transition to the Loopback state.

Note: The xHC USB3 Root Hub Port state machine figures do not illustrate a transition

from the Enabled, Recovery, RExit, or U3Exit to Loopback state transition,

however they may occur.

The LTSSM shall transition from the Recovery.Idle state to the Loopback state if

a TS2 Ordered Set is received with the Loopback bit set. A xHC Root Hub port is

a Loopback Slave. To perform loopback tests a specialized Test Device is

required. The Test Device, which acts as Loopback Master, may transition a port

to the Enabled state before transitioning the port to Loopback state. However,

typically a Loopback Master will only assert the Loopback bit in a TS2 Ordered

Set when it is initially connected, asserting an LTSSM Polling.Idle to Loopback

transition.

4.19.2 Port Status Change Generation

The xHC defines a Port Status and Control (PORTSC) register for each Root Hub

port.

There are seven status change bits in the PORTSC register Connect Status

Change (CSC), Port Enabled/Disabled Change (PEC), Warm Port Reset Change

(WRC), Over-current Change (OCC), Port Reset Change (PRC), Port Link State

Change (PLC), and Port Config Error Change (CEC), Refer to section 5.4.8 for

more information on these bits.

 311

Root Hub port status change bits may be set due to hardware or software

initiated conditions. When set, these bits remain set until cleared by a system

software write to the PORTSC register with the appropriate status change bit(s)

set to ‘1’, or the assertion of a Chip Hardware Reset or HCRST.

When a status change bit is set in a PORTSC register, if the assertion of a status

change bit results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), the xHC responds by

generating a Port Status Change Event (as described in section 6.4.2.3) and/or

asserting a Power Management Event (PME#). Refer to Table A-2 for more

information on Port Status Change Event and PME# generation. The host system

normally receives Root Hub port status change notifications through Port Status

Change Events , however the “Wake on” flags in the PORTSC register can be used

to manage the assertion of PME# due to port status changes. Refer to section

4.15 for more information on wake operation.

The Connect Status Change (CSC) bit shall be asserted if there is any connection

change, i.e. connect or disconnect, i.e. a ‘1’ to ‘0’ or ‘0’ to ‘1’ transition of CCS or

CAS.

The Port Enabled/Disabled Change (PEC) shall be asserted only by a USB2

protocol port when the Port Enabled/Disabled (PED) flag transitions to Disabled

due to a Port_Error, i.e. a ‘1’ to ‘0’ transition of PED.

The Warm Port Reset Change (WRC) bit is set only when a warm reset completes,

i.e. a ‘1’ to ‘0’ transition of WPR.

The Over-current Change (OCC) bit is set when an over-current condition is

detected, i.e. a ‘0’ to ‘1’ transition of OCA.

The Port Reset Change (PRC) bit is set when any reset (hot or warm) completes,

i.e. a ‘1’ to ‘0’ transition of PR or WPR.

Note: The definition of PRC states that it is set “when any reset processing (Warm or

Hot) on this port is complete”. If an over-current condition (OCA => ‘1’) occurs

while a port is in the Reset state, then reset processing is aborted and the PR flag

shall be cleared. Hardware may or may not set the PRC and WRC flags under

these conditions. If the OCC flag is set, then the PRC and WRC flags should be

ignored by software.

The Port Link State Change (PLC) bit is asserted for specific Port Link State (PLS)

field transitions. Refer to section 4.19.1 for the specific Root Hub port state

transitions that will assert PLC.

The Port Config Error Change (CEC) bit is set only when a Port Configuration

error is detected. Note that there is no corresponding port config status or error

flag in the PORTSC register, so the assertion of CEC is the only means of

flagging this error condition.

312

The Port Status Change Event reports port status changes on a per-port basis.

The Port ID field of the Port Status Change Event TRB (shown in Table 88),

indicates which port has experienced a status change.

System software shall acknowledge status change(s) by clearing the respective

PORTSC status change bit(s). The acknowledgment clears the change state for

that port so future status changes may be reported.

Note: There are no coherency guarantees between a software read of PORTSC

register and corresponding Events reflecting PORTSC changes, i.e., If software

reads the PORTSC and sees a change bit set, there is no guarantee that the

corresponding event has been written into the Event ring.

Figure 4-34 shows an example creation mechanism for Port Status Change Event

and PME# generation.

A ‘0’ to ‘1’ transition of the Port Status Change Event Generation (PSCEG) signal

shall cause a Port Status Change Event to be generated. PSCEG is an internal

xHC variable, not directly exposed to software.

Note: The generation of a Port Status Change Event is triggered by the assertion of the

PSCEG signal. Due to internal xHC scheduling and system delays, there will be a

lag between a change bit being set and the Port Status Change Event that it

generated being written to the Event Ring. If SW reads the PORTSC and sees a

change bit set, there is no guarantee that the corresponding Port Status Change

Event has already been written into the Event Ring.

Note: There are no ordering requirements between Transfer Events and Port Status

Change Events. e.g. a due to a disconnect, transfer events for the disconnected

device may be placed on an Event Ring after the Port Status Change Event

generated by the port.

The change bits (CSC. PEC, etc.) of each port are ORed together and gated by the

HCHalted (HCH) flag to form the Port Status Change Event Generation signal. A

port shall generate a Port Status Change Event when there is ‘0’ to ‘1’ transition

of the PSCEG signal.

The PME wake events detected by each port (PEx) are ORed together and gated

by the PCI PM PMSCR.PME_En flag. Refer to Appendix A.1.1 for more

information. PME# shall be asserted when there is a ‘0’ to ‘1’ transition of the

PME# Generation signal.

 313

Figure 4-34: Example Port Change Bit Port Status Change Event Generation

PEC

WRC

OCC

PRC

PORTSC 1

Port Status Change Event

Generation (PSCEG)

PLC

CEC

HCHalted

PME#

Generation

WCE

WDE

WOE

Connect Detect

PLS=Resume

PMCSR.PME_En

PE1

PEn

Per Port Logic Logic for all Ports

Change

Detect

Logic

...

CSC

Note: A Port Status Change Event may be the result of multiple status change bits

being set.

Note: Port Status Change Events for a port are blocked until all status change bits are

cleared (‘0’), i.e. PSCEG = ‘0’.

Note: Under some conditions the xHC may not be capable of generating Port Status

Change Events, i.e. if HCHalted (HCH) = ‘1’ or the Event Ring is full. If the HCHalted

(HCH) = ‘0’ and the Event Ring is not full, the xHC shall generate Port Status

Change Events.

Note: For USB2 ports the Connect Detect signal is identical to CCS.

For USB3 ports the Connect Detect signal is asserted when SuperSpeed far-end

receiver terminations are detected, and negated if there is a LTSSM transition

from the any state to the Rx.Detect state due to Removal(DS Port Only). Refer to

section 7.5 in the USB3 spec.

4.19.3 Connect Status Change Reporting

The xHC shall perform the following operations when Port Power is asserted (PP

= ‘1’) and a USB Device attach is detected on a Root Hub port:

1. The CCS bit in the respective PORTSC register is set to ‘1’, indicating that

a device presence has been detected.

314

2. The CSC bit in the respective PORTSC register is set to ‘1’, indicating that

a transition has been detected in the CCS bit.

3. If the assertion of CSC results in a ‘0’ to ‘1’ transition of PSCEG, post a

Port Status Change Event TRB with the following field values to the Event

Ring.

• TRB Type = Port Status Change Event.

• Port ID = Port Number of the Root Hub Port that detected the device attach

• Completion Code = Success

• Cycle bit = Current Event Ring Producer Cycle State.

When software parses the Port Status Change Event, it can evaluate the Port ID

field to determine the Root Hub port that was the source of the change event.

And examine the port’s PORTSC register to determine that the event was

generated by a Connect Status Change (CSC = ‘1’) and that the change was an

Attach (CCS = ‘1’).

For a USB2 Protocol port, “device presence” is indicated by the PORTSC PLS

field transitioning from the RxDetect to the Polling state. Software shall reset

the port to transition it to the U0 state.

For a USB3 Protocol port, “device presence” is indicated by the PORTSC PLS

field transitioning from the Polling to the U0 state.

4.19.4 Port Power

The Port Power Control (PPC) flag indicates whether the xHC supports port

power switches.

Whether an xHC implementation supports port power switches or not, it shall

automatically enable VBus on all Root Hub ports after a Chip Hardware Reset or

HCRST. The initial state of an xHCI Root Hub ports shall be the Disconnected

state, i.e. Port Power (PP) is asserted, and the port is waiting for signaling on the

USB that indicates a device is attached.

Note: After a Chip Hardware Reset the xHC is allowed to delay the assertion of the Port

Power (PP) flag until after the software sets Max Device Slots Enabled

(MaxSlotsEn) field in Configure (CONFIG) register. This feature allows an

implementation to hold off device and link power consumption until a driver is

loaded.

This requirement means that Root Hub port may report a device is connected

(CCS and CSC = ‘1’) before the xHC is running (i.e. HCHalted (HCH) = ‘0’), and that

when software enables the xHC and HCHalted (HCH) transitions to ‘0’, PSCEG

shall be asserted for each port with a connected device, generating a respective

Port Status Change Event. In this case:

• A USB2 protocol port shall be in the Disabled state.

 315

• A USB3 protocol port shall be in the Enabled state.

When PP = ‘0’:

• The port is forced to the Powered-off state.

• CSC shall be asserted if the PP transitioned to ‘0’ due to an over-current condition. If

PP transitions to ‘0’ for any other condition no status change flags or wake-up events

shall be asserted.

• The port’s receiver and transmitter are disabled, however the port’s receiver

terminations shall be maintained.

When PP transitions from ‘0’ to ‘1’:

• If device is not connected, then a USB2 or USB3 protocol port shall transition to the

Disconnected state.

• If a device is connected:

• A USB2 protocol port shall transition to the Disabled state.

• A USB3 protocol port shall transition to the Disconnected state, detect the

device and immediately transition to the Polling state.

• If training is successful, the port sets the CSC flag to ‘1’ and transitions to the

Enabled state.

• If training is not successful63, the port transitions to the Disconnected state.

• If a timeout is detected on the first LFPS handshake, the port transitions to

the Compliance state and no change flag is set.

• If the Loopback bit is set in a TS2 Ordered set, the port transitions to the

Loopback state and no change flag is set.

Note: While Chip Hardware Reset or HCRST is asserted, the value of PP is undefined. If

the xHC supports power switches (PPC = ‘1’) then VBus may be deasserted during

this time. PP (and VBus) shall be enabled immediately upon exiting the reset

condition.

Note: Before the xHC driver is unloaded, the driver should clear the Port Power (PP)

flag of all Root Hub ports to place them into the Disabled state and reduce port

power consumption.

4.19.4.1 Enabled U0 States

There are 4 Enabled state U0 pseudo-states that differ only in the values that

are configured for the U1 and U2 timeouts. The U1 Timeout and U2 Timeout

63Refer to section 7.5.4 in the USB3 spec for the LTSSM conditions that shall transition a downstream port from the
Polling to the Rx.Detect state. Note, the LTSSM Rx.Detect state maps to the USB3 Port State Machine
Disconnected state.

316

values for the port default to ‘0’. The U1 Timeout and U2 Timeout values may be

set by software by writing the PORTPMSC register at any time.

Each Root Hub port maintains a logical PM Timers for keeping track of when the

U1 or U2 inactivity timeout are exceeded. The U1 or U2 timeout values may be

set by software writing the U1 Timeout and U2 Timeout fields of the USB3

PORTPMSC register at any time. The PM timers are reset to ‘0’ every time the

USB3 PORTPMSC register is written. The timers shall be reset every time a

packet of any type except an isochronous timestamp packet is sent or received

by the port’s link. The U1 PM Timer shall be accurate to +1/- 0 µs. The U2 PM

Timer shall be accurate to +500/-0 µs.

The port behaves as follows for the various combinations of U1 Timeout and U2

Timeout values:

U1 Timeout = 0, U2 Timeout = 0

• This is the default state before the PORTPMSC register is written.

• The port’s link shall reject all U1 or U2 transition requests by the link partner.

• The PM Timers may be disabled and the PM Timer values shall be ignored.

• The port’s link shall not attempt to initiate transitions to U1 or U2.

U1 Timeout = X64 > 0, U2 Timeout = 0

• The port’s link shall reject all U2 transition requests by the link partner.

• The PM timers shall be reset when this state is entered and the link is active.

• The port’s link shall accept U1 entry requests by its link partner unless the xHC has

one or more packets/link commands to transmit on the port.

• If the U1 Timeout = FFh, the port shall be disabled from initiating U1 entry but shall

accept U1 entry requests by the link partner unless the xHC has one or more

packets/link commands to transmit on the port.

• If the U1 Timeout < FFh and the U1 PM Timer reaches X, the port’s link shall initiate

a transition to U1. In this case the delay defined by the U1 Timeout field represents

an amount of inactive time in U0.

U1 Timeout = 0, U2 Timeout = Y65 > 0

• The port’s link shall reject all U1 transition requests by the link partner.

• The PM Timers shall be reset when this state is entered and the link is active.

64The value defined by the U1 Timeout field. Refer to Table 5-28 for U1 Timeout values.

65The value defined by the U2 Timeout field. Refer to Table 5-28 for U2 Timeout values.

 317

• The port’s link shall accept U2 entry requests by its link partner unless the xHC has

one or more packets/link commands to transmit on the port.

• If the U2 Timeout = FFh, the port shall be disabled from initiating U2 entry but shall

accept U2 entry requests by the link partner unless the xHC has one or more

packets/link commands to transmit on the port.

• If the U2 Timeout < FFh and the U2 PM Timer reaches Y, the port’s link shall initiate

a direct transition from U0 to U2. In this case the delay defined by the U2 Timeout

field represents an amount of inactive time in U0.

U1 Timeout =X > 0, U2 Timeout = Y > 0

• The PM Timers shall be reset when this state is entered and is active.

• The port’s link shall accept U1 or U2 entry requests by its link partner unless the xHC

has one or more packets/link commands to transmit on the port.

• If the U1 Timeout = FFh, the port shall be disabled from initiating U1 entry but shall

accept U1 entry requests by the link partner unless the xHC has one or more

packets/link commands to transmit on the port.

• If the U1 Timeout < FFh and the U1 PM Timer reaches X the port’s link shall initiate a

transition to U1.

• If the U2 Timeout < FFh and the U2 PM Timer reaches Y the port’s link shall initiate a

direct transition from U1 to U2. In this case the delay defined by the U2 Timeout field

represents an amount of time in U1.

• If the U2 Timeout = FFh, the port shall be disabled from initiating U2 entry but shall

accept U2 entry requests by the link partner unless the xHC has one or more

packets/link commands to transmit on the port.

A port transitions to one of the Enabled U0 states (depending on the U1 Timeout

and U2 Timeout values) in any of the following situations:

• From any state if software writes the PORTSC register and sets the PLS field to U0

(‘0’).

• From U1 if the link partner successfully initiates a transition to U0.

• From U2 if the link partner successfully initiates a transition to U0.

• From U1 if the xHC successfully initiates a transition to U0 after receiving a packet

routed to the port.

• From U2 if the xHC successfully initiates a transition to U0 after receiving a packet

routed to the port

• From an attempt to transition from the U0 to the U1 state if the downstream port’s

link partner rejects the transition attempt

• From an attempt to transition from the U0 to the U2 state if the downstream port’s

link partner rejects the transition attempt

318

• From U3 if software writes the PORTSC register and sets the PLS field to U3 (‘3’) and

the Root Hub port received wakeup signaling while it was in U3.

4.19.5 Port Reset

Resetting a Root Hub port resets the attached USB device, and if successful; the

port logic reports the speed of the attached device and transitions the port to

the Enabled state. Whether successful or not a change bit is set (‘1’). And if

setting the change bit results in a ‘0’ to ‘1’ transition of PSCEG, then a Port

Status Change Event shall be generated.

When system software writes the PORTSC register with the PR bit set to ‘1’, the

xHC shall:

1. Update the PORTSC register:

• Set the PR bit (‘1’).

• Clear the PED bit to the disabled state (‘0’).

2. Execute the appropriate reset signaling to the device attached to the

port.

If the bus reset sequence completes successfully, the xHC shall update the

PORTSC register:

• Set the PLS field to U0 (‘0’).

• Clear the PR bit (‘0’).

• Set PED to the enabled state (‘1’).

• Set the PRC bit (‘1’).

• For a USB3 protocol port, if a Hot Reset transitioned to a Warm Reset, set the

WRC bit (‘1’).

• Set Port Speed field to the speed of the newly attached device.

If the bus reset sequence does NOT complete successfully, the xHC shall update

the PORTSC register:

• Set the PLS field to RxDetect (‘5’).

• Clear the PR bit (‘0’).

• Set the PRC bit (‘1’).

• For a USB3 protocol port, if a Hot Reset transitioned to a Warm Reset, set the

WRC bit (‘1’).

• Set the Port Speed field to Undefined Speed (‘0’).

• Clear the CCS bit (‘0’).

If setting PRC results in a ‘0’ to ‘1’ transition of PSCEG, then generate a Port

Status Change Event with the following field values.

• TRB Type = Port Status Change Event.

 319

• Port ID = Port Number of the Root Hub Port that detected the Reset change

transition.

• Completion Code = Success.

• Cycle bit = Current Event Ring Producer Cycle State.

Note: Only a USB3 protocol port may fail the bus reset sequence. USB2 protocol ports

never fail the bus reset sequence.

Note: When PR transitions from ‘1’ to ‘0’, the USB device is in the “Default state” (i.e.

Responding to USB Device Address 0). System software should immediately

transition the device to the Address state (with an Address Device Command) or

disable the port, to allow the enumeration of other newly attached USB devices.

Note: Speed detection is performed by the port hardware during the bus reset

sequence, hence the Port Speed field of the PORTSC register shall not be

considered valid by software until after the PR bit transitions from a ‘1’ to a ‘0’.

Note: A “Successful Reset” is determined by the xHC hardware for the attached device.

4.19.5.1 Warm Port Reset

The USB3 specification distinguishes between “Hot” and “Warm” port reset

sequences. A Warm Reset performs all the functions of Hot Reset, e.g.

transitioning a port to the Enabled state and resetting the USB device to the

Default state, however it also resets a USB3 link, forcing the link to enter the

Rx.Detect state and re-exchange link configuration information. A Warm Reset

also takes longer than a Hot Reset to execute.

The operations performed during a Hot Reset are described in the section above

(4.19.5). The operations performed for a Warm Reset are similar, except that

software initially writes the PORTSC register with the Warm Port Reset (WPR) bit

set to ‘1’. The Port Reset (PR) flag shall be ‘1’ while Hot or Warm Reset is being

executed. The Port Reset Change (PRC) flag shall be set (‘1’) when the reset

execution is complete and PR transitions to ‘0’.

If the ‘1’ to ‘0’ transition of PR was due to a software initiated Warm Reset, or

Hot Reset that transitioned to a Warm Reset because of errors 66, the Warm Reset

Change (WRC) flag (and PRC) shall be asserted (‘1’).

Note: The PORTSC WPR and WRC bits only apply to USB3 protocol ports. The bits shall

be RsvdZ for USB2 protocol ports.

66Refer to section 10.3.1.6 of the USB3 spec, “Note: If the port initiates a hot reset on the link and the hot reset
TS1/TS2 handshake fails a warm reset is automatically tried.”

320

4.19.6 Port Test Modes

For USB2 protocol Root Hub ports, the xHC shall implement the port test modes

Test_J_State, Test_K_State, Test_Packet, Test_Force_Enable, and

Test_SE0_NAK as described in the USB2 Specification. For USB3 protocol Root

Hub ports, no test modes are supported. System software is allowed to have at

most one port in test mode at a time. Placing more than one port in test mode

may yield undefined results. The required, per port test sequence is:

• Disable all Device Slots.

• All ports shall be in the Disabled state (PP = ‘0’).

• Set the Run/Stop (R/S) bit in the USBCMD register to a ‘0’ and wait for the

HCHalted (HCH) bit in the USBSTS register, to transition to a ‘1’. Note that an xHC

implementation shall not allow port testing with the R/S bit set to a ‘1’.

• Set the Port Test Control field in the port under test PORTPMSC register to the

value corresponding to the desired test mode.

• For USB2 ports, if the selected test is Test_Force_Enable, then after

selecting the test the Run/Stop (R/S) bit in the USBCMD register shall then

be transitioned back to ‘1’ by software, in order to enable transmission of

SOFs out of the port under test.

• When the test is complete, if the xHC is running system software shall clear the

R/S bit and ensure the host controller is halted (HCHalted (HCH) bit is a ‘1’).

• Terminate and exit test mode by setting HCRST to a ‘1’.

4.19.7 Port Routing and Control

A USB3 hub is the logical combination of two hubs: a USB 2.0 hub and an

Enhanced SuperSpeed hub, where each hub operates on a separate upstream

facing connection (data bus). When a USB3 Hub is attached to a Root Hub port it

may actively utilize both the USB2 and Enhanced SuperSpeed connections,

depending on the speed of the devices attached to the hub’s downstream facing

ports. Note that a USB Peripheral Device is required to only utilize one

connection at a time.

In a USB3 hub, two independently addressable hub ports exist for each physical

down stream connector; a USB2 compatible port accessed through the USB2

connection and a USB3 compatible port accessed through the SuperSpeed

connection. The Root Hub of the xHCI emulates this operation by defining a

Root Hub PORTSC register for each connection type; USB2 (Low-/Full-/High-

Speed) or USB3 (Enhanced SuperSpeed).

Due to pin-out, power, or other implementation issues an xHC implementation

may support a different number of USB2 connections than USB3. The “type” of a

USB connection is defined by the protocol that it supports. The xHCI Supported

Protocol Extended Capability (defined in section 7.2) identifies the set of Root

 321

Hub Ports associated with a specific protocol. Refer to Table 7-11 for a list of

the supported protocols.

Note: A Root Hub port that supports the USB3 protocol is comprised of a PORTSC, a

USB3 PORTPMSC, and PORTLI register (sections 5.4.8, 5.4.9.1, and 5.4.10.1), and

Root Hub port that supports the USB2 protocol is comprised of a PORTSC and a

USB2 PORTPMSC register (refer to sections 5.4.8 and 5.4.9.2).

The mapping of xHCI Root Hub Ports to the physical USB connectors of a system

is defined by platform implementations and outside the scope of this

specification. Refer to Appendix D for a method of mapping xHCI Root Hub ports

to system USB connectors.

Note: xHC Root Hub ports are numbered from 1 to MaxPorts. MaxPorts is defined in

the HCSPARAMS1 register (5.3.3).

Consider the example of an xHC implementation illustrated in Figure 4-35 that

supports two protocols (USB2 and USB3) and 6 connections, where 4

connections are USB2 compatible and 2 are USB3 compatible. In this case, two

xHCI Supported Protocol Extended Capability data structures would be declared.

If the USB2 xHCI Supported Protocol Extended Capability data structure defined

the Compatible Port Offset equal to ‘1’ and the Compatible Port Count equal to

‘4’, and the USB3 xHCI Supported Protocol Extended Capability data structure

defined the Compatible Port Offset equal to ‘5’ and the Compatible Port Count

equal to ‘2’, then Root Hub Ports 1 through 4 would reflect the attachment of

USB2 devices, and Root Hub Ports 5 and 6 would reflect the attachment of USB3

devices.

Figure 4-35: Port Routing Example

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6

USB2 Ports

USB2 Compatible Port Count = 4

USB3 Ports

USB3 Compatible Port Count = 2

USB2 Compatible Port Offset = 1 USB3 Compatible Port Offset = 5

1 2 3 4
Physical USB

Connectors

Root Hub

PORTSC

Registers

USB Cables

USB3 compatible

connectors

USB2 compatible

connectors

LS/FS/HS

SS

322

 IMPLEMENTATION NOTE

Port Power

Implementations shall OR together the output of the PORTSC register Port Power pins

for Root Hub Ports that map to the same Physical USB Connector. Refer to section

10.10 in the USB3 spec for more information on hub port power control.

In Figure 4-35, asserting the Port Power flag in Root Hub Port 3 or 5 shall assert Vbus to

Physical USB Connector 3, asserting the Port Power flag in Root Hub Port 4 or 6 shall

assert Vbus to Physical USB Connector 4, etc.

4.19.8 Cold Attach Status

For USB2 protocol ports the Current Connect Status (CCS) flag is capable of

reporting a device attach in any xHC power state. However, for USB3 protocol

ports CCS is asserted only after the link has successfully trained and advanced

to the U0 state. This is a problem if an xHC implementation is incapable of

advancing a link to U0 while in the D3 state, which can occur if the LTSSM clocks

required to train the link are not running. And without clocks, CCS cannot be

used to assert PME#.

The Cold Attach Status (CAS) flag addresses this issue by asserting itself (‘1’) if:

• SuperSpeed Far-end Receiver Terminations are detected,

• The xHC is placed into the D3 state, and is in a low power state where the LTSSM and

the controller clocks are stopped, or the controller is powered down (e.g. the LTSSM

is unable to Train)), and

• The LTSSM is not in the Error, U3, or Disabled state.

Note that CAS is only asserted under these circumstances. It is not a general

purpose indicator that a USB3 device is attached. Also, CAS does not apply to

USB2 protocol ports and shall always be ‘0’.

A transition of CAS shall assert Connect Status Change (CSC).

Before software places the xHC into the D3 state it should perform the following

operations:

• Halt any device activity.

• For each USB3 device that it wants to be awakened by:

• Issue a SetFeature(FUNCTION_SUSPEND, Function Remote Wake Enable)

request.

• For all connected devices:

• Transition their Root Hub ports to the Enabled:U3 state (suspend).

 323

• Set the PORTSC Wake On Disconnect Enable (WDE) flag, if wake on disconnect

is desired.

• For all ports in the Disconnected state:

• Set the PORTSC Wake On Connect Enable (WCE) flag, if wake on connect is

desired.

• For all ports:

• Set the PORTSC Wake On Over-current Enable (WOE) flag, if wake on over-

current is desired.

The state of any port in the Disconnected , Powered-off, or Disabled state is not

changed.

This approach allows wake enabled devices to wake up the system, provides

suspend current to all other devices, and enables PME# to be asserted if a

disconnect, connect, or overcurrent condition is detected.

When software is awaked by a PME it should:

• Turn on the Core Power Well to transition the xHC from the D3cold to the D0 state.

• Restore the Scratchpad, and all xHC register values and memory data structures that

were saved before the xHC was placed in the D3cold state.

• Set the xHC running (R/S = ‘1’).

• Follow the recommendations in section 4.15.2.2 for resuming any Root Hub ports

that it had previously suspended.

• Check all remaining xHC Root Hub ports for CAS = ‘1’ and issue a Warm Port Reset

(WPR) to any port if it is asserted.

The assertion of WPR clears CAS.

Note: The assertion of CCS may also clear CAS if, after turning on the Core Power Well,

the LTSSM of a port is able to successfully transition to the U0 state.

4.20 Scratchpad Buffers

The Scratchpad Allocation mechanism of the xHCI allows the xHC to request one

or more PAGESIZE buffers of system memory for storing internal state. The

PAGESIZE register is defined in section 5.4.3.

The number of pages that the xHC requires is identified by the Max Scratchpad

Buffers Hi and Lo fields in the HCSPARAMS2 register (section 5.3.4). An xHC

implementation may declare zero Max Scratchpad Buffers.

A Scratchpad Buffer is a PAGESIZE block of system memory located on a

PAGESIZE boundary.

324

System software shall allocate the Scratchpad Buffer(s) before placing the xHC

in to Run mode (Run/Stop (R/S) = ‘1’).

The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry

0 of the Device Context Base Address Array points to the Scratchpad Buffer

Array. The Scratchpad Buffer Array data structure is described in section 6.6.

Features of xHC Scratchpad Allocation:

• The xHC may request multiple Scratchpad Buffers.

• When accessing a Scratchpad Buffer the xHC shall not access system memory

addresses outside of the PAGESIZE memory block allocated by system software.

• System software shall not read or write a Scratchpad buffer. System software writes

to the Scratchpad buffer memory may result in undefined xHC operation.

• The content of the Scratchpad Buffers shall remain intact across system power

events including D3.cold if SPR = ‘1’. Refer to the SPR definition in Table 5-11.

The following operations take place to allocate Scratchpad Buffers to the xHC:

1. Software examines the Max Scratchpad Buffers Hi and Lo fields in the

HCSPARAMS2 register.

2. Software allocates a Scratchpad Buffer Array with Max Scratchpad

Buffers entries.

3. Software writes the base address of the Scratchpad Buffer Array to the

DCBAA (Slot 0) entry.

4. For each entry in the Scratchpad Buffer Array:

a. Software allocates a PAGESIZE Scratchpad Buffer.

b. Software clears the Scratchpad Buffer to ‘0’.

c. Software writes the base address of the allocated Scratchpad

Buffer to associated entry in the Scratchpad Buffer Array.

Note: If the Scratchpad Restore (SPR) field in the HSCPARAMS2 register = ‘1’, then the

xHC shall use Scratchpad Buffers to store its internal state when executing the

Save State operation. For the Restore State operation to work successfully, the

content of the Scratchpad Buffers shall be intact when exiting a power down

state (D3.cold). Refer to section 4.23.2 for more information.

Note: xHC references to the Scratchpad Buffer Array and Scratchpad Buffers should

not snoop. Refer to section 4.18.2.2.

 325

 IMPLEMENTATION NOTE

FSC and Context handling by Save and Restore

The xHC Contexts provide public and private areas, e.g. The EP State, TR Dequeue

Pointer, etc. fields in the Endpoint Context are public, and the xHCI Reserved (Opaque /

RsvdO) areas are private. The xHCI spec leaves it as an implementation decision

whether the Endpoint Context Opaque areas, the Scratchpad, or internal memory is

used for caching/saving internal endpoint state.

Section 4.23.2 describes the sequence of events that should take place to save and

restore the state of the xHC when suspending a system. The 1.0 specification assumes

that Stop Endpoint Commands would push public and private endpoint state into

memory, and the Save State operation would push all remaining internal xHC state into

memory, so that system software could save it, and restore it later.

If an implementation uses the Scratchpad or non-volatile internal memory to cache

endpoint state rather than Endpoint Contexts, then the Save State operation can flush

that state to the Scratchpad and software does not have to issue Stop Endpoint

Commands as part of the suspend process. The Force Save Context Capability (FSC)

flag was defined to distinguish between xHCI implementations that require explicit Stop

Endpoint Commands to all endpoints as part of the suspend process (FSC = ‘0’) , and

those that only require Stop Endpoint Commands for Running:Busy endpoints (FSC =

'1').

Note that some xHC implementations support FSC-like behavior but predate the

definition of the flag, as a result, some OS drivers assume FSC-like behavior is supported,

and do not issue Stop Endpoint Commands to all endpoints before executing a Save

State operation. It is highly recommended that all new xHC implementations support FSC

to ensure compatibility with legacy OS drivers.

4.21 PCI Express

Note: This section utilizes PCI Express (PCIe) terminology and refers to PCIe constructs

(Physical Layer, Receiver Errors, Data Link or Transaction layers, etc.). Refer to the

PCIe Specification for more information on Error Events and Error Reporting and

Configuration Registers.

4.21.1 Configuration sharing among PCI functions

An xHC contains a single physical PCIe core interface. In Normal mode, the xHCI

is designed so that all USB devices (Device Slots 0-n) appear in a single function.

In Virtualization mode, the xHCI is designed to appear as distinct Virtual

Functions, where each of the USB devices (Device Slots 0-n) may be mapped

exclusively to a specific Virtual Function. In Normal case, the xHCI implements,

326

amongst other registers, the PCIe device header space as described in section

5.2. In Virtualization case, the VMM implements the PCIe device header space

through emulation.

4.21.2 Bus Master Enable (BME)

System software may occasionally need to disable the bus mastering capability

of the xHC. In a PCI system, this is accomplished by setting the Bus Master

Enable (BME) bit of the Device Control Register in PCI Configuration register

space, to '0'. The xHC should be Halted, i.e. with the Run/Stop (R/S) bit set to '0',

and HCHalted (HCH) verified as being '1' before system software disables bus

master activity by clearing the BME bit. If the BME bit is set to '0' when the xHC is

running, the xHC may treat this as a Host Controller Error, asserting HCE (‘1’) and

immediately halt (R/S = ‘0’ and HCH = ‘1’). Recovery from this state will require

an HCRST. Refer to section Internal Errors for more information.

4.22 xHCI Extended Capabilities

4.22.1 Pre-OS to OS Handoff Synchronization

A system configuration may include support in the BIOS (also referred herein as

Pre-OS software) for control of the xHC. The OS Handoff Synchronization

capability provides the mechanisms to allow a BIOS to enable SMI support for

xHC events and also a set of registers that are used to implement a semaphore

to synchronize ownership changes of the xHC. The hand-off mechanism should

be clean and precise and each participant shall adhere to the protocol defined

below. Failure to do so will result in two software agents believing they each

have exclusive ownership of the xHC and attempt to use the controller

concurrently.

The OS Handoff Synchronization xHCI extended capability includes two

contiguous, 32-bit registers in xHC MMIO space. The first register is the USB

Legacy Support Extended Capability register (USBLEGSUP), refer to section 7.1.1

for the field definitions. This register is a standard xHCI extended capability

pointer, including an xHCI Extended Capability ID field and a link to the next

xHCI extended capability.

The upper 16 bits of this register contain ownership semaphores. One

semaphore is for the operating system (OS) and one is for the BIOS. These

semaphores are readable and writable. These fields are in adjacent bytes, which

allows each agent (OS or BIOS) to update their respective semaphore without

overwriting the other ownership semaphore.

The second 32-bit register is the USB Legacy Support Control/Status register

(USBLEGCTLSTS), refer to section 7.1.2 for the field definitions. This register

defines a set of control bits that BIOS can use to enable SMIs and a set of read-

 327

only bits that shadow a subset of the bits from the USBSTS register. The specific

USBSTS register bits that are shadowed represent all of the xHC events that can

be detected and enabled to generate an interrupt. The USBLEGCTLSTS register

provides the mechanism for BIOS to map all xHC events, all necessary

reconfiguration events and OS ownership requests to SMIs.

Following are two state machines that illustrate the proper protocol (e.g.

updates to the ownership semaphores) that BIOS and OS shall adhere to in

order to coherently request and/or relinquish ownership of the xHC. The

conventions used in these figures are:

• Solid arcs denote single or multiple events that result in a state change.

• Dotted lines with arrows indicate side effects that take place. When attached to a

solid arc, interpretation is that as a result of the event, the side effect occurs.

Figure 4-36 illustrates the protocol state machine for the BIOS ownership. The

OS Handoff Synchronization registers are located in the Aux Power well, so any

system event that removes power from the Aux Power well will result in these

registers being reset to their default values when the Aux Power well is restored.

Figure 4-36: BIOS Ownership State Machine

BIOS Not Owned

Aux Well

power on
HC BIOS Owned semaphore = 0

HC OS Owned semaphore = 0

BIOS Owned
1

POST

HC BIOS Owned semaphore = 0

HC BIOS Owned semaphore = 1HC BIOS Owned semaphore = 1

SMI on OS Ownership Change = 1

. and. HC OS Owned semaphore = 0

Notes:
1
 The BIOS is allowed to claim control of the xHCI as a result of POST (Power On System Test) or as

 a result of the OS relinquishing control of the xHCI. The BIOS must never attempt to claim the xHCI

 once it has relinquished control.

SMI on OS Ownership Change = 1

. and. HC OS Owned semaphore = 1

When power is applied to the Aux Power well, the BIOS Owned and OS Owned

semaphores in the USBLEGSUP go to their default values (e.g. ‘0’s). BIOS may

take ownership of the xHC by setting the BIOS Owned semaphore to a ‘1’. BIOS is

only allowed to take ownership of the xHC when the OS Owned bit is a ‘0’. BIOS

then may configure the SMI events it needs including the SMI on OS Ownership

Change. The BIOS now owns the xHC, so it can configure the controller,

enumerate the bus and use the devices found as necessary.

328

Eventually, the operating system will load. If the operating system has support

for the xHC, it will need exclusive control over the xHC. The OS driver shall

utilize the protocol defined in Figure 4-37 to request ownership of the xHC

before it takes ownership and uses the controller. The OS driver initiates an

ownership request by setting the OS Owned semaphore to a ‘1’. The OS waits for

the BIOS Owned bit to go to a ‘0’ before attempting to use the xHC. The time

that OS shall wait for BIOS to respond to the request for ownership should not

exceed ‘1’ second. Note that there is no similar SMI-type of event defined

allowing BIOS to request ownership from the OS.

If the BIOS has set SMI on OS Ownership Enable in the USBLEGCTLSTS register

to a ‘1’, it receives an SMI when the OS Driver sets the OS Owned semaphore to a

‘1’ (above). BIOS observes that OS has changed the value of the OS Owned bit to

a ‘0’, there-by notifying BIOS that it intends to relinquish control of the xHC.

Below are some recommended steps for software implementers to consider just

prior to the transition of xHC ownership.

1. Gracefully pause any outstanding bus activity. (e.g. allow completion of

in-flight transactions, suspend signaling, reset signaling, etc.)

2. Disable all interrupts,

3. Save all critical state from the xHC and relevant USB devices (e.g. Human

Interface Device, Mass Storage, etc.)

4. Enable “Wake” events from USB devices (e.g. Human Interface Device,

Network, etc.) before suspending platform.

5. Disable all other USB root ports not enabled for wake events in step 4.

 329

Figure 4-37: OS Ownership State Machine

OS Not Owned

Driver Load

OS Owned

(DX)

HC OS Owned semaphore = 1
1

HC BIOS Owned semaphore = 1

Notes:
1
 Modifications to the OS Owned semaphore results in an SMI when the SMI on OS Ownership Enable

 bit in the USBLEGCTLSTS is set to a one.

OS Request

Ownership

HC BIOS Owned semaphore = 0

HC OS Owned semaphore = 0
1

In the event that the OS driver unloads and/or wants to relinquish ownership of

the xHC, it shall set the OS Owned semaphore to a ‘0’. Again, if BIOS has set SMI

on OS Ownership Enable in the USBLEGCTLSTS register to a ‘1’, it receives an

SMI when the OS Driver sets the OS Owned semaphore to a ‘0’. The BIOS

observes that the OS has relinquished control and can then take over control of

the xHC as appropriate. Once system software has relinquished control of t he

controller, it shall then request ownership as described above.

Note that this mechanism is intended only to ensure that an exchange of

ownership of the xHC can be accomplished in a very deterministic and reliable

manner.

4.22.2 Debug Capability Operational Model

Refer to section 7.6.

4.22.3 Virtualization

Refer to section 8.

4.23 Power Management

This section summarizes the various power management capabilities of the

xHCI.

Throughout this specification particular registers and features will be identified

as requiring special consideration from a power delivery prospective. Any

discussion of power delivery in this specification is with the primary objective of

improving interoperability across a wide range of implementations without

330

specifying a specific method of power delivery. The phrase “required to maintain

state across power cycles”; or reference to configuration, command and status

registers defined expressly for support of the host controller’s power

management features will help the reader identify those constructs that require

special attention.

The reader should also remain aware that common industry specifications may

impose particular power delivery requirements that the design shall conform to

for compliance under that industry standard.

Note: The specification and white paper references provided in this section do not

represent an exhaustive list and the reader is encouraged to refer to other

specifications that may be relevant to the designer’s specific implementation.

4.23.1 Power Wells

This section describes the expected feature of the Core Power and Aux Power

(Auxiliary) Wells.

The power well requirements on a system board/add-in card xHC

implementation include:

• A common ground plane across the entire system.

• Split voltage (i.e. Aux Power and Core Power) wells are allowed.

• The Aux Power well voltage supply shall be present whenever AC power is applied

to the system (if supported).

• Core power may be switched off by the system.

Registers in the Aux Power well are reset under different conditions than the

registers in the Core well. The Aux Power well, memory-space registers are

initialized to their default values in the following cases:

• Initial power-up of the Aux Power well, or

• a value of ‘1’ in HCRST (refer to Section 5.4.1)

Note: The USB Legacy Support Capability registers are an exception to the Aux Power

well reset rule. Refer to section Pre-OS to OS Handoff Synchronization for more

information.

The Core well, memory-space registers are initialized to their default values in

the following cases:

• Assertion of Chip Hardware Reset, or

• a value of ‘1’ in HCRST, or

• transition from the PCI PM D3hot state to the D0 state

 331

PCI configuration-space registers implemented in the Aux Power well are reset

under different conditions than the registers in the Core well. The Aux Power

well, configuration-space registers are initialized to their default value in the

following case:

• Initial power-up of the Aux Power well.

The Core well PCI configuration-space registers are initialized to their default

values in the following cases:

• Assertion of the system (Core-well) hardware reset, or

• transition from the PCI PM D3hot state to the D0 state.

After initial power-on or HCRST (Chip Hardware Reset or via HCRST bit in the

USBCMD register), all of the Operational and Runtime Registers shall be at their

default values, as defined in sections 5.4 and 5.5. After a “light” hardware reset

(via the Light Host Controller Reset (LHCRST) bit in the USBCMD register), only

the Operational and Runtime Registers not contained in the Aux Power well shall

be at their default values. And all registers in the Aux Power well shall maintain

the values that had been asserted prior to asserting Light Host Controller Reset

(LHCRST). Refer to section 5.4.1 for more information.

Exceptions to these reset conditions will be defined in the associated register

section.

Note: The method for enabling or disabling the Core Power well voltage supply (e.g. to

transition from a D3hot to a D3cold state) is outside the scope of this

specification. Typically a platform level power control mechanism is used.

4.23.2 xHCI Power Management

When system software decides to power down the xHC with the intent of

resuming operation at a later time, it shall read the xHC registers and save their

state. After powering up the xHC, but before placing the xHC into Run mode

(Run/Stop (R/S) = ‘1’), system software shall restore all xHC registers.

Additionally, xHC implementations maintain internal state that is not visible to

software through its register set. This state shall also be saved and restored for

the xHC to correctly recover from a power event, e.g. the internal Ring Cycle

State (RCS) flag associated with the ERDP, the set of Enabled Device Slots, etc.

The xHCI provides two control flags to enable this operation: Save State and

Restore State. These flags reside as bits in the USBCMD register.

The Save State and Restore State flags may only be set when the xHC is Stopped

(Run/Stop (R/S) = ‘0’).

Required system software steps for saving xHC state and powering it down are:

332

1. Stop all USB activity by issuing Stop Endpoint Commands for Busy

endpoints in the Running state. If the Force Save Context Capability (FSC

= '0') is not supported, then Stop Endpoint Commands shall be issued for

all Idle endpoints in the Running state as well. The Stop Endpoint

Command causes the xHC to update the respective Endpoint or Stream

Contexts in system memory, e.g. the TR Dequeue Pointer, DCS, etc. fields.

Refer to Implementation Note “0”.

Note: Force Save Context Capability support (i.e. FSC = '1') shall be mandatory for all

xHCI 1.1 compliant xHCs.

2. Ensure that the Command Ring is in the Stopped state (CRR = '0') or Idle

(i.e. the Command Transfer Ring is empty), and all Command Completion

Events associated with them have been received.

3. Stop the controller by setting Run/Stop (R/S) = ‘0’.

Note: If FSC = '1', then software shall ensure that any Running endpoint that did not

receive a Stop Endpoint Command is Idle when Run/Stop (R/S) is cleared.

4. Read the Operational and Runtime registers in the following order:

USBCMD, DNCTRL, DCBAAP, CONFIG, ERSTSZ, ERSTBA, ERDP, IMAN, and

IMOD and save their state.

5. Set the Controller Save State (CSS) flag in the USBCMD register (5.4.1)

and wait for the Save State Status (SSS) flag in the USBSTS register

(5.4.2) to transition to ‘0’.

Note: The Save State operation shall save all internal xHC Slot, Endpoint, Stream or

other state to the memory locations described in steps 6 and 7 that is necessary

for the successful restoration of xHC state, as described below.

6. If Max Scratch Pad Buffers is > ‘0’ and Scratchpad Restore (SPR) = ‘1’,

then save an image of the Scratchpad Buffers.

7. Save a memory image of the DCBAA, Contexts and other data structures

referenced by the xHC.

8. Remove Core Well power.

Note: The DCBAA and the complete tree of data structures that it references (Device

Contexts, Transfer Rings, Stream Arrays, etc.), as well as the Command and Event

Rings, and Scratchpad Buffers shall be preserved by system software.

Required system software steps for powering up and restoring xHC state are:

1. Enable Core Well power.

2. Restore the saved memory image of the DCBAA, Contexts and other data

structures to their original physical locations in system memory, so that

any addresses saved in steps 4 and 6 above reference valid objects.

 333

3. If an image of the Scratchpad Buffers was saved, restore it.

4. Restore the Operational and Runtime Registers with their previously

saved state in the following order: DNCTRL, DCBAAP, CONFIG, ERSTSZ,

ERSTBA, ERDP, IMAN, and IMOD.

5. Set the Controller Restore State (CRS) flag in the USBCMD register (5.4.1)

to ‘1’ and wait for the Restore State Status (RSS) flag in the USBSTS

register (5.4.2) to transition to ‘0’.

6. Reinitialize the Command Ring, i.e. so its Cycle bits are consistent with

the RCS value to be written to the CRCR.

7. Write the CRCR with the address and RCS value of the reinitialized

Command Ring. Note that this write will cause the Command Ring to

restart at the address specified by the CRCR.

8. Enable the controller by setting Run/Stop (R/S) = ‘1’.

9. Software shall walk the USB topology and initialize each of the xHC

PORTSC, PORTPMSC, and PORTLI registers, and external hub ports

attached to USB devices.

10. Restart each of the previously Running endpoints by ringing their

doorbells.

Note: It is critical for correct xHC restore operation that all system memory data

structures referenced by xHC registers when it is stopped are intact and reside

at the same physical addresses when it is restarted. Software shall not modify

any Contexts, data structures, or Opaque areas referenced by the xHC when it is

stopped if the intent is to use the Restore State operation to restart the xHC.

Note: After a Save or Restore State operation completes, the Save/Restore Error (SRE)

flag in the USBSTS register should be checked to ensure that the operation

completed successfully.

Note: To properly restore the xHC it is critical that the registers are written (step 4)

before the Restore operation is performed (step 5). The Restore operation

overwrites internal default values asserted by a xHC reset.

Note: Some legacy software implementations may not follow the precise ordering of

the steps described above.

The internal state of the xHC shall be valid until it enters the D3cold state. When

the xHC is Stopped, software may issue a Save State operation with the

expectation of subsequently placing the xHC in the D3cold state. If prior to

setting the xHC into the D3cold state, software decides to restart the xHC, then a

Restore State operation is not required.

334

4.23.2.1 Save and Restore Operations

The xHC Save and Restore State operations shall save and restore any internal

state necessary to restore the xHC to the same operational state that it is was in

when the previous Save was performed, irrespective of whether it uses the

Scratchpad Buffer or a proprietary memory to save the state.

For example, the BIOS may save the state of xHC before it hands off the xHC to

the OS, then restore that state when control of the xHC is returned to it.

However, while the OS has control, it may execute its own Save and Restore

State operations every time it transitions in and out of a Suspend or Hibernate

states.

The Save and Restore operations may be used to accelerate the initialization

process of the xHC. Rather than resetting the xHC and issuing multiple

commands to bring Device Slots on line, software could take a “snapshot” of the

xHC state after set of Device Slots is configured. The snapshot could then be

used to bring the xHC to the same state, without having to run through the initial

command sequence. This approach may be useful to quickly bring a set of

permanently attached USB devices on a motherboard on line, i.e. the USB

topology is fixed.

If the Scratchpad Restore (SPR) flag is set in the HCSPARAMS2 register, the xHC

Save and Restore State operations use the Scratchpad Buffer space for storing

the internal xHC state while it is powered down, and it is critical that the system

maintain the integrity of the Scratchpad Buffer space across power events if the

xHC is to be restored correctly. Refer to section 5.3.4 for more information.

Note: An xHC implementation is responsible for checking the saved state during a

Restore State operation. If the saved state is corrupted, the Save/Restore Error

(SRE) flag in the USBSTS register shall be set to ‘1’, the Restore operation

terminated, and the Restore State Status (RSS) flag cleared to ‘0’.

Note: An xHC implementation shall report if the integrity of a Save/Restore State

operation sequence has been compromised, i.e. after a Save State operation

(CSS = '1') is executed, if the xHC is placed into Run mode (R/S = '1') before a

Restore State operation (CRS = '1') is executed, then this condition shall be

reported by the assertion of SRE upon the completion of the Restore State

operation. This condition shall be reported only if the Aux Power well has been

maintained between the Save State and Restore State operations. The reporting

of this condition shall not be affected by the assertion of HCRST between the

Save State and Restore State operations.

Note: The state of a Root Hub port is not covered by a Save or Restore operation. Refer

to sections 5.4.8, 5.4.9, and 4.19 for more information on how xHC ports are

managed during power events.

Note: When xHC state (e.g. Scratchpad Buffers, Contexts, Transfer Rings, etc.) is saved

by system software, the data structures must be restored to the same physical

 335

addresses that they were at when they were saved, otherwise undefined

behavior may occur.

This also implies that any USB devices that were attached when the Save State

took place should still be attached and in the same internal state (i.e. their USB

Device Address is unchanged) when the Restore State takes place. If these

conditions are not true, then software is responsible for doing any "fix-ups" that

may be required.

4.23.3 PCI Power Management

Refer to Appendix A.

4.23.3.1 Standard PCI Power Management

Refer to PCI and PCIe specifications.

4.23.3.2 PCI Extended Power Management

Refer to PCI Power Management (PCI PM) specification.

4.23.4 USB Power Management

4.23.4.1 USB2

Refer to USB2 Specification.

4.23.4.2 USB3

Refer to USB3 Specification.

4.23.4.3 USB Power Delivery

Unlike USB Hubs, there are no xHCI port register extensions defined for Root

Hubs to support USB Power Delivery (PD). Platform level PD supported is

provided through ACPI mechanisms that are outside the scope of this

specification. Refer to the USB PD and ACPI Specifications for more information.

4.23.5 USB Link Power Management

The xHCI provides independent mechanisms for managing Link Power

Management (LPM). One mechanism allows the xHC Root Hub ports to provide

all the features defined by the USB2, USB2 LPM, and USB3 specifications for

hub downstream port management. And the other mechanism, enabled through

the Slot Context Max Exit Latency field, provides the xHC with the information it

needs to most effectively schedule USB transfers, maximizing bus bandwidth

utilization.

336

Note: xHC implementations shall support Link Power Management for all USB

protocols that it supports. Refer to the xHCI Supported Protocol Capability

(section 7.2.2.1.3) for the specific Link Power Management features supported

by the xHC.

4.23.5.1 Root Hub Port LPM Support

There are two different Link Power Management (LPM) approaches defined by

the USB specifications, one for USB3 (SuperSpeed) devices and another for

USB2 (Legacy High-, Full- and Low-speed) devices. The xHCI defines

mechanisms to support the Link Power Management approaches defined for

both the USB3 and USB2 protocols.

Refer to the section 11 of the USB3 spec for more information on Link Power

Management.

Refer to the USB2 LPM ECN and errata for more information on USB2 Link Power

Management.

USB2 defines 3 ‘L’ link states and USB3 defines 4 “U” link states.

 Table 4-11: LPM State Mapping

Link State
Encoding

Description
USB267 USB3

On L0 U0 This is the normal link operational state. All packet
communication, whether for control or data transfers, occurs in

this state.

A USB2 port in L0 is either actively transmitting or receiving data
(L0-Active) or able to do so but not currently transmitting or

receiving information (L0-Idle).

Fine-grain

LPM

NA U1 U1 is a low exit latency standby state. Refer to section 7.2.4.2 of

the USB3 spec for more information. In this state the port is
capable exiting to the On state in less than ~10 μs.

Coarse-
grain LPM

L168
(Sleep)

U2 U2 is a low to medium range exit latency standby state. Refer to
section 7.2.4.2 of the USB3 spec for more information. In this

state the port is capable exiting to the On state in ~1 ms.

67This table provides USB3 extensions to Table 1-1 in the USB2 LPM ECN.

68The USB2 L1 state is mapped to the USB3 U2 state because both represent coarse-grain LPM modes, i.e. they take

approximately 1 ms. to enter.

 337

Suspend L2 U3 This is a deep power saving state where interface (e.g., Physical

Layer) power may be removed, except as needed to perform the
various functions such as reset signaling, connect/disconnect
detection, and wakeup.

This is the formalized name for USB Suspend.

Entry in to this state is nominally triggered by a command to a
hub or root hub port to transition to suspend, at which point the

port ceases signaling to the downstream port.

This state also imposes power draw requirements (from VBUS) on
the attached device. Exit from this state is via remote wake,

resume signaling, reset signaling or disconnect.

VBUS remains on in this state.

Refer to section 11.4.1.4 of the USB3 spec for more information.

Refer to Section 7.1.7.6 in the USB2 specification.

Off L3 Not
defined

In this state, the port is not capable of performing any data
signaling. It corresponds to the powered-off, disconnected, and

disabled states.

VBUS is off in this state.

The xHCI reports the current Link State in the Port Link State (PLS) field of the

PORTSC register. The interpretation of the PLS field depends on the PORTSC

Port Speed field. If Port Speed reports Low-, Full-, or High-speed, then the PLS

field shall never report a U1 state.

4.23.5.1.1 USB2 LPM Support

This section applies only if a USB2 xHCI Supported Protocol Capability structure

(section 7.2) is declared (i.e. the Major Revision field = 02h).

When system software is ready to transition a USB2 port from L0 to a deeper

power savings state, it writes a ‘2’ (U2) to the Port Link State (PLS) field, which

results in setting the L1 Status (L1S) field to Invalid (‘0’), and an LPM transaction

on the USB2 bus. While a USB2 link is attempting to transition to the L1 state,

the PLS field shall continue to report the previous state (U0).

Note: The device responds to the LPM transaction with an ACK if it is ready to make

the transition or a NYET if it is not currently ready to make the transition, usually

because it has data pending for the host.

L1 Status (L1S) results for a LPM Transaction:

• Success - Upon receipt of an ACK, the xHC shall set the PLS field in the PORTSC

register to the L1 state (U2) and the L1S field in the USB2 PORTPMSC register to

Success (‘1’). The Port Link Status Change bit is not set and no Port Status Change

Event is generated.

338

• Not Yet - Upon receipt of a NYET, the xHC shall set the L1S field in the USB2

PORTPMSC register to Not Yet (‘2’), set the Port Link Status Change (PLC) bit to ‘1’. If

the assertion of PLC results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a Port Status

Change Event shall be generated for the port.

• Not Supported - A USB2 device shall transmit a STALL handshake if it does not

support the requested link state (Lx, refer to the bmAttributes field of the extended

LPM transaction, Table 2-3 in the USB2 LPM ECR). Upon the receipt of a STALL

handshake the xHC shall set the L1S field in the USB2 PORTPMSC register to Not

Supported (‘3’), disable hardware USB2 LPM (HLE = '0'), and set the PLC flag to ‘1’. If

the assertion of PLC results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a Port Status

Change Event shall be generated for the port.

• Timeout/Error - If the xHC detects a transaction error (including timeout), it shall retry

the LPM transaction up to two more times. If there are three consecutive errors then

the xHC shall set the L1S field in the USB2 PORTPMSC register to Timeout/Error (‘4’),

disable hardware USB2 LPM (HLE = '0'), and set the PLC bit to ‘1’. If the assertion of

PLC results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a Port Status Change Event shall

be generated for the port.

Note: The PLC flag is not set (and an event is not generated) if the port successfully

enters the L1 state. In the latter two cases above, the port asserts the PLC flag

(PLC Condition: USB2 L1 Entry Reject), however the PLS field does not change,

i.e. the port’s link remains in the U0 state. Software may examine the L1 Status

(L1S) field of the PORTPMSC register when the Port Status Change Event is

received for the port to determine the problem with entering the L1 state.

This information allows software to tune its use of the L1 state, identify

misbehaving device, etc. For example, software could identify a device which

consistently NAKs L1 entry but rarely moves data and notify the end user.

The xHC shall meet the following requirements:

• If the port is enabled (PED = ‘1’) and in the L1 (PLS = ‘2’) state, the xHC shall treat an

L1 request (write of ‘2’ to PLS field) as a functional no-operation and set the L1S field

in the USB2 PORTPMSC register to Success (‘1’).

• If the device detects errors in either of the token packets or does not understand the

protocol extension transaction, no handshake shall be returned. In this case the xHC

shall timeout and the L1S field in the USB2 PORTPMSC register shall be set to

Timeout/Error (‘3’). Refer to the USB2 LPM ECR for L1 timeout details.

The L1 state may be reset to the L0 state by a software request or from the

device attached to the port. To accommodate this operation, software may write

a ‘0’ (U0) to the PLS field of a USB2 protocol port attached to a Low-, Full-, or

High-Speed device that supports LPM. Refer to the definition of the PLS field in

Table 5-26 for more information.

Note: The Remote Wake Enable (RWE) flag (Table 5-29) shall be used to enable or

disable xHC remote wake from L1.

 339

Note: The L1 Device Slot field in the USB2 PORTPMSC register references a Device Slot

that is the target for the LPM Token. The USB Device Address field in the Slot

Context of the referenced Device Slot, specifies the value of the ADDR field in the

generated LPM Token. The ENDP field of the LPM Token shall be set to ‘0’69.

4.23.5.1.1.1 Hardware Controlled LPM

USB 2 ports may support hardware controlled Link Power Management, as

indicated by the Hardware LPM Capability (HLC) flag equal ‘1’ in the USB2 xHCI

Supported Protocol Capability structure (7.2.2.1.3.2). If Hardware USB2 LPM is

supported, then the Hardware LPM Enable (HLE) bit in the USB2 PORTPMSC

register (5.4.9.2) may be used to enable or disable it.

Each Port Hardware LPM Control (PORTHLPMC) register provides an inactivity

timeout that shall be configured by software, the L1 Timeout field. Refer to

section 5.4.11 for more information on the PORTHLPMC register.

Each USB2 Root Hub port maintains a logical Link Power Management Timer

(LPM Timer) for keeping track of when the inactivity timeout is exceeded. If

Hardware LPM is enabled and the LPM Timer reaches the L1 Timeout value, the

port's link shall initiate a transition to L1.

Two methods of Hardware USB2 LPM are supported by the xHCI; HIRD and BESL.

If HLC is set to '1' and the BESL LPM Capability (BLC) flag in the USB 2.0 Protocol

Defined field of the USB2 xHCI Supported Protocol Capability structure

(7.2.2.1.3.2) is cleared to '0', then the HIRD70 LPM method is supported. If HLC is

set to '1', then the PORTHLPMC register exists. And if HLC and BLC are both set

to '1', then the BESL LPM method is supported.

If HIRD LPM is supported (HLC = '1' and BLC = '0'), then the Best Effort Service

Latency value should be programmed by software in the BESL field of the USB2

PORTPMSC register. Refer to Table 4-12 for the encoding of the BESL field.

If BESL LPM is supported (HLC = '1' and BLC = '1') then there are two values of

Best Effort Service Latency that should be programmed by software; the BESL

field in the USB2 PORTPMSC register and the BESL Deep (BESLD) field in the

USB2 PORTHLPMC register. The BESLD field is programmed with a value that is

much larger than the BESL value, allowing both the host platform and the device

to go into deeper low power states. The BESL field shall be programmed to a

value smaller than the BESLD field for mode 1 (HIRDM = ‘1’), in which both the

BESL and BESLD fields are used. Refer to Table 4-12 for the encoding of the

BESL and BESLD fields.

69The value of ENDP is not specified in the USB2 LPM ECR, however there is errata against the ERC that clarifies the

use of ENDP = ‘0’.
70Refer to Section 4.1 of the USB2 LPM spec for more information on the use of the HIRD field.

340

Prior to enabling hardware controlled USB2 LPM, software shall initialize the

BESL and RWE fields of the USB2 PORTPMSC register and if BLC = ‘1’ the BESLD,

HIRD Mode (HIRDM), and L1 Timeout fields of the USB2 PORTHLPMC register.

The optimal values for programming the BESL and BESLD fields depend on the

overall latency characteristics of a platform. If an xHC is an integrated

component of a platform, then a vendor may specify the preferred default BESL

and BESLD values using the PCIe Config space Default Best Effort Service

Latency (DBESL) and the Default Best Effort Service Latency Deep (DBESLD)

fields. If these fields are non-zero, software may use their values to program the

respective BESL and BESLD values in the xHC Port registers. Refer to Table 4-12

for the encoding of the DBESL and DBESLD fields.

If HIRD LPM is supported (HLC = '1' and BLC = '0'), the DBESL and DBESLD

registers are not implemented.

Note that the hardware management mechanism may use modified BESL, BESLD,

and RWE values in the LPM Transactions that it generates to a device.

Note that xHC is required to retain the last BESL duration that it used to

generate a USB2 LPM transaction to a device, and to drive resume signaling for

that time minus 50 µs. when waking the device.

While Hardware USB2 LPM (HLE = ‘1’) is enabled, software shall not modify the

BESL or RWE fields of the USB2 PORTPMSC register or the BESLD, HIRD Mode

(HIRDM), and L1 Timeout fields of the USB2 PORTHLPMC register, or attempt to

transition the port to the L1 (PLS = U2) state, i.e. shall not write the PORTSC

register with PLS = ‘2’ and LWS = ‘1’.

Note: BESL LMP support (i.e. HLE = ‘1’ and BLC = ‘1’) shall be mandatory for all xHCI 1.1

compliant xHCs.

Note: If Hardware USB2 LPM (HLE = '1') is enabled the Slot Context Max Exit Latency

field shall be initialized to a non-zero value. Refer to section (4.23.5.2) for more

information.

Note: The port behavior described below only applies to devices that are attached

to a Root Hub port.

The port behaves as follows:

• If Hardware LPM is disabled (HLE = '0'), then the port's LPM Timer shall be disabled.

• When resume signaling is complete and the link transitions to L0 state, due to an xHC

initiated L1 exit, or a Device Initiated L1 Exit, the PLS field shall be set to U0.

• The L1 Timeout value represents the amount of inactive time in L0 prior to initiating

the transition to the L1 state (PLS = U2).

• If Hardware LPM is disabled (i.e. HLE transitions from '1' to '0') and the port's link is in

the L1 (PLS = U2) state:

 341

• The port shall automatically initiate a L1 exit.

Note: Software may select different values for BESL, BESLD and L1 Timeout based on

device's class, type of endpoints, poll interval (for periodic endpoints), etc.

Note: If Hardware LPM is enabled (HLE = '1'), the Hardware LPM state machine

automatically transitions a port in the Enabled state between the U0, U2Entry,

U2, and U2Exit substates. Refer to the USB2 Root Hub Port Enabled Substate

Diagram (4.19.1.1.6). The notable differences are:

• The U0 to U2Entry transition is initiated by a L1 Timeout.

• For U2Enty to U0 transitions, the PLC flag shall not be set ('1') if a NYET

response occurs. The PLC flag shall be set ('1') for STALL or timeout/error

response

• The U2 to U2Exit transition is initiated by an xHC initiated L1 exit, or a Device

Initiated L1 Exit.

• The PLC flag shall not be set ('1') by a U2Exit to U0 transition.

Note: A USB2 link transitions through L-states, and these states are reflected in the

associated USB PORTSC register as U-states in the PLS field. Refer to Table 4-11

for the mapping of USB2 L-states to PLS field U-states.

The following Cases apply only if BESL LPM is supported.

Case 1: For Devices supporting Device Initiated L1 Exit

Note: For devices that support Device Initiated L1 Exit, when HW LPM is enabled (HLE

= '1'), software should set the RWE bit of USB2 PORTPMSC register to '1'.

• When Hardware LPM is enabled (i.e. HLE transitions from '0' to '1'):

• The port's LPM Timer shall be reset to '0' and start counting up.

• If Hardware LPM is enabled (HLE = '1'), then:

• The port's LPM Timer shall be reset to '0' and start counting up, every time a data

packet is sent or received by the port's link.

• When resume signaling completes, the LPM Timer shall be reset to '0' and start

counting up.

• If HIRD Mode (HIRDM) = '0':

• When the LPM Timer equals the L1 Timeout value:

• The PLS field shall be set to U2.

• The port's link shall initiate a transition to L1 by issuing an LPM Token to

the device, where the HIRD71 field of the LPM Token shall be set to the

value of the PORTPMSC BESL field.

71In the USB2 LPM ECN the parameter TL1HubDrvResume is represented by the HIRD field in the LPM Token.

342

• If the LPM Token (using the BESL value) is accepted by the device:

• The LPM Timer shall be stopped.

• The link then waits for an xHC initiated L1 exit, or a remote wake to

be initiated by the device.

• If the LPM Token is rejected by the device (NYET response):

• The PLS field shall be set to U0.

• The LPM Timer shall be reset to '0' and start counting up.

• HIRD Mode (HIRDM) = '1':

• When the LPM Timer equals the L1 Timeout value:

• The PLS field shall be set to U2.

• The port's link shall initiate a transition to L1 by issuing an LPM Token to

the device, where the HIRD field of the LPM Token shall be set to the

value of the PORTHLPMC BESLD field.

• If the LPM Token (using the BESLD value) is accepted by the device:

• The LPM Timer shall be stopped.

• The port then waits for an xHC initiated L1 exit, or a remote wake to

be initiated by the device.

• If the LPM Token (using BESLD) is rejected by the device (NYET

response):

• The port's link shall initiate a transition to L1 by issuing an LPM

Token to the device, where the HIRD field of the LPM Token shall be

set to the value of the PORTPMSC BESL field.

• If LPM token (using BESL) is accepted by device:

• The LPM Timer shall be stopped.

• The link then waits for an xHC initiated L1 exit, or a remote wake

to be initiated by the device.

• If the LPM Token (using BESL) is rejected by the device (NYET

response):

• The PLS field shall be set to U0.

• The LPM Timer shall be reset to '0' and start counting up.

• HIRD Mode (HIRDM) = '2' or '3':

• Reserved. Undefined behavior may occur if HIRDM is set to a reserved value.

Note: For Bulk OUT, Interrupt OUT, an Isoch IN, an Isoch OUT EP, or a Control EP the

xHC shall initiate a L1 exit if it needs to move data, i.e. a doorbell for a non-Isoch

 343

endpoint has been rung, or if an Isoch Interval has expired and an Isoch TD is

available.

Note: For Interrupt IN endpoints that are actively moving data, the xHC shall initiate L1

exit when the poll interval has expired and a TD is available. For Interrupt IN

endpoints which have TD available but have responded with a NAK to a poll, the

xHC will not poll the device till it has data to move and has initiated an L1 exit

(Remote wake).

Note: In the case of a High-speed Bulk OUT Endpoint that has returned a NYET

handshake for an OUT transaction and then the Hardware LPM mechanism

transitions the link to the L1 state, the xHC shall not initiate a L1 Exit (i.e. wake

up the link) to do a PING transaction. The device is expected to initiate an L1

exit (Remote Wake) when it is ready to accept data.

For instance, mass storage devices are command driven, i.e. any bus activity

they generate is only due to commands issued by the host. Since asynchronous

notifications are not associated with these devices they typically do not support

a Remote Wakeup capability. However, a rotational mass storage device's link

may be inactive for 10's of milliseconds while it performs a seek operation,

allowing the link to enter L1. When data is available, the disk must use the

Remote Wakeup capability to return the link to the L0 state so that it can move

the data and complete the command.

Case 2: For Devices not supporting Device Initiated L1 Exit

Note: For devices that do not support Remote Wakeup, if HW LPM is enabled (HLE =

'1'), software should not set the RWE bit of USB2 PORTPMSC register to '1'

• When Hardware LPM is enabled (HLE transitions from '0' to '1'):

• The port's LPM Timer shall be reset to '0' and start counting up.

• If Hardware LPM is enabled (HLE = '1'), then:

• The port's LPM Timer shall be reset to '0' and start counting up, every time a data

transfer is attempted (IN or OUT tokens).

• If HIRD Mode (HIRDM) = '0':

• For periodic endpoints (both isochronous and interrupt), the xHC will put the link

in L1 when the LPM Timer equals L1 Timeout value. The xHC will initiate an L1

exit prior to the next poll if there are pending TDs.

• For Bulk endpoints, the LPM Timer shall be reset to '0' and start counting up,

every time a data transfer is attempted (IN or OUT transaction).

Note: For all devices that do not support remote wake, the L1 Timeout value should be

large enough so that L1 entry is not triggered by delays in PING retries, delays in

generating IN or OUT tokens due to bandwidth sharing with high bandwidth

isochronous devices, etc.

344

• HIRD Mode (HIRDM) = '1':

• Software shall not set HIRD Mode to '1' when Remote Wakeup is not supported

by the device

• HIRD Mode (HIRDM) = '2' or '3':

• Reserved. Undefined behavior may occur if HIRDM is set to a reserved value.

If the BESL LPM Capability (Table 7-15) is supported by the xHC (BLC = '1'), then

the xHC shall support the BESL Duration (as shown in the “BESL Duration BLC =

1” column of Table 4-12) and resume signaling shall be asserted by the Root

Hub port for the HIRD Duration (as shown in the “HIRD Duration BLC = 1” column

of Table 4-12).

If the BESL LPM Capability is not supported (HLC = ‘1’ and BLC = '0'), i.e. the xHC

implementation predates the USB2 LPM Errata, then the resume signaling shall

be asserted for the HIRD Duration (as shown in the “HIRD Duration BLC = 0”

column of Table 4-12).

Table 4-12: BESL/HIRD Encoding

BESL or BESLD Value
BESL Duration (µs)

BLC = 1

HIRD Duration (µs)

BLC = 1

HIRD Duration (µs)

BLC = 0

0 125 75 50

1 150 100 125

2 200 150 200

3 300 250 275

4 400 350 35072

5 500 450 425

72Note: A device may NAK an LPM Token because the resume duration identified by the received LPM Token's
HIRD/BESL field exceeds its resume latency requirements. Software can determine if a device supports the BESL

or (legacy) HIRD interpretation of the LPM Token by inspecting the bmAttributes field of a device’s DEVICE
CAPABILITY:USB 2.0 EXTENSION descriptor. If BLC = '1' and the attached device supports HIRD (i.e. the device
predates the USB2 LPM Errata), then xHC BESL or BESLD field values less than or equal to '4' result in an xHC

resume duration that is less than or equal to the resume duration expected by the device, while values greater
than '4' will exceed the device's expectations.If BLC = '0' and the attached device supports BESL, then xHC BESL
or BESLD field values greater or equal to '4' result in an xHC resume duration that is less than or equal to the

resume duration expected by the device, while values less than '4' will exceed the device's expectations.Software
should choose xHC BESL/BESLD field values that do not violate a device's resume latency requirements, e.g. not
program values > '4' if BLC = '1' and a HIRD device is attached, or not program values < '4' if BLC = '0' and a BESL

device is attached.

 345

6 1000 950 500

7 2000 1950 575

8 3000 2950 650

9 4000 3950 725

10 5000 4950 800

11 6000 5950 875

12 7000 6950 925

13 8000 7950 1000

14 9000 8950 1075

15 10000 9950 1150

Note: If Hardware USB2 LPM (HLE = '1') is enabled, PLC shall not be affected by LPM

state transitions, i.e. the L1 Resume complete (U2 -> U0) or L1 Entry Reject (U0 -

> U0) conditions shall not assert PLC.

4.23.5.2 Max Exit Latency

The xHC schedules all USB data transfers. If links in the path to a USB device are

in U1 or U2 state, an additional latency is incurred when accessing a device. It is

not practical for the xHC to track the state of every link in the USB topology, so

the Max Exit Latency field in the Slot Context identifies the worst case exit

latency for the links and hubs between the xHC and the device when scheduling

transfers to power managed devices.

Max Exit Latency is a software computed value, which should comprehend the

following components:

1. The worst case delay to wake up all links in the path between the Root

Hub port and the device if they are in their deepest allowable U state, i.e.

U1 or U2.

For SuperSpeed devices, the Maximum Exit Latency (MEL) described in

section C.1.5.2 of the USB3 spec may be used to compute this

component.

2. The minimum Interval value set for any Isoch endpoint of the device.

3. The worst case time it takes to transfer the Isoch data.

Note that the value of this component may not be determined by the

346

largest Max ESIT Payload declared by a device endpoint. E.g an endpoint

with a Max ESIT Payload of 48KB and an Interval of 2 microframes allows

a larger Max Exit Latency value than an endpoint with a Max ESIT

Payload of 24KB and an Interval of 1 microframe.

For SuperSpeed Isoch Transaction Limits refer to Appendix F.3.

A Max Exit Latency value of ‘0’ indicates to the xHC that no links in the path to

the device are being power managed.

For USB2 devices, if the attached device supports Link Power Management (as

described in the USB2 LPM ECN) and LPM is enabled in the device, then the Max

Exit Latency should be set to the value of BESL. From the BESL value, the actual

maximum exit latency value (TL1ExitLatency1) may be calculated by the xHC using

the following formula. Otherwise, the Max Exit Latency shall be set to ‘0’.

TL1ExitLatency1 = BESL + TL1ExitDevRecovery (10us.)

For USB3 devices, refer to section C.1.5.2 of the USB3 spec for the method of

computing the value of Max Exit Latency .

Note: If Max Exit Latency = ‘0’ and the Slot Context Speed field equals SuperSpeed,

then the xHC may not schedule any PING TPs for endpoints associated with the

Device Slot.

Note: System software sets the allowable U-states for the links in the path to a device.

Software knows, based on the depth and the exit latencies of the intervening

links, what the worst case time is for a PING TP to reach a device and the

PING_RESPONSE TP to be returned. Software shall ensure that a device is

prevented from entering a U-state where its worst case exit latency (i.e. the delay

between the transmission of a PING TP and the reception of the

PING_RESPONSE TP by the xHC) approaches the ESIT.

If software is going to change device or link related parameters on the bus that

would result in a shorter Max Exit Latency value for a Device Slot, then it should

change the Max Exit Latency value in the device’s Slot Context using an Evaluate

Context Command, before it changes any bus parameters.

If software is going to change device or link related parameters on the bus that

would result in a longer Max Exit Latency value for a Device Slot, then it should

change any bus parameters, before it changes the Max Exit Latency value in the

device’s Slot Context using an Evaluate Context Command .

Note: The xHC shall complete any changes to its internal Pipe Schedules before it

generates a Command Completion Event for Evaluate Context Command that

modifies Max Exit Latency.

4.23.5.2.1 No Ping Response Error

This error only applies to SuperSpeed Isoch endpoints. A No Ping Response

Error Completion Code indicates that the xHC was unable to complete the data

 347

transfer associated with an Isoch TD within the ESIT because it did not receive a

PING_RESPONSE in time.

The xHC schedules the data transfer for a SS Isoch endpoint, and if the Slot

Context Max Exit Latency value is non-zero, it shall send a PING TP to the

endpoint Max Exit Latency µs. before the scheduled data transfer to wake up all

the links in the path. If a PING_RESPONSE TP is not received by the time the

data transfer is scheduled to take place, a No Ping Response Error should be

generated for the TD.

If the error occurs, the data associated with the TD in error shall be lost and the

xHC shall advance to the next TD for the next ESIT.

In response to a No Ping Response Error Completion Code software should

reevaluate the value assigned to Max Exit Latency .

Note: A No Ping Response Error shall utilize the Transfer Event TRB format. The TRB

Pointer field of No Ping Response Error Transfer Event may be ‘0’. If the TRB

Pointer = ‘0’, then the TRB Transfer Length field shall be invalid.

Refer to section 6.2.2 for the definition of the Slot Context the Max Exit Latency

field.

Refer to section C.2 in the USB3 spec for U1 and U2 Exit Latency calculation

examples.

4.23.5.2.2 Max Exit Latency Too Large Error

The Max Exit Latency Too Large Error may be generated by an Evaluate Context

Command or optionally by a Configure Endpoint Command , and informs

software that the specified Max Exit Latency value would not allow the xHC to

reliably schedule Isoch transfers for the Device Slot.

When software receives this error it knows that it can change some of the link

power state options in the path to the device to less aggressive settings (which

allows it to assert a smaller Max Exit Latency value) and retry the configuration

with the same Interval and Max ESIT Payload size.

The CMC flag in the HCCPARAMS2 register indicates whether a Configure

Endpoint Command is capable of generating a Max Exit Latency Too Large Error

and the CME flag exists. If the CME flag in the CONFIG register is set to ‘1’, then

the Command Completion Event generated by a Configure Endpoint Command is

allowed to assert a Completion Code of Max Exit Latency Too Large Error .

Note: In addition to waiting for the PING_RESPONSE and transferring the Isoch data,

the xHC must include the Isoch Scheduling Delay. The Isoch Scheduling Delay

comprehends the additional time the xHC requires to parse the PING_RESPONSE

TP then enable the associated Isoch transfer, and to accommodate schedule

jitter the PING and the Isoch transfer may incur within the Interval due to the

348

other transfers that it must manage. The Isoch Scheduling Delay is an xHC

implementation specific value. The Max Exit Latency Too Large Error allows the

xHC to reject a proposed Max Exit Latency value because it could not be made to

work after it evaluated the Isoch Scheduling Delay by the other endpoints that it

had to schedule.

4.24 Host Controller Management

4.24.1 Internal Errors

The Host Controller Error (HCE) flag is asserted when an internal xHC error is

detected that exclusively affects the xHC. When the HCE flag is set to ‘1’ the xHC

shall cease all activity. Software response to the assertion of HCE is to reset the

xHC (HCRST = ‘1’) and reinitialize it.

Software should implement an algorithm for checking the HCE flag if the xHC is

not responding.

Note: HCE may be asserted due to a soft or hard error. An SRAM parity error while

accessing an internal data structure is an example of a soft error that may assert

HCE. However a hard error shall cause the xHC to reassert HCE immediately after

it is reinitialized. In this case, software should employ some heuristics to prevent

the case where the xHC is continually in an error-reset-reinitialize loop and

report this condition to the user.

Note: Host System Error (HSE) shall be used to report errors detected by xHC that may

affect the system as a whole. Refer to section 4.10.2.6 for more information.

4.24.2 Port to Connector Mapping

This section discusses how the xHC Root Hub registers ports shall be mapped to

the External Ports of the xHC device, and the USB A connectors of a system,

where a “system” may be a motherboard or a stand alone controller card.

Consistent mapping is required to ensure that software may effectively manage

the USB devices attached by the user.

4.24.2.1 Root Hub Port to External Port Assignment

This section discusses how the Root Hub registers ports shall be mapped to the

External Ports of the xHC device.

An xHC may integrate one or more Tier73 2 USB 2.0 hubs. These hubs shall be

referred to as Integrated Hubs. An Integrated Hub may be connected to a Root

Hub port associated with a High-speed Bus Instance to provide Low-speed (LS),

73Refer to section 4.1.1 of the USB2 spec for more information on Tiers and USB Topologies.

 349

Full-speed (FS), and High-speed (HS) functionality on External Ports presented

by the xHC device or to expand the number of USB2 Protocol External Ports.

A USB3 hub is the logical combination of two hubs: a USB 2.0 hub and an

Enhanced SuperSpeed hub. Each hub operates independently on a separate

data bus. Typically, the only shared logic between the two hubs is for controlling

VBus on their downstream facing ports. The paring of USB 2.0 and Enhanced SS

hubs means that downstream facing ports of the USB3 hub are at the same Tier.

Matched Tiers simplify the software management of the shared port power logic

in a USB3 hub.

When the xHC External Ports associated with an Integrated Hub and the External

Ports associated with a USB3 Protocol Root Hub port are assigned to the same

USB connector, a mismatch is created between the Tiers presented at the

connector. The USB 2.0 signal pair from the External Hub is at Tier 2 and the

SuperSpeed signal pairs from the Root Hub port are at Tier 1. To minimize the

impact on software management of power at the connector, the Tier mismatch

created by Integrated Hubs is limited to 1.

• When Integrated Hub(s) are implemented:

• Only a single Integrated Hub (i.e. one additional Hub Tier) shall be allowed

between a xHC Root Hub port and External Port.

• The only allowed USB 2.0/Enhanced SS Hub Tier mismatch case is where the

USB2 Protocol External Ports are at Tier 2 and USB3 Protocol External Ports are

at Tier 1.

• The xHC vendor shall provide a description of the Root Hub port / Integrated

Hub / External Port mapping. Refer to Appendix D for an example of how ACPI

may be used to provide this mapping.

• Ports of like protocols shall be grouped when defining External Port numbering.

e.g. Given n USB2 protocol External Ports and m USB3 protocol External Ports,

External Ports 1 through n shall be USB2 protocol ports and External Ports n+1

through n+m shall be USB3 protocol ports.

• The USB2 xHCI Supported Protocol Capability Integrated Hub Implemented (IHI)

flag shall be ‘1’.

• When Integrated Hub(s) are not implemented:

• There shall be a 1:1 mapping between xHC Root Hub ports and xHC External

Ports, where the Root Hub port 1 shall map to External Port 1, Root Hub port 2

shall map to External Port 2, and so on. This mapping means that the protocol of

each Root Hub port is identical to the protocol of the respective External Port, as

defined by the USB2 and USB3 xHCI Supported Capabilities, refer to section 7.2.

• The USB2 xHCI Supported Protocol Capability Integrated Hub Implemented (IHI)

flag shall be ‘0’.

350

4.24.2.2 External Port to USB Connector mapping

• This section discusses how the External Ports of the xHC device may be mapped

to the physical USB A connectors of the xHC system. Consistent mapping is

required to ensure that software may effectively manage the ports.

A system may incorporate USB2 or USB3 hubs that are external from the device

that contains the xHC. In this section these hubs will be referred to as

Embedded Hubs. Embedded Hubs may be used to expand the number of USB2,

or USG3 A or C connectors presented by a system.

• When an Embedded Hub(s) is implemented:

• A USB 2.0/Enhanced SS Hub Tier mismatch between the xHC External Ports and

the USB A connectors is not allowed.

• The system shall provide software with a description of the Root Hub port /

Integrated Hub / External port / Embedded Hub / USB A or C connector mapping

via ACPI or other method. Refer to Appendix D for an example of ACPI mapping.

• When an Embedded Hub is not implemented:

• A system may define the mapping of xHC External Ports to USB connectors using

ACPI or other methods.

• Software may assume the following “default” mapping of xHC External Port

numbers to USB connector numbers if no other method is defined by a system.

Given n USB2 protocol External Ports numbered 1 to n, m USB3 protocol

External Ports numbered n+1 to n+m, and c USB connectors numbered 1 to c;

External Ports 1 and n+1 shall map to USB connector 1 to form a USB3

compatible port, External Ports 2 and n+2 shall map to USB connector 2 to form

a USB3 compatible port, and so on. If there n is greater than m then there will be

m USB3 compatible ports and n-m USB2 compatible ports, or vice versa if m is

greater than n.

Note: If USB2 and USB3 protocol ports share the same over-current detection logic

(whether Integrated or Embedded hub(s) are implemented or not), then an over-

current condition shall assert OCA on both ports and transition both ports to the

Powered-off state.

 351

4.24.2.3 Mapping Example

Figure 4-38: Integrated Hub Example

P4

xHC

Root Hub

Motherboard

C3 C4C1

HCP1

USB2 Protocol USB3 Protocol

HCP2

P1 P2 P3 P5

IP1 IP2

Integrated Hub

C2

P6

HCP3 Root Hub

Ports

USB

Connectors

USB Cables

Integrated

Hub Ports

USB3 compatible

connectors
USB2 compatible

connectors

External

Ports

IP2 IP4

Tier 1

Tier 2

Tier Mismatch

Figure 4-38 illustrates a Integrated Hub xHC example implementation, where:

• The motherboard presents 4 user visible connectors C1 – C4.

• Motherboard connectors C1 and C2 support USB3 (LS/FS/HS/SS) devices.

• Motherboard connectors C3 and C4 support USB2 (LS/FS/HS) devices.

• The xHC implements a High-speed Bus Instance associated with one USB2 Protocol

Root Hub port HCP1. Note that HPC1 provides no Low- or Full-speed support.

• The xHC implements 3 Root Hub ports (HCP1 – HCP3, Tier 1), 1 USB2 Protocol and

2 USB3 Protocol.

• Root Hub port 1 (HCP1) is attached to the HS Integrated Hub. The Integrated Hub

supports 4 ports (IP1 – IP4).

• Ports 1 to 4 (IP1-IP4, Tier 2) of the Integrated Hub attach to External Ports 1

to 4 (P1-P4), respectively.

• Root Hub ports 2 and 3 (HCP2, HCP3) attach to External Ports 5 and 6 (P5, P6),

respectively.

352

• The xHC presents 6 External Ports (P1 – P6).

• External Ports 1 – 4 (P1 – P4) support LS/FS/HS devices.

• P1 and P2 are attached to motherboard connectors C1 and C2, respectively,

providing the LS/FS/HS support for the USB3 connectors.

• P3 and P4 are attached to the motherboard USB2 compatible connectors C3

and C4, respectively.

• External Ports 5 and 6 (P5, P6) are attached to motherboard connectors C1 and

C2 respectively, providing the SS support for the USB3 connectors.

• External Ports P1 through P4 present a USB2 data bus (i.e. a D+/D- signal pair).

External Ports P5 and P6 present a SuperSpeed data bus (i.e. SSRx+/SSRx- and

SSTx+/SSTx- signal pairs).

• The Tier Mismatch occurs at connectors C1 and C2 due to assigning Tier 2 Integrated

Hub ports and Tier 1 Root Hub ports to the same USB3 connectors.

 353

5 Register Interface

The extensible USB Host Controller contains many software accessible hardware

registers. A large portion of the registers appear as Memory-mapped Host

Controller Registers. Other registers may appear using non-memory address

mechanisms, as in the case of a PCI or PCIe based Host Controller. For these

designs it is required to implement the required registers as defined by the

respective specification.

Note that the xHCI does not require support for exclusive-access mechanisms

(such as PCI LOCK) for accesses to the memory-mapped register space.

Therefore, if software attempts exclusive-access mechanisms to the host

controller memory-mapped register space, the results are undefined.

Refer to section 3.1 for a summary of the xHCI register architecture.

Table 5-1: eXtensible Host Controller Interface Register Sets

Offset Register Set Size Explanation

0 to
CAPLENGTH

Capability
Registers

(Section 5.3)

Up to

256

Bytes

The capability registers specify the limits, restrictions,
and capabilities of a host controller implementation.

These values are used as parameters to the host
controller driver.

CAPLENGTH to
CAPLENGTH +
BFFh

Operational
Registers
(Section 5.4)

Up to

3K
Bytes

The “low-touch” operational registers are used by
system software to control and monitor the
operational state of the host controller.

Pointed to by
the Capability
Registers

Run-time
Registers

(Section 5.5)

Up to

32800
Bytes

The “high-touch” operational registers are used by
system software to control and monitor the
operational state of the host controller.

Pointed to by
the Capability

Registers

Doorbell Array
(Section 5.6)

Up to

1K

Bytes

An array of doorbells, where each 32-bit entry in the
array represents a doorbell for each device attached

to the host. Write the ID(s) for a specific endpoint to
signal the host controller that additional work items
are available.

Refer to Table 7-2 for a breakdown of the xHCI Extended Capability register

sets.

354

Table 5-2: Register Alignment Requirement Summary

Register Alignment in Bytes Section

Capability Registers Page 5.3

Operational Registers 4 5.4

Runtime Registers PF0 = 32

VFn = Page

5.5

Doorbell Array PF0 = 4

VFn = Page

5.6

5.1 Register Conventions

If the xHC supports 64-bit addressing (AC64 = ‘1’), then software should write

64-bit registers using only Qword accesses. If a system is incapable of issuing

Qword accesses, then writes to the 64-bit address fields shall be performed

using 2 Dword accesses; low Dword-first, high-Dword second.

If the xHC supports 32-bit addressing (AC64 = ‘0’), then the high Dword of

registers containing 64-bit address fields are unused and software should write

addresses using only Dword accesses.

Note: The USB Legacy Support (USBLEGSUP) Extended Capability requires support for

Byte accesses for Semaphore address, refer to section 7.1.

All multi-byte register fields follow little-endian ordering; i.e. lower addresses

contain the least significant parts of the field. Bytes/characters within a field

shall be in little-endian order, i.e. first char of string in least significant byte,

second char next significant byte, etc.

5.1.1 Attributes

The following notation is used to describe register access attributes:

 355

Table 5-3: Register Attributes

Register
Attribute Description

HwInit Hardware Initialized: Register bits are initialized by firmware or hardware mechanisms
such as pin strapping or serial EEPROM. (System firmware hardware initialization is only

allowed for system integrated devices.) Bits are read-only after initialization and may only
be reset (for write-once by firmware) with a HCRST.

RO Read-only: Register bits are read-only and may not be altered by software. Register bits
may be initialized by hardware mechanisms such as pin strapping or serial EEPROM.

RW Read-Write: Register bits are read-write and may be either set or cleared by software to
the desired state. Note that individual bits in some read/write registers may be Read-Only.

RW1C Write-1-to-clear status: Register bits indicate status when read, a set bit indicating a
status event may be cleared by writing a ‘1’. Writing a ‘0’ to RW1C bits has no effect.

RW1S Write-1-to-set status: Register bits indicate status when read, a clear bit may be set by

writing a ‘1’. Writing a ‘0’ to RW1S bits has no effect.

ROS Sticky - Read-only: Register bits are read-only and may not be altered by software. Where

noted, registers that consume AUX Power shall preserve sticky register values when AUX
Power consumption (either via AUX Power or PME Enable) is enabled. In these cases,
registers are not initialized or modified by Chip Hardware Reset.

RWS Sticky - Read-Write: Register bits are read-write and may be either set or cleared by
software to the desired state. Where noted, registers that consume AUX Power shall

preserve sticky register values when AUX Power consumption (either via AUX Power or
PME Enable) is enabled. In these cases, registers are not initialized or modified by Chip
Hardware Reset.

RW1CS Sticky - Write-1-to-clear status: Register bits indicate status when read, a set bit
indicating a status event may be cleared by writing a ‘1’. Writing a ‘0’ to RW1CS bits has no

effect. Where noted, registers that consume AUX Power shall preserve sticky register
values when AUX Power consumption (either via AUX Power or PME Enable) is enabled. In
these cases, registers are not initialized or modified by Chip Hardware Reset.

Rsvd Reserved: Reserved for future RO implementations. Registers or memory that shall be
treated as read-only by system software. Rsvd registers shall return ‘0’ when read.
Software shall ignore the value read from these bits.

RsvdO Reserved and Opaque: Reserved for exclusive xHC use, e.g. temporary xHC workspace.
Register or memory values may be modified by the xHC at any time. Software
manipulation of this space may cause undetermined results. Software shall not write this

space unless explicitly allowed by vendor specific instruction.

356

RsvdP Reserved and Preserved: Reserved for future RW implementations. Software shall

preserve the value read for writes to bits.

RsvdZ Reserved and Zero: Reserved for future RW1C implementations. Software shall use ‘0’ for
writes to these bits.

Note: System software shall mask all reserved fields (Rsvd, RsvdP or RsvdZ) to ‘0’

before evaluating a register or data structure value. This will enable current

system software to run with future xHCI implementations that define the

reserved fields.

Note: When a Reserved attribute (Rsvd, RsvdP, RsvdO or RsvdZ) is used to define a data

structure field, system software shall set all reserved register fields to ‘0’ when

initially allocating the data structure.

Note: Registers that define “Sticky” bits shall preserve their values when the Aux Power

well is enabled and the xHC is in the D3cold state. Refer to section 4.23.1 for

more information on power wells and register initialization.

5.1.2 Power Well Considerations

Refer to section 4.23.1.

5.2 PCI Configuration Registers (USB)

xHCs designed for operation in PCI-based systems shall implement a PCI

Configuration Space that conforms to either the PCI Specification or the PCIe

Specification, as determined by the target operating environment. The

implementer should refer to the appropriate specification as published by the

PCI Special Interest Group (SIG) (http://www.pcisig.com)

5.2.1 Type 0 PCI Header

Figure 5-1 describes the PCI Configuration Space for an xHC. PCI-based xHCs

are required to implement a PCI, Type 0 PCI device header as depicted below.

xHCs are also required to implement at least the first two Base Address

Registers (BAR 0 and BAR 1) to enable 64-bit addressing. These Base Address

Registers are used to point to the start of the host controller’s memory-mapped

Input/Output (MMIO) register space.

Refer to section 6.1 of the PCI specification for detailed compliance information.

 IMPLEMENTATION NOTE

 357

BAR0 Size Allocation

If virtualization is supported, the Capability and Operational Register sets, and the

Extended Capabilities may reside in a single page of virtual memory, however the

RTSOFF and DBOFF Registers shall position the Runtime and Doorbell Registers to

reside on their own respective virtual memory pages. The BAR0 size shall provide space

that is sufficient to cover the offset between the respective register spaces (Capability,

Operational, Runtime, etc.) and the register spaces themselves (e.g. a minimum of 3

virtual memory pages).

If virtualization is not supported, all xHCI register spaces may reside on a single page

pointed to by the BAR0.

Figure 5-1: PCI Type 00h Configuration Space Header

(Reserved)

(Reserved)

031

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

30h

34h

38h

3Ch

2Ch

1516 782324

40h

...

5Ch

60h

FCh

Vendor IDDevice ID

Revision IDClass Code

CommandStatus

Cache Line SizeMaster Latency TimerHeader TypeBIST

Base Address Register 0

Base Address Register 1

Interrupt Pin

Capabilities Pointer

Interrupt LineMin_GntMax_Lat

System Vendor IDSubsystem ID

SBRNFLADJ

64h

...
(Reserved for

Device-Specific

and PCI Capability

Registers)

DBESLDBESLD

Many of the fields of the PCI header space contain hardware default values,

which are either fixed or, if an implementation permits, may be overridden using

EEPROM, but may not be independently specified for each logical xHC instance

in a platform. These fields include: Revision, Header Type, Subsystem ID,

358

Subsystem Vendor ID, Class Code, Capability Pointer, Max Latency, and Min

Grant.

The following fields are unique to each xHC instance: Device ID, Command,

Status, Latency Timer, Cache Line Size74, Memory BAR, and Interrupt Pin.

5.2.2 Class Code Register

Address Offset: 09-0Bh

Default Value: 0C0330h

Attribute: RO

Size: 24 bits

This register contains the device programming interface information related to

the Sub-Class Code and Base Class Code definition. This register also identifies

the Base Class Code and the function sub-class in relation to the Base Class

Code.

Table 5-4: Class Code Register (CLASSC)

Bit Description

7:0 Programming Interface (PI) - RO. 30h = USB3 Host Controller that conforms to this
specification.

15:8 Sub-Class Code (SCC) - RO. 03h = Universal Serial Bus Host Controller.

23:16 Base Class Code (BASEC) - RO. 0Ch = Serial Bus controller.

5.2.3 Serial Bus Release Number Register (SBRN)

Address Offset: 60h

Default Value: Refer to Description below

Attribute: RO

Size: 8 bits

This register contains the release of the Universal Serial Bus Specification with

which this Universal Serial Bus Host Controller module is compliant.

74The Cache Line Size is used to align xHC DMA operations.

 359

Table 5-5: Serial Bus Release Number Register (SBRN)

Bit Description

7:0 Serial Bus Specification Release Number - RO. All other combinations are reserved.

Bits[7:0] Release Number

30h Release 3.0

31h Release 3.1

5.2.4 Frame Length Adjustment Register (FLADJ)

Address Offset: 61h

Default Value: 20h

Attribute: RWS

Size: 8 bits

This register is in the Aux Power well. This feature is used to adjust any offset

from the clock source that generates the clock that drives the SOF counter.

When a new value is written into these six bits, the length of the frame is

adjusted for all USB buses implemented by an xHC. Its initial programmed value

is system dependent based on the accuracy of hardware USB clock and is

initialized by system software (typically the BIOS). This register should only be

modified when the HCHalted (HCH) bit in the USBSTS register is ‘1’. Changing

value of this register while the host controller is operating yields undefined

results.

360

Table 5-6: Frame Length Adjustment Register (FLADJ)

Bit Description

5:0 Frame Length Timing Value - RWS/RsvdP. If NFC = ‘0’, then each decimal value change to this

register corresponds to 16 high-speed bit times. The SOF cycle time (number of SOF counter clock

periods to generate a SOF microframe length) is equal to 59488 + value in this field. The default

value is decimal 32 (20h), which gives a SOF cycle time of 60000.

 Frame Length

 (# HS bit times) FLADJ Value

 (decimal) (decimal)

 59488 0 (00h)

 59504 1 (01h)

 59520 2 (02h

 …

 59984 31 (1Fh)

 60000 32 (20h)

 …

 60480 62 (3Eh)

 60496 63 (3Fh)

If NFC = ‘1’ then this field shall be RsvdP.

6 No Frame Length Timing Capability (NFC) - RO. This flag indicates whether the host controller

implementation supports a Frame Length Timing Value. A ‘1’ in this bit indicates that the Frame

Length Timing Value is not supported. A ‘0’ in this bit indicates that the Frame Length Timing Value

is supported.

7 RsvdP.

Note: A USB3 Bus Interval Adjustment Message is used by the host to adjust its 125 μs.

bus interval up to +/-13.333 μs. The FLADJ establishes the center point for this

adjustment. The contents of this register are not affected by the receipt of a

BUS_INTERVAL_ADJUSTMENT_MESSAGE from a USB3 device. Refer to section

8.5.6.6 in the USB3 spec.

5.2.5 Default Best Effort Service Latency (DBESL)

Address Offset: 62h

Bit Offset: 0

Default Value: Refer to Description below

Attribute: RO

Size: 4 bits

This register contains the optimal value for programming the PORTPMSC Best

Effort Service Latency (BESL) field. Refer to section 4.23.5.1.1.1 for more

information.

 361

If BESL LPM is not supported (HLC = '0' or BLC = '0') then this register is

reserved.

Table 5-7: Default Best Effort Service Latency (DBESL)

Bit Description

3:0 Default Best Effort Service Latency (DBESL) - RO. Default = Vendor defined. If the value of this
field is non-zero, it defines the recommended value for programming the PORTPMSC register

BESL field. Refer to sections 5.4.9.2 and 4.23.5.1.1.1 for more information.

5.2.6 Default Best Effort Service Latency Deep (DBESLD)

Address Offset: 62h

Bit Offset: 4

Default Value: Refer to Description below

Attribute: RO

Size: 4 bits

This register contains the optimal value for programming the PORTPMSC Best

Effort Service Latency - Deep (BESLD) field. Refer to section 4.23.5.1.1.1 for

more information.

If BESL LPM is not supported (HLC = '0' or BLC = '0') then this register is

reserved.

Table 5-8: Default Best Effort Service Latency - Deep (DBESLD)

Bit Description

7:4 Default Best Effort Service Latency Deep (DBESLD) - RO. Default = Vendor defined. If the value of

this field is non-zero, it defines the recommended value for programming the PORTPMSC register

BESLD field. Refer to sections 5.4.9.2 and 4.23.5.1.1.1 for more information.

5.2.7 PCI Power Management Interface

Figure 5-2 is a depiction of the registers defined in the PCI Power Management

Capability. xHCI compliant host controllers shall implement the PCI Power

Management capability registers as defined in the PCI Specification, which is

nearly identical to the structure defined in PCI PM specification, with some

additional requirements. Refer to Appendix A.1 for additional xHCI operational

requirements for PCI Power Management.

362

Figure 5-2: PCI Power Management Capability Structure

Next Capability PointerPower Management Capabilities (PMC) Capability ID

31 16 15 8 7 0

Data Power Management Control / Status Register (PMCSR)PMCSR_BSE

24 23

03-00H

07-04H

The following section describes the PCI Power Management capability structure,

which fields are required or optional for compliance, and how they are

implemented by the xHC.

5.2.7.1 PCI Power Management Registers

All fields are reset on full power-up. All of the PCI PM PMCSR register fields

except PME_En and PME_Status are reset on exit from D3cold state. If Aux

Power is not supplied, the PME_En and PME_Status fields also reset on exit from

D3cold state.

The PCI Capability List75 is used to provide a standard way for software to find

and use the PCI Power Management. Refer to section 3.2 in the PCI PM

specification for the definition of Power Management Register Block.

 IMPLEMENTATION NOTE

NO_SOFT_RESET

If the PCI No_Soft_Reset flag is set to '1', it will also prevent the USB from being reset

when the controller transitions from to D3hot from D0. Setting the No_Soft_Reset flag

has the benefit of not having to re-initialize all of the USB devices on the bus. The

No_Soft_Reset flag does not have any affect on a D3cold (Core power well disabled) to

D0 transition, since PERST# is required to be asserted when the main power supply is

removed. Refer to section 3.2.4 PMCSR in the PCI PM specification.

5.2.8 Message Signaled Interrupts (MSI & MSI-X) Capability

Below is a depiction of the registers defined in the PCI Message Signaled

Interrupt (MSI) capability. If an xHC supports PCI or PCIe it shall implement the

PCI MSI and/or MSI-X capabilities as defined in the PCI Specification.

5.2.8.1 MSI configuration

The PCI Capability List is used to provide a standard way for software to find

and use the PCI MSI capabilities. The following subsections describe xHC related

MSI implementation issues.

75 PCI Capability List is defined in the PCI Local Bus Specification (Section 6.7)

 363

Figure 5-3 illustrates the Message Signaled Interrupt (MSI) Configuration

capability layout, which consist of seven fields. Refer to section 6.8.1 in the PCI

specification for the definition of MSI Capability Structure.

Figure 5-3: PCI MSI Configuration Capability Structure

MSI Message Control NXT_PTR CAP_ID (05H)

31

Dword0

Dword1

16 15 8 7 0

Message Address

Message Upper Address

RsvdP Message Data

Dword2

Dword3

5.2.8.2 MSI-X configuration

The MSI-X capability structure is illustrated in Figure 5-4. More than one MSI-X

Configuration Capability Structure per function is prohibited, but a function is

permitted to have both an MSI and an MSI-X capability structures.

In contrast to the MSI capability structure, which directly contains all of the

control/status information for the function's vectors, the MSI-X capability

structure instead points to an MSI-X Table structure and a MSI-X Pending Bit

Array (PBA) structure, each residing in Memory Space.

Each structure is mapped by a Base Address register (BAR) belonging to the

function, located beginning at 10h in Configuration Space. A BAR Indicator

register (BIR) indicates which BAR, and a Qword-aligned Offset indicates where

the structure begins relative to the base address associated with the BAR. The

BAR is permitted to be either 32-bit or 64-bit, but shall map Memory Space. A

function is permitted to map both structures with the same BAR, or to map each

structure with a different BAR.

The MSI-X Table structure typically contains multiple entries, each consisting of

several fields: Message Address, Message Upper Address, Message Data, and

Vector Control. Each entry is capable of specifying a unique vector.

The Pending Bit Array (PBA) structure contains the function’s Pending Bits, one

per Table entry, organized as a packed array of bits within Qwords.

The last QWORD will not necessarily be fully populated.

Figure 5-4: MSI-X Configuration Capability Structure

MSI-X Message Control NXT_PTR CAP_ID (11H)

31

03-00H

07-04H

16 15 8 7

Table Offset

PBA Offset PBA BIR

Table BIR

0B-08H

3 2 0

364

Refer to section 6.8.2 in the PCI specification for the definition of the MSI-X

Capability and Table Structures. The following subsections describe xHC related

MSI-X implementation issues.

5.2.8.3 MSI-X Table

The MSI-X Capability Table Offset field points to the MSI-X Table. Refer to

sections 6.8.2.6 through 6.8.2.9 in the PCI specification for the definition of the

MSI-X Table Entry fields.

Note: The maximum number of Interrupters supported by the xHC architecture is

1024. The actual number of MSI-X Table entries required by an implementation

is determined by the HCSPARAMS1 register MaxIntrs field.

Refer to section 5.2.8.5 for Table Entry addressing.

5.2.8.4 MSI-X PBA

The MSI-X Capability PBA Offset points to the PBA (Pending Bit Array). Refer to

section 6.8.2.10 in the PCI specification for the definition of the Pending Bits for

MSI-X Table Entries.

Note: The maximum number of Interrupters supported by the xHC architecture is

1024. So only one PBA Qword is implemented, and (at most) only the low order

1023 bits are implemented. The actual number of Pending bits implemented is

determined by the HCSPARAMS1 register MaxIntrs field.

Refer to section 5.2.8.5 for Pending Bit addressing.

5.2.8.5 Accessing the MSI-X Table and MSI-X PBA

The MSI-X Table and MSI-X PBA are permitted to co-reside within a naturally

aligned 4 KB address range, though they shall not overlap with each other.

MSI-X Table entries and Pending bits are each numbered 0 through N-1, where

N-1 is indicated by the Table Size field in the MSI-X Message Control register.

For a given arbitrary MSI-X Table entry K, its starting address can be calculated

with the formula:

Entry starting address = Table base + K*16

For the associated Pending bit K, its address for Qword access and bit number

within that

Qword can be calculated with the formulas:

Qword address = PBA base + (K div 64)*8

Qword bit# = K MOD 64

Software that chooses to read Pending bit K with DWORD accesses can use

these formulas:

 365

Qword address = PBA base + (K div 32)*4

Qword bit# = K

5.2.9 PCI Express Capability

The structure depicted below represents a PCI Express Capability structure that

shall be implemented for any xHC designed to operate as a PCIe device within

PCIe capable systems. Refer to section 7.8 of the PCIe spec, for details regarding

implementation of this structure.

Figure 5-5: PCI Express Capability Structure

RsvdZ

RsvdZ

031

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

30h

34h

38h

2Ch

1516 78

PCI Express Cap IDPCI Express Capabilities Register

Device ControlDevice Status

Device Capabilities

Next Cap Pointer

Link ControlLink Status

Link Capabilities

Device Control 2Device Status 2

Device Capabilities 2

Link Control 2Link Status 2

Link Capabilities 2

5.2.10 SR-IOV Extended Capability

This optional capability is only required for xHC that provides hardware support

for virtualized system environments. The Single Root I/O Virtualization and

Sharing Specification (SR-IOV) defines virtualization related extensions to the

PCI Express (PCIe) specification. SR-IOV is a PCIe Extended Capability.

Refer to section 8 for details on how to implement this capability.

5.3 Host Controller Capability Registers

These registers specify the limits and capabilities of the host controller

implementation.

366

All Capability Registers are Read-Only (RO). The offsets for these registers are

all relative to the beginning of the host controller’s MMIO address space. The

beginning of the host controller’s MMIO address space is referred to as “ Base”

throughout this document.

Table 5-9: eXtensible Host Controller Capability Registers

Base Offset
Size

(Bytes) Mnemonic Register Name Section

00h 1 CAPLENGTH Capability Register Length 5.3.1

01h 1 Rsvd

02h 2 HCIVERSION Interface Version Number 5.3.2

04h 4 HCSPARAMS1 Structural Parameters 1 5.3.3

08h 4 HCSPARAMS2 Structural Parameters 2 5.3.4

0Ch 4 HCSPARAMS3 Structural Parameters 3 5.3.5

10h 4 HCCPARAMS1 Capability Parameters 1 5.3.6

14h 4 DBOFF Doorbell Offset 5.3.7

18h 4 RTSOFF Runtime Register Space Offset 5.3.8

1Ch 4 HCCPARAMS2 Capability Parameters 2 5.3.9

20h CAPLENGTH-20h Rsvd

5.3.1 Capability Registers Length (CAPLENGTH)

Address: Base + (00h)

Default Value: Implementation Dependent

Attribute: RO

Size: 8 bits

This register is used as an offset to add to register base to find the beginning of

the Operational Register Space.

5.3.2 Host Controller Interface Version Number (HCIVERSION)

Address: Base + (02h)

Default Value: Implementation Dependent

 367

Attribute: RO

Size: 16 bits

This is a two-byte register containing a BCD encoding of the xHCI specification

revision number supported by this host controller. The most significant byte of

this register represents a major revision and the least significant byte contains

the minor revision extensions. e.g. 0100h corresponds to xHCI version 1.0.0, or

0110h corresponds to xHCI version 1.1.0, etc.

Note: Pre-release versions of the xHC shall declare the specific version of the xHCI that

it was implemented against. e.g. 0090h = version 0.9.0.

5.3.3 Structural Parameters 1 (HCSPARAMS1)

Address: Base + (04h)

Default Value: Implementation Dependent

Attribute: RO

Size: 32 bits

Figure 5-6: Structural Parameters 1 Register (HCSPARAMS1)

Max InterruptersMax Ports Rsvd Max Device Slots

31 24 23 8 7 01819

This register defines basic structural parameters supported by this xHC

implementation: Number of Device Slots support, Interrupters, Root Hub ports,

etc.

Table 5-10: Host Controller Structural Parameters 1 (HCSPARAMS1)

Bits Description

7:0 Number of Device Slots (MaxSlots). This field specifies the maximum number of Device
Context Structures and Doorbell Array entries this host controller can support. Valid values are
in the range of 1 to 255. The value of ‘0’ is reserved.

18:8 Number of Interrupters (MaxIntrs). This field specifies the number of Interrupters implemented
on this host controller. Each Interrupter may be allocated to a MSI or MSI-X vector and controls
its generation and moderation.

The value of this field determines how many Interrupter Register Sets are addressable in the
Runtime Register Space (refer to section 5.5). Valid values are in the range of 1h to 400h. A ‘0’ in
this field is undefined.

23:19 Rsvd.

368

31:24 Number of Ports (MaxPorts). This field specifies the maximum Port Number value, i.e. the

highest numbered Port Register Set that are addressable in the Operational Register Space
(refer to Table 5-17). Valid values are in the range of 1h to FFh.

The value in this field shall reflect the maximum Port Number value assigned by an xHCI

Supported Protocol Capability, described in section 7.2. Software shall refer to these capabilities
to identify whether a specific Port Number is valid, and the protocol supported by the
associated Port Register Set.

5.3.4 Structural Parameters 2 (HCSPARAMS2)

Address: Base + (08h)

Default Value: Implementation Dependent

Attribute: RO

Size: 32 bits

Figure 5-7: Structural Parameters 2 Register (HCSPARAMS2)

9

RsvdMax Scratchpad Bufs HiMax Scratchpad Bufs Lo SPR ERST Max IST

31 4 3 08 727 26 25 21 20

ETE

This register defines additional xHC structural parameters.

Table 5-11: Host Controller Structural Parameters 2 (HCSPARAMS2)

Bit Description

0:3 Isochronous Scheduling Threshold (IST). Default = implementation dependent. The value in
this field indicates to system software the minimum distance (in time) that it is required to stay
ahead of the host controller while adding TRBs, in order to have the host controller process

them at the correct time. The value shall be specified in terms of number of
frames/microframes.

If bit [3] of IST is cleared to '0', software can add a TRB no later than IST[2:0] Microframes before

that TRB is scheduled to be executed.

If bit [3] of IST is set to '1', software can add a TRB no later than IST[2:0] Frames before that TRB
is scheduled to be executed.

Refer to Section 4.14.2 for details on how software uses this information for scheduling
isochronous transfers.

7:4 Event Ring Segment Table Max (ERST Max). Default = implementation dependent. Valid values
are 0 – 15. This field determines the maximum value supported the Event Ring Segment Table
Base Size registers (5.5.2.3.1), where:

 The maximum number of Event Ring Segment Table entries = 2 ERST Max.

e.g. if the ERST Max = 7, then the xHC Event Ring Segment Table(s) supports up to 128 entries,
15 then 32K entries, etc.

 369

8 Extended TBC Enable (ETE). This flag indicates that the host controller implementation is

enabled to support Transfer Burst Count (TBC) values greater that 4 in isoch TDs. When this bit
is ‘1’, the Isoch TRB TD Size/TBC field presents the TBC value, and the TBC/RsvdZ field is RsvdZ.
When this bit is ‘0’, the TDSize/TCB field presents the TD Size value, and the TBC/RsvdZ field

presents the TBC value. This bit may be set only if ETC = ‘1’. Refer to section 4.11.2.3 for more
information.

20:9 Rsvd.

25:21 Max Scratchpad Buffers (Max Scratchpad Bufs Hi). Default = implementation dependent. This
field indicates the high order 5 bits of the number of Scratchpad Buffers system software shall
reserve for the xHC. Refer to section 4.20 for more information.

26 Scratchpad Restore (SPR). Default = implementation dependent. If Max Scratchpad Buffers is >
‘0’ then this flag indicates whether the xHC uses the Scratchpad Buffers for saving state when
executing Save and Restore State operations. If Max Scratchpad Buffers is = ‘0’ then this flag

shall be ‘0’. Refer to section 4.23.2 for more information.

A value of ‘1’ indicates that the xHC requires the integrity of the Scratchpad Buffer space to be
maintained across power events.

A value of ‘0’ indicates that the Scratchpad Buffer space may be freed and reallocated between
power events.

31:27 Max Scratchpad Buffers (Max Scratchpad Bufs Lo). Default = implementation dependent. Valid
values for Max Scratchpad Buffers (Hi and Lo) are 0-1023. This field indicates the low order 5
bits of the number of Scratchpad Buffers system software shall reserve for the xHC. Refer to

section 4.20 for more information.

5.3.5 Structural Parameters 3 (HCSPARAMS3)

Address: Base + (0Ch)

Default Value: Implementation Dependent

Attribute: RO

Size: 32 bits

Figure 5-8: Structural Parameters 3 Register (HCSPARAMS3)

31 16 15 8 7 0

Rsvd U2 Device Exit Latency U1 Device Exit Latency

This register defines link exit latency related structural parameters.

370

Table 5-12: Host Controller Structural Parameters 3 (HCSPARAMS3)

Bit Description

7:0 U1 Device Exit Latency. Worst case latency to transition a root hub Port Link State (PLS) from U1

to U0. Applies to all root hub ports.

The following are permissible values:

 Value Description

 00h Zero

 01h Less than 1 µs

 02h Less than 2 µs.

 …

 0Ah Less than 10 µs.

 0B-FFh Reserved

15:8 Rsvd.

31:16 U2 Device Exit Latency. Worst case latency to transition from U2 to U0. Applies to all root hub

ports.

The following are permissible values:

 Value Description

 0000h Zero

 0001h Less than 1 µs.

 0002h Less than 2 µs.

 …

 07FFh Less than 2047 µs.

 0800-FFFFh Reserved

5.3.6 Capability Parameters 1 (HCCPARAMS1)

Address: Base + (10h)

Default Value: Implementation Dependent

Attribute: RO

Size: 32 bits

The default values for all fields in this register are implementation dependent.

Figure 5-9: Capability Parameters 1 Register (HCCPARAMS1)

SEC SPCCFC LTC
LHR

C
xHCI Extended Capabilities Pointer MaxPSASize NSS AC64BNCCSZPIND PPC

31 16 15 8 7 5 4 3 2 1 0612 11 9

PAE

10

This register defines optional capabilities supported by the xHCI.

 371

Table 5-13: Host Controller Capability 1 Parameters (HCCPARAMS1)

Bits Description

0 64-bit Addressing Capability76 (AC64). This flag documents the addressing range capability of

this implementation. The value of this flag determines whether the xHC has implemented the

high order 32 bits of 64 bit register and data structure pointer fields. Values for this flag have the

following interpretation:

 Value Description

 0 32-bit address memory pointers implemented

 1 64-bit address memory pointers implemented

If 32-bit address memory pointers are implemented, the xHC shall ignore the high order 32 bits

of 64 bit data structure pointer fields, and system software shall ignore the high order 32 bits of

64 bit xHC registers.

1 BW Negotiation Capability (BNC). This flag identifies whether the xHC has implemented the

Bandwidth Negotiation. Values for this flag have the following interpretation:

 Value Description

 0 BW Negotiation not implemented

 1 BW Negotiation implemented

Refer to section 4.16 for more information on Bandwidth Negotiation.

2 Context Size (CSZ). If this bit is set to ‘1’, then the xHC uses 64 byte Context data structures. If

this bit is cleared to ‘0’, then the xHC uses 32 byte Context data structures.

Note: This flag does not apply to Stream Contexts.

3 Port Power Control (PPC). This flag indicates whether the host controller implementation

includes port power control. A ‘1’ in this bit indicates the ports have port power switches. A ‘0’ in

this bit indicates the port do not have port power switches. The value of this flag affects the

functionality of the PP flag in each port status and control register (refer to Section 5.4.8).

4 Port Indicators (PIND). This bit indicates whether the xHC root hub ports support port indicator

control. When this bit is a ‘1’, the port status and control registers include a read/writeable field

for controlling the state of the port indicator. Refer to Section 5.4.8 for definition of the Port

Indicator Control field.

5 Light HC Reset Capability (LHRC). This flag indicates whether the host controller implementation

supports a Light Host Controller Reset. A ‘1’ in this bit indicates that Light Host Controller Reset is

supported. A ‘0’ in this bit indicates that Light Host Controller Reset is not supported. The value

of this flag affects the functionality of the Light Host Controller Reset (LHCRST) flag in the

USBCMD register (refer to Section 5.4.1).

76This is not tightly coupled with the USBBASE address register mapping control. The 64-bit Addressing Capability
(AC64) flag indicates whether the host controller can generate 64-bit addresses as a master. The USBBASE
register indicates the host controller only needs to decode 32-bit addresses as a slave.

372

6 Latency Tolerance Messaging Capability (LTC). This flag indicates whether the host controller

implementation supports Latency Tolerance Messaging (LTM). A ‘1’ in this bit indicates that LTM

is supported. A ‘0’ in this bit indicates that LTM is not supported. Refer to section 4.13.1 for more

information on LTM.

7 No Secondary SID Support (NSS). This flag indicates whether the host controller

implementation supports Secondary Stream IDs. A ‘1’ in this bit indicates that Secondary Stream

ID decoding is not supported. A ‘0’ in this bit indicates that Secondary Stream ID decoding is

supported. (refer to Sections 4.12.2 and 6.2.3).

8 Parse All Event Data (PAE). This flag indicates whether the host controller implementation

Parses all Event Data TRBs while advancing to the next TD after a Short Packet, or it skips all but

the first Event Data TRB. A ‘1’ in this bit indicates that all Event Data TRBs are parsed. A ‘0’ in this

bit indicates that only the first Event Data TRB is parsed (refer to section 4.10.1.1).

9 Stopped - Short Packet Capability (SPC). This flag indicates that the host controller

implementation is capable of generating a Stopped - Short Packet Completion Code. Refer to

section 4.6.9 for more information.

10 Stopped EDTLA Capability (SEC). This flag indicates that the host controller implementation

Stream Context support a Stopped EDTLA field. Refer to sections 4.6.9, 4.12, and 6.4.4.1 for more

information.

Stopped EDTLA Capability support (i.e. SEC = '1') shall be mandatory for all xHCI 1.1 compliant

xHCs.

11 Contiguous Frame ID Capability (CFC). This flag indicates that the host controller

implementation is capable of matching the Frame ID of consecutive Isoch TDs. Refer to section

4.11.2.5 for more information.

15:12 Maximum Primary Stream Array Size (MaxPSASize). This fields identifies the maximum size

Primary Stream Array that the xHC supports. The Primary Stream Array size = 2MaxPSASize+1. Valid

MaxPSASize values are 0 to 15, where ‘0’ indicates that Streams are not supported.

31:16 xHCI Extended Capabilities Pointer (xECP). This field indicates the existence of a capabilities list.

The value of this field indicates a relative offset, in 32-bit words, from Base to the beginning of

the first extended capability.

For example, using the offset of Base is 1000h and the xECP value of 0068h, we can calculated

the following effective address of the first extended capability:

1000h + (0068h << 2) -> 1000h + 01A0h -> 11A0h

5.3.7 Doorbell Offset (DBOFF)

Address: Base + (14h)

Default Value: Implementation Dependent

Attribute: RO

Size: 32 bits

This register defines the offset of the Doorbell Array base address from the

Base.

 373

Figure 5-10: Doorbell Offset Register (DBOFF)

Doorbell Array Offset

31 0

Rsvd

2 1

Table 5-14: Doorbell Offset Register (DBOFF)

Bit Description

1:0 Rsvd.

31:2 Doorbell Array Offset - RO. Default = implementation dependent. This field defines the offset in

Dwords of the Doorbell Array base address from the Base (i.e. the base address of the xHCI
Capability register address space).

Note: Normally the Doorbell Array is Dword aligned, however if virtualization is

supported by the xHC then it shall be PAGESIZE aligned. e.g. If the PAGESIZE =

4K (1000h), and the Doorbell Array is positioned at a 3 page offset from the Base,

then this register shall report 0000 3000h.

5.3.8 Runtime Register Space Offset (RTSOFF)

Address: Base + (18h)

Default Value: Implementation Dependent

Attribute: RO

Size: 32 bits

This register defines the offset of the xHCI Runtime Registers from the Base.

Figure 5-11: Runtime Register Space Offset Register (RTSOFF)

Runtime Register Space Offset

31 0

Rsvd

5 4

Table 5-15: Runtime Register Space Offset Register (RTSOFF)

Bit Description

4:0 Rsvd.

374

31:5 Runtime Register Space Offset - RO. Default = implementation dependent. This field defines the

32-byte offset of the xHCI Runtime Registers from the Base. i.e. Runtime Register Base Address =
Base + Runtime Register Set Offset.

Note: Normally the Runtime Register Space is 32-byte aligned, however if virtualization

is supported by the xHC then it shall be PAGESIZE aligned. e.g. If the PAGESIZE

= 4K and the Runtime Register Space is positioned at a 1 page offset from the

Base, then this register shall report 0000 1000h.

5.3.9 Capability Parameters 2 (HCCPARAMS2)

Address: Base + (1Ch)

Default Value: Implementation Dependent

Attribute: RO

Size: 32 bits

The default values for all fields in this register are implementation dependent.

Figure 5-12: Capability Parameters Register 2 (HCCPARAMS2)

ETC FSC CMCRsvd U3C

31 2 1 03

CTC

4

LEC

5

CIC

67

TSC

This register defines optional capabilities supported by the xHCI.

Table 5-16: Host Controller Capability Parameters 2 (HCCPARAMS2)

Bits Description

0 U3 Entry Capability (U3C) - RO. This bit indicates whether the xHC Root Hub ports support port
Suspend Complete notification. When this bit is '1', PLC shall be asserted on any transition of PLS
to the U3 State. Refer to section 4.15.1 for more information.

1 Configure Endpoint Command Max Exit Latency Too Large Capability (CMC) - RO. This bit
indicates whether a Configure Endpoint Command is capable of generating a Max Exit Latency
Too Large Capability Error. When this bit is '1', a Max Exit Latency Too Large Capability Error may

be returned by a Configure Endpoint Command. When this bit is '0', a Max Exit Latency Too Large
Capability Error shall not be returned by a Configure Endpoint Command. This capability is
enabled by the CME flag in the USBCMD register. Refer to sections 4.23.5.2 and 5.4.1 for more

information.

2 Force Save Context Capability (FSC) - RO. This bit indicates whether the xHC supports the Force

Save Context Capability. When this bit is '1', the Save State operation shall save any cached Slot,
Endpoint, Stream or other Context information to memory. Refer to Implementation Note “FSC
and Context handling by Save and Restore”, and sections 4.23.2 and 5.4.1 for more information.

 375

3 Compliance Transition Capability (CTC) - RO. This bit indicates whether the xHC USB3 Root Hub

ports support the Compliance Transition Enabled (CTE) flag. When this bit is ‘1’, USB3 Root Hub
port state machine transitions to the Compliance substate shall be explicitly enabled software.
When this bit is ‘0’, USB3 Root Hub port state machine transitions to the Compliance substate

are automatically enabled. Refer to section 4.19.1.2.4.1 for more information.

4 Large ESIT Payload Capability (LEC) - RO. This bit indicates whether the xHC supports ESIT
Payloads greater than 48K bytes. When this bit is ‘1’, ESIT Payloads greater than 48K bytes are

supported. When this bit is ‘0’, ESIT Payloads greater than 48K bytes are not supported. Refer to
section 6.2.3.8 for more information.

5 Configuration Information Capability (CIC) - RO. This bit indicates if the xHC supports extended
Configuration Information. When this bit is 1, the Configuration Value, Interface Number, and

Alternate Setting fields in the Input Control Context are supported. When this bit is 0, the
extended Input Control Context fields are not supported. Refer to section 6.2.5.1 for more
information.

6 Extended TBC Capability77 (ETC) - RO. This bit indicates if the TBC field in an Isoch TRB supports
the definition of Burst Counts greater than 65535 bytes. When this bit is ‘1’, the Extended EBC

capability is supported by the xHC. When this bit is ‘0’, it is not. Refer to section 4.11.2.3 for more
information.

7 Extended TBC TRB Status Capability (ETC_TSC) - RO. This bit indicates if the TBC/TRBSts field
in an Isoch TRB indicates additional information regarding TRB in the TD. When this bit is ‘1’, the
Isoch TRB TD Size/TBC field presents TBC value and TBC/TRBSts field presents the TRBSts value.

When this bit is ‘0’ then the ETC/ETE values defines the TD Size/TBC field and TBC/RsrvdZ field.
This capability shall be enabled only if LEC = ‘1’ and ETC=’1’. Refer to section 4.11.2.3 for more
information.

31:8 Reserved.

5.4 Host Controller Operational Registers

This section defines the xHCI Operational Registers.

The base address of this register space is referred to as Operational Base. The

Operational Base shall be Dword aligned and is calculated by adding the value

of the Capability Registers Length (CAPLENGTH) register (refer to Section 5.3.1)

to the Capability Base address. All registers are multiples of 32 bits in length.

77The Extended TBC Capability (ETC) was added to enable support for Transfer Burst Count (TBC) values greater
than 4, which are required to fully support SSP Isoch bandwidths.

376

Unless otherwise stated, all registers should be accessed as a 32-bit width on

reads with an appropriate software mask, if needed. A software

read/modify/write mechanism should be invoked for partial writes.

These registers are located at a positive offset from the Capabilities Registers

(refer to Section 5.3).

Table 5-17: Host Controller Operational Registers

Offset Mnemonic Register Name Section

00h USBCMD USB Command 5.4.1

04h USBSTS USB Status 5.4.2

08h PAGESIZE Page Size 5.4.3

0C-13h RsvdZ

14h DNCTRL Device Notification Control 5.4.4

18h CRCR Command Ring Control 5.4.5

20-2Fh RsvdZ

30h DCBAAP Device Context Base Address Array Pointer 5.4.6

38h CONFIG Configure 5.4.7

3C-3FFh RsvdZ

400-13FFh Port Register Set 1-MaxPorts

(refer to Table 5-18)

5.4.8, 5.4.9

Note: The MaxPorts value in the HCSPARAMS1 register defines the number of Port

Register Sets (e.g. PORTSC, PORTPMSC, and PORTLI register sets). The PORTSC,

PORTPMSC, and PORTLI register sets are grouped (consecutive Dwords). Refer

to their respective sections for their addressing.

The Offset referenced in Table 5-17 is the offset from the beginning of the

Operational Register space.

The Operational registers are located at a positive offset from the Capabilities

Registers (refer to Section 5.3).

 377

Table 5-18: Host Controller USB Port Register Set

Offset Mnemonic Register Name Section

0h PORTSC Port Status and Control 5.4.8

4h PORTPMSC Port Power Management Status and Control 5.4.9

8h PORTLI Port Link Info 5.4.10

Ch PORTHLPMC Port Hardware LPM Control 5.4.11

When the Operational Registers are exposed by a Virtual Function (VF), they are

emulated and managed by the VMM for the xHC instance presented by the

selected VF. The VMM has full discretion as to how writes to these registers will

affect the operation of a VF and the value of the read data returned by a VF,

however recommendations are provided where appropriate. Refer to section 8

for more information.

5.4.1 USB Command Register (USBCMD)

Address: Operational Base+ (00h)

Default Value: 0000 0000h

Attribute: RO, RW (field dependent)

Size: 32 bits

The Command Register indicates the command to be executed by the serial bus

host controller. Writing to the register causes a command to be executed.

Figure 5-13: USB Command Register (USBCMD)

ETECME
Rsvd

P

13

E

U3S
CRS CSSRsvdP RsvdP R/S

HC

RST

INT

E

LHC

RST

HSE

E

31 7 6 4 3 2 1 010 9 8

EWE

11121415

378

Table 5-19: USB Command Register Bit Definitions (USBCMD)

Bits Description

0 Run/Stop (R/S) – RW. Default = ‘0’. ‘1’ = Run. ‘0’ = Stop. When set to a ‘1’, the xHC proceeds with
execution of the schedule. The xHC continues execution as long as this bit is set to a ‘1’. When

this bit is cleared to ‘0’, the xHC completes any current or queued commands or TDs, and any
USB transactions associated with them, then halts.

Refer to section 5.4.1.1 for more information on how R/S shall be managed.

The xHC shall halt within 16 ms. after software clears the Run/Stop bit if the above conditions
have been met.

The HCHalted (HCH) bit in the USBSTS register indicates when the xHC has finished its pending

pipelined transactions and has entered the stopped state. Software shall not write a ‘1’ to this
flag unless the xHC is in the Halted state (i.e. HCH in the USBSTS register is ‘1’). Doing so may
yield undefined results. Writing a ‘0’ to this flag when the xHC is in the Running state (i.e. HCH =

‘0’) and any Event Rings are in the Event Ring Full state (refer to section 4.9.4) may result in lost
events.

When this register is exposed by a Virtual Function (VF), this bit only controls the run state of

the xHC instance presented by the selected VF. Refer to section 8 for more information.

1 Host Controller Reset (HCRST) – RW. Default = ‘0’. This control bit is used by software to reset
the host controller. The effects of this bit on the xHC and the Root Hub registers are similar to a
Chip Hardware Reset.

When software writes a ‘1’ to this bit, the Host Controller resets its internal pipelines, timers,
counters, state machines, etc. to their initial value. Any transaction currently in progress on the
USB is immediately terminated. A USB reset shall not be driven on USB2 downstream ports,

however a Hot or Warm Reset78 shall be initiated on USB3 Root Hub downstream ports.

PCI Configuration registers are not affected by this reset. All operational registers, including port
registers and port state machines are set to their initial values. Software shall reinitialize the

host controller as described in Section 4.2 in order to return the host controller to an
operational state.

This bit is cleared to ‘0’ by the Host Controller when the reset process is complete. Software

cannot terminate the reset process early by writing a ‘0’ to this bit and shall not write any xHC
Operational or Runtime registers until while HCRST is ‘1’. Note, the completion of the xHC reset
process is not gated by the Root Hub port reset process.

Software shall not set this bit to ‘1’ when the HCHalted (HCH) bit in the USBSTS register is a ‘0’.
Attempting to reset an actively running host controller may result in undefined behavior.

When this register is exposed by a Virtual Function (VF), this bit only resets the xHC instance

presented by the selected VF. Refer to section 8 for more information.

2 Interrupter Enable (INTE) – RW. Default = ‘0’. This bit provides system software with a means of

enabling or disabling the host system interrupts generated by Interrupters. When this bit is a ‘1’,
then Interrupter host system interrupt generation is allowed, e.g. the xHC shall issue an interrupt
at the next interrupt threshold if the host system interrupt mechanism (e.g. MSI, MSI-X, etc.) is

enabled. The interrupt is acknowledged by a host system interrupt specific mechanism.

When this register is exposed by a Virtual Function (VF), this bit only enables the set of
Interrupters assigned to the selected VF. Refer to section 7.7.2 for more information.

78Depending on the link state when HCRST is asserted, an xHC implementation may choose to issue a Hot Reset

rather than a Warm Reset to accelerate the USB recovery process.

 379

3 Host System Error Enable (HSEE) – RW. Default = ‘0’. When this bit is a ‘1’, and the HSE bit in

the USBSTS register is a ‘1’, the xHC shall assert out-of-band error signaling to the host. The
signaling is acknowledged by software clearing the HSE bit. Refer to section 4.10.2.6 for more
information.

When this register is exposed by a Virtual Function (VF), the effect of the assertion of this bit on
the Physical Function (PF0) is determined by the VMM. Refer to section 8 for more information.

6:4 RsvdP.

7 Light Host Controller Reset (LHCRST) – RO or RW. Optional normative. Default = ‘0’. If the Light
HC Reset Capability (LHRC) bit in the HCCPARAMS1 register is ‘1’, then this flag allows the driver
to reset the xHC without affecting the state of the ports.

A system software read of this bit as ‘0’ indicates the Light Host Controller Reset has completed
and it is safe for software to re-initialize the xHC. A software read of this bit as a ‘1’ indicates the
Light Host Controller Reset has not yet completed.

If not implemented, a read of this flag shall always return a ‘0’.

All registers in the Aux Power well shall maintain the values that had been asserted prior to the
Light Host Controller Reset. Refer to section 4.23.1 for more information.

When this register is exposed by a Virtual Function (VF), this bit only generates a Light Reset to
the xHC instance presented by the selected VF, e.g. Disable the VFs’ device slots and set the
associated VF Run bit to Stopped. Refer to section 8 for more information.

8 Controller Save State (CSS) - RW. Default = ‘0’. When written by software with ‘1’ and HCHalted
(HCH) = ‘1’, then the xHC shall save any internal state (that may be restored by a subsequent
Restore State operation) and if FSC = '1' any cached Slot, Endpoint, Stream, or other Context

information (so that software may save it). When written by software with ‘1’ and HCHalted
(HCH) = ‘0’, or written with ‘0’, no Save State operation shall be performed. This flag always
returns ‘0’ when read. Refer to the Save State Status (SSS) flag in the USBSTS register for

information on Save State completion. Refer to section 4.23.2 for more information on xHC
Save/Restore operation. Note that undefined behavior may occur if a Save State operation is
initiated while Restore State Status (RSS) = ‘1’.

When this register is exposed by a Virtual Function (VF), this bit only controls saving the state of
the xHC instance presented by the selected VF. Refer to section 8 for more information.

9 Controller Restore State (CRS) - RW. Default = ‘0’. When set to ‘1’, and HCHalted (HCH) = ‘1’,
then the xHC shall perform a Restore State operation and restore its internal state. When set to
‘1’ and Run/Stop (R/S) = ‘1’ or HCHalted (HCH) = ‘0’, or when cleared to ‘0’, no Restore State

operation shall be performed. This flag always returns ‘0’ when read. Refer to the Restore State
Status (RSS) flag in the USBSTS register for information on Restore State completion. Refer to
section 4.23.2 for more information. Note that undefined behavior may occur if a Restore State

operation is initiated while Save State Status (SSS) = ‘1’.

When this register is exposed by a Virtual Function (VF), this bit only controls restoring the state
of the xHC instance presented by the selected VF. Refer to section 8 for more information.

10 Enable Wrap Event (EWE) - RW. Default = ‘0’. When set to ‘1’, the xHC shall generate a MFINDEX
Wrap Event every time the MFINDEX register transitions from 03FFFh to 0. When cleared to ‘0’
no MFINDEX Wrap Events are generated. Refer to section 4.14.2 for more information.

When this register is exposed by a Virtual Function (VF), the generation of MFINDEX Wrap
Events to VFs shall be emulated by the VMM.

380

11 Enable U3 MFINDEX Stop (EU3S) - RW. Default = ‘0’. When set to ‘1’, the xHC may stop the

MFINDEX counting action if all Root Hub ports are in the U3, Disconnected, Disabled, or
Powered-off state. When cleared to ‘0’ the xHC may stop the MFINDEX counting action if all
Root Hub ports are in the Disconnected, Disabled, Training, or Powered-off state. Refer to

section 4.14.2 for more information.

12 RsvdP.

13 CEM Enable (CME) - RW. Default = '0'. When set to '1', a Max Exit Latency Too Large Capability

Error may be returned by a Configure Endpoint Command. When cleared to '0', a Max Exit
Latency Too Large Capability Error shall not be returned by a Configure Endpoint Command.
This bit is Reserved if CMC = ‘0’. Refer to section 4.23.5.2.2 for more information.

31:14 RsvdP.

Note: The R/S flag has no effect on the operation of the Debug Capability.

5.4.1.1 Run/Stop (R/S)

After R/S is written with a ‘0’ by software, the xHC completes any current or

queued commands or TDs (and any host initiated transactions on the USB

associated with them), then halts and sets HCH = ‘1’. The time it takes for the

xHC to halt depends on many things, however if many TDs are queued on

Transfer Rings, then it may take a long time for the xHC to complete all

outstanding work and halt.

To expedite the xHC halt process, software should ensure the following before

clearing the R/S bit:

• All endpoints are in the Stopped state or Idle in the Running state, and all Transfer

Events associated with them have been received.

• The Command Transfer Ring is in the Stopped state (CRR = ‘0’) or Idle (i.e. the

Command Transfer Ring is empty), and all Command Completion Events associated

with them have been received.

Software should apply the following rules to determine when a Busy Transfer

Ring becomes Idle:

• For Isoch endpoints:

• Wait for a Ring Underrun or Ring Overrun Transfer Event or,

• Issue a Stop Endpoint Command and wait for the associated Command

Completion Event.

• For non-Isoch endpoints:

• If the IOC flag is set in the last TRB on the Transfer Ring, then wait for its Transfer

Event.

 381

• If the IOC flag is not set in the last TRB on the Transfer Ring, then there will be no

Transfer Event generated when the last TRB on the ring is completed, so software

shall issue a Stop Endpoint Command and wait for the associated Command

Completion Event and Stopped Transfer Events. Refer to section 4.6.9.

Note: Software shall ensure that any pending reset on a USB2 port is completed before

R/S is cleared to ‘0’.

Note: The xHC is forced to halt within 16 ms. of software clearing the R/S bit to ‘0’,

irrespective of any queued Transfer or Command Ring activity. If software does

not follow the “halt process” recommendations above, undefined behavior may

occur, e.g. xHC commands or pending USB transactions may be lost, aborted, etc.

5.4.2 USB Status Register (USBSTS)

Address: Operational Base + (04h)

Default Value: 0000 0001h79

Attribute: RO, RW, RW1C, (field dependent)

Size: 32 bits

This register indicates pending interrupts and various states of the Host

Controller. The status resulting from a transaction on the serial bus is not

indicated in this register. Software sets a bit to ‘0’ in this register by writing a ‘1’

to it (RW1C). Refer to Section 4.17 for additional information concerning USB

interrupt conditions.

Figure 5-14: USB Status Register (USBSTS)

RsvdZ HCE CNR PCD EINT HCH
Rsvd

Z
HSE

31 03 2 145

RSS SSS

711 10 9 8

RsvdZSRE

1213

Table 5-20: USB Status Register Bit Definitions (USBSTS)

Bit Description

0 HCHalted (HCH) – RO. Default = ‘1’. This bit is a ‘0’ whenever the Run/Stop (R/S) bit is a ‘1’. The
xHC sets this bit to ‘1’ after it has stopped executing as a result of the Run/Stop (R/S) bit being
cleared to ‘0’, either by software or by the xHC hardware (e.g. internal error).

If this bit is '1', then SOFs, microSOFs, or Isochronous Timestamp Packets (ITP) shall not be
generated by the xHC, and any received Transaction Packet shall be dropped.

When this register is exposed by a Virtual Function (VF), this bit only reflects the Halted state of

the xHC instance presented by the selected VF. Refer to section 8 for more information.

1 RsvdZ.

79Note, the CNR flag may be asserted (‘1’) when the USBSTS is first examined by software.

382

2 Host System Error (HSE) – RW1C. Default = ‘0’. The xHC sets this bit to ‘1’ when a serious error

is detected, either internal to the xHC or during a host system access involving the xHC module.
(In a PCI system, conditions that set this bit to ‘1’ include PCI Parity error, PCI Master Abort, and
PCI Target Abort.) When this error occurs, the xHC clears the Run/Stop (R/S) bit in the USBCMD

register to prevent further execution of the scheduled TDs. If the HSEE bit in the USBCMD
register is a ‘1’, the xHC shall also assert out-of-band error signaling to the host. Refer to section
4.10.2.6 for more information.

When this register is exposed by a Virtual Function (VF), the assertion of this bit affects all VFs
and reflects the Host System Error state of the Physical Function (PF0). Refer to section 8 for
more information.

3 Event Interrupt (EINT) – RW1C. Default = ‘0’. The xHC sets this bit to ‘1’ when the Interrupt
Pending (IP) bit of any Interrupter transitions from ‘0’ to ‘1’. Refer to section 7.1.2 for use.

Software that uses EINT shall clear it prior to clearing any IP flags. A race condition may occur if

software clears the IP flags then clears the EINT flag, and between the operations another IP ‘0’
to '1' transition occurs. In this case the new IP transition shall be lost.

When this register is exposed by a Virtual Function (VF), this bit is the logical 'OR' of the IP bits

for the Interrupters assigned to the selected VF. And it shall be cleared to ‘0’ when all associated
interrupter IP bits are cleared, i.e. all the VF’s Interrupter Event Ring(s) are empty. Refer to
section 8 for more information.

4 Port Change Detect (PCD) – RW1C. Default = ‘0’. The xHC sets this bit to a ‘1’ when any port has
a change bit transition from a ‘0’ to a ‘1’.

This bit is allowed to be maintained in the Aux Power well. Alternatively, it is also acceptable
that on a D3 to D0 transition of the xHC, this bit is loaded with the OR of all of the PORTSC
change bits. Refer to section 4.19.3.

This bit provides system software an efficient means of determining if there has been Root Hub
port activity. Refer to section 4.15.2.3 for more information.

When this register is exposed by a Virtual Function (VF), the VMM determines the state of this

bit as a function of the Root Hub Ports associated with the Device Slots assigned to the selected
VF. Refer to section 8 for more information.

7:5 RsvdZ.

8 Save State Status (SSS) - RO. Default = ‘0’. When the Controller Save State (CSS) flag in the
USBCMD register is written with ‘1’ this bit shall be set to ‘1’ and remain 1 while the xHC saves
its internal state. When the Save State operation is complete, this bit shall be cleared to ‘0’.

Refer to section 4.23.2 for more information.

When this register is exposed by a Virtual Function (VF), the VMM determines the state of this
bit as a function of the saving the state for the selected VF. Refer to section 8 for more

information.

9 Restore State Status (RSS) - RO. Default = ‘0’. When the Controller Restore State (CRS) flag in

the USBCMD register is written with ‘1’ this bit shall be set to ‘1’ and remain 1 while the xHC
restores its internal state. When the Restore State operation is complete, this bit shall be cleared
to ‘0’. Refer to section 4.23.2 for more information.

When this register is exposed by a Virtual Function (VF), the VMM determines the state of this
bit as a function of the restoring the state for the selected VF. Refer to section 8 for more
information.

 383

10 Save/Restore Error (SRE) - RW1C. Default = ‘0’. If an error occurs during a Save or Restore

operation this bit shall be set to ‘1’. This bit shall be cleared to ‘0’ when a Save or Restore
operation is initiated or when written with ‘1’. Refer to section 4.23.2 for more information.

When this register is exposed by a Virtual Function (VF), the VMM determines the state of this

bit as a function of the Save/Restore completion status for the selected VF. Refer to section 8
for more information.

11 Controller Not Ready (CNR) – RO. Default = ‘1’. ‘0’ = Ready and ‘1’ = Not Ready. Software shall
not write any Doorbell or Operational register of the xHC, other than the USBSTS register, until
CNR = ‘0’. This flag is set by the xHC after a Chip Hardware Reset and cleared when the xHC is

ready to begin accepting register writes. This flag shall remain cleared (‘0’) until the next Chip
Hardware Reset.

12 Host Controller Error (HCE) – RO. Default = 0. 0’ = No internal xHC error conditions exist and ‘1’
= Internal xHC error condition. This flag shall be set to indicate that an internal error condition
has been detected which requires software to reset and reinitialize the xHC. Refer to section

4.24.1 for more information.

31:13 RsvdP.

Note: The Event Interrupt (EINT) and Port Change Detect (PCD) flags are typically only

used by system software for managing the xHCI when interrupts are disabled or

during an SMI.

Note: The EINT flag does not generate an interrupt, it is simply a logical OR of the IMAN

register IP flag ‘0’ to ‘1’ transitions. As such, it does not need to be cleared to clear

an xHC interrupt.

5.4.3 Page Size Register (PAGESIZE)

Address: Operational Base + (08h)

Default Value: Implementation dependent

Attribute: RO

Size: 32 bits

384

Table 5-21: Page Size Register Bit Definitions (PAGESIZE)

Bit Description

15:0 Page Size – RO. Default = Implementation defined. This field defines the page size supported by
the xHC implementation. This xHC supports a page size of 2^(n+12) if bit n is Set. For example, if

bit 0 is Set, the xHC supports 4k byte page sizes.

For a Virtual Function, this register reflects the page size selected in the System Page Size field
of the SR-IOV Extended Capability structure. For the Physical Function 0, this register reflects

the implementation dependent default xHC page size.

Various xHC resources reference PAGESIZE to describe their minimum alignment requirements.

The maximum possible page size is 128M.

31:16 Rsvd.

5.4.4 Device Notification Control Register (DNCTRL)

Address: Operational Base + (14h)

Default Value: 0000 0000h

Attribute: RW (Writes shall be Dword)

Size: 32 bits

This register is used by software to enable or disable the reporting of the

reception of specific USB Device Notification Transaction Packets. A Notification

Enable (Nx, where x = 0 to 15) flag is defined for each of the 16 possible de vice

notification types. If a flag is set for a specific notification type, a Device

Notification Event shall be generated when the respective notification packet is

received. After reset all notifications are disabled. Refer to section 6.4.2.7.

This register shall be written as a Dword. Byte writes produce undefined results.

Figure 5-15: Device Notification Control Register (DNCTRL)

N15 N14 N13RsvdP N1 N0

31 1016 15 14 13 12 11 9 8 7 6 5 4 3 2 1 0

N12 N11 N10 N9 N8 N7 N6 N5 N4 N3 N2

 385

Table 5-22: Device Notification Register Bit Definitions (DNCTRL)

Bit Description

15:0 Notification Enable (N0-N15) – RW. When a Notification Enable bit is set, a Device Notification
Event shall be generated when a Device Notification Transaction Packet is received with the

matching value in the Notification Type field. For example, setting N1 to ‘1’ enables Device
Notification Event generation if a Device Notification TP is received with its Notification Type
field set to ‘1’ (FUNCTION_WAKE), etc.

31:16 RsvdP.

Note: Of the currently defined USB3 Device Notification Types, only the

FUNCTION_WAKE type should not be handled automatically by the xHC. Only

under debug conditions would software write the DNCTRL register with a value

other than 0002h. Refer to section 8.5.6 in the USB3 specification for more

information on Notification Types. If new Device Notification Types are defined,

software may receive them by setting the respective Notification Enable bit.

5.4.5 Command Ring Control Register (CRCR)

Address: Operational Base + (18h)

Default Value: 0000 0000 0000 0000h

Attribute: RW

Size: 64 bits

The Command Ring Control Register provides Command Ring control and status

capabilities, and identifies the address and Cycle bit state of the Command Ring

Dequeue Pointer.

Figure 5-16: Command Ring Control Register (CRCR)

RCSCRRCommand Ring Pointer Lo RsvdP

Command Ring Pointer Hi

CA CS 03-00H

07-04H

31 6 5 4 3 2 1 0

386

Table 5-23: Command Ring Control Register Bit Definitions (CRCR)

Bit Description

0 Ring Cycle State (RCS) - RW. This bit identifies the value of the xHC Consumer Cycle State (CCS)
flag for the TRB referenced by the Command Ring Pointer. Refer to section 4.9.3 for more
information.

Writes to this flag are ignored if Command Ring Running (CRR) is ‘1’.

If the CRCR is written while the Command Ring is stopped (CRR = ‘0’), then the value of this flag
shall be used to fetch the first Command TRB the next time the Host Controller Doorbell register

is written with the DB Reason field set to Host Controller Command.

If the CRCR is not written while the Command Ring is stopped (CRR = ‘0’), then the Command Ring
shall begin fetching Command TRBs using the current value of the internal Command Ring CCS

flag.

Reading this flag always returns ‘0’.

1 Command Stop (CS) - RW1S. Default = ‘0’. Writing a ‘1’ to this bit shall stop the operation of the
Command Ring after the completion of the currently executing command, and generate a

Command Completion Event with the Completion Code set to Command Ring Stopped and the
Command TRB Pointer set to the current value of the Command Ring Dequeue Pointer. Refer to
section 4.6.1.1 for more information on stopping a command.

The next write to the Host Controller Doorbell with DB Reason field set to Host Controller
Command shall restart the Command Ring operation.

Writes to this flag are ignored by the xHC if Command Ring Running (CRR) = ‘0’.

Reading this bit shall always return ‘0’.

2 Command Abort (CA) - RW1S. Default = ‘0’. Writing a ‘1’ to this bit shall immediately terminate
the currently executing command, stop the Command Ring, and generate a Command

Completion Event with the Completion Code set to Command Ring Stopped. Refer to section
4.6.1.2 for more information on aborting a command.

The next write to the Host Controller Doorbell with DB Reason field set to Host Controller

Command shall restart the Command Ring operation.

Writes to this flag are ignored by the xHC if Command Ring Running (CRR) = ‘0’.

Reading this bit always returns ‘0’.

3 Command Ring Running (CRR) - RO. Default = 0. This flag is set to ‘1’ if the Run/Stop (R/S) bit is
‘1’ and the Host Controller Doorbell register is written with the DB Reason field set to Host
Controller Command. It is cleared to ‘0’ when the Command Ring is “stopped” after writing a ‘1’ to

the Command Stop (CS) or Command Abort (CA) flags, or if the R/S bit is cleared to ‘0’.

5:4 RsvdP.

 387

63:6 Command Ring Pointer - RW. Default = ‘0’. This field defines high order bits of the initial value of

the 64-bit Command Ring Dequeue Pointer.

Writes to this field are ignored when Command Ring Running (CRR) = ‘1’.

If the CRCR is written while the Command Ring is stopped (CRR = ‘0’), the value of this field shall

be used to fetch the first Command TRB the next time the Host Controller Doorbell register is
written with the DB Reason field set to Host Controller Command.

If the CRCR is not written while the Command Ring is stopped (CRR = ‘0’) then the Command Ring

shall begin fetching Command TRBs at the current value of the internal xHC Command Ring
Dequeue Pointer.

Reading this field always returns ‘0’.

Note: Refer to section 4.6 for more information on Command Ring Stop and Abort

operation.

Note: Setting the Command Stop (CS) or Command Abort (CA) flags while CRR = ‘1’

shall generate a Command Ring Stopped Command Completion Event.

Note: Setting both the Command Stop (CS) and Command Abort (CA) flags with a single

write to the CRCR while CRR = ‘1’ shall be interpreted as a Command Abort (CA)

by the xHC.

Note: The Command Ring is 64 byte aligned, so the low order 6 bits of the Command

Ring Pointer shall always be ‘0’.

Note: The values of the internal xHC Command Ring CCS flag and Dequeue Pointer are

undefined after hardware reset, so these fields shall be initialized before setting

USBCMD Run/Stop (R/S) to ‘1’. Refer to section 4.6.1.

Note: After asserting Command Stop (CS) if the Command doorbell is rung before CRR

= ‘0’, (i.e. the ring is not fully stopped), then the behavior is undefined, e.g. the

Command Ring may not restart.

5.4.6 Device Context Base Address Array Pointer Register (DCBAAP)

Address: Operational Base + (30h)

Default Value: 0000 0000 0000 0000h

Attribute: RW

Size: 64 bits

The Device Context Base Address Array Pointer Register identifies the base

address of the Device Context Base Address Array.

The memory structure referenced by this physical memory pointer is assumed to

be physically contiguous and 64-byte aligned.

388

Figure 5-17: Device Context Base Address Array Pointer Register (DCBAAP)

Device Context Base Address Array Pointer Hi

Device Context Base Address Array Pointer Lo RsvdZ

31 6 5 0

03-00H

07-04H

Table 5-24: Device Context Base Address Array Pointer Register Bit Definitions (DCBAAP)

Bit Description

5:0 RsvdZ.

63:6 Device Context Base Address Array Pointer - RW. Default = ‘0’. This field defines high order bits
of the 64-bit base address of the Device Context Pointer Array. A table of address pointers that

reference Device Context structures for the devices attached to the host.

5.4.7 Configure Register (CONFIG)

Address: Operational Base+ (38h)

Default Value: 0000 0000h

Attribute: RW

Size: 32 bits

This register defines runtime xHC configuration parameters.

Figure 5-18: Configure Register (CONFIG)

U3ERsvdP

31 8 7 0

Number of Device Slots Enabled

9

CIE

10

Table 5-25: Configure Register Bit Definitions (CONFIG)

Bit Description

7:0 Max Device Slots Enabled (MaxSlotsEn) – RW. Default = ‘0’. This field specifies the maximum
number of enabled Device Slots. Valid values are in the range of 0 to MaxSlots. Enabled Devices

Slots are allocated contiguously. e.g. A value of 16 specifies that Device Slots 1 to 16 are active.
A value of ‘0’ disables all Device Slots. A disabled Device Slot shall not respond to Doorbell
Register references.

This field shall not be modified by software if the xHC is running (Run/Stop (R/S) = ‘1’).

 389

8 U3 Entry Enable (U3E) – RW. Default = '0'. When set to '1', the xHC shall assert the PLC flag ('1')

when a Root Hub port transitions to the U3 State. Refer to section 4.15.1 for more information.

9 Configuration Information Enable (CIE) - RW. Default = '0'. When set to '1', the software shall
initialize the Configuration Value, Interface Number, and Alternate Setting fields in the Input

Control Context when it is associated with a Configure Endpoint Command. When this bit is '0',
the extended Input Control Context fields are not supported. Refer to section 6.2.5.1 for more
information.

31:10 RsvdP.

Note: Writing the Max Device Slots Enabled (MaxSlotsEn) field with a non-zero value,

signals to the xHC that the host controller driver for the xHC is loaded. The

Run/Stop (R/S) flag in the USBCMD register can be checked to determine if the

driver is running.

Note: The value of the Max Device Slots Enabled (MaxSlotsEn) field may allow software

to scale back its memory usage, in cases where it doesn’t need to support the full

number of slots supported by the xHC hardware. It may also be used by the xHC

to modify internal algorithms for distributing its internal resource, i.e. More data

buffering per slot, modify its endpoint scheduling algorithms, etc.

Note: If the xHC is stopped to reduce the MaxSlotsEn value, software shall ensure that

no active Device Slots (i.e. not in the Disabled state) are being disabled,

otherwise undefined behavior may occur. e.g. if MaxSlotsEn is being changed

from 16 to 8, Device Slots 9 through 16 shall be in the Disabled state before

MaxSlotsEn is changed.

5.4.8 Port Status and Control Register (PORTSC)

Address: Operational Base + (400h + (10h * (n–1)))

 where: n = Port Number (Valid values are 1, 2, 3, … MaxPorts)

Default: Field dependent

Attribute: RO, RW, RW1C (field dependent)

Size 32 bits

A host controller shall implement one or more port registers. The number of

port registers implemented by a particular instantiation of a host controller is

documented in the HCSPARAMS1 register (Section 5.3.3). Software uses this

information as an input parameter to determine how many ports need to be

serviced. All ports have the structure defined below.

This register is in the Aux Power well. It is only reset by platform hardware

during a cold reset or in response to a Host Controller Reset (HCRST). The initial

conditions of a port are described in section 4.19.

390

Note: Port Status Change Events cannot be generated if the xHC is stopped (HCHalted

(HCH) = ‘1’). Refer to section 4.19.2 for more information about change flags.

Note: Software shall ensure that the xHC is running (HCHalted (HCH) = ‘0’) before

attempting to write to this register.

Software cannot change the state of the port unless Port Power (PP) is asserted

(‘1’), regardless of the Port Power Control (PPC) capability (section 5.3.6). The

host is required to have power stable to the port within 20 milliseconds of the

‘0’ to ‘1’ transition of PP. If PPC = ‘1’ software is responsible for waiting 20 ms.

after asserting PP, before attempting to change the state of the port.

Note: If a port has been assigned to the Debug Capability, then the port shall not report

device connected (i.e. CCS = ‘0’) and enabled when the Port Power Flag is ‘1’.

Refer to section 7.6 for more information on the xHCI Debug Capability

operation.

Figure 5-19: Port Status and Control Register (PORTSC)

DR CECCAS PED CCS

31 28 27 26 25 24 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 2 1 0

RsvdZ WOE WDE WCE PLC PRCOCCWRCPEC CSCLWS PIC Port Speed PP PLS PR OCA
Rsvd

Z

23

WPR

30 29

Table 5-26: Port Status and Control Register Bit Definitions (PORTSC)

Bits Description

0 Current Connect Status (CCS) – ROS. Default = ‘0’. ‘1’ = A device is connected80 to the port. ‘0’ =
A device is not connected. This value reflects the current state of the port, and may not
correspond directly to the event that caused the Connect Status Change (CSC) bit to be set to

‘1’. Refer to sections 4.19.3 and 4.19.4 for more details on the Connect Status Change (CSC)
assertion conditions.

This flag is ‘0’ if PP is ‘0’.

80For USB2 ports, CCS shall be asserted when the port transitions from the Disconnected to the Disabled state. Refer
to section 4.19.1.1. Note that if a D- pull-up resistor is detected, then a Low-speed device is connected and CCS
shall be asserted immediately (refer to section 7.1.7.3 of the USB2 spec). If a D+ pull-up resistor is detected, then

a Full- or High-speed device may be connected. PED shall not be asserted until after the High-speed Detection
Handshake described in section 7.1.7.5 of the USB2 spec completes and determines the speed of the device.For
USB3 ports, CCS shall be asserted when the port transitions from the Polling to the Enabled state. Refer to section

4.19.1.2.

 391

1 Port Enabled/Disabled (PED) – RW1CS. Default = ‘0’. ‘1’ = Enabled. ‘0’ = Disabled.

Ports may only be enabled by the xHC. Software cannot enable a port by writing a ‘1’ to this
flag.

A port may be disabled by software writing a ‘1’ to this flag.

This flag shall automatically be cleared to ‘0’ by a disconnect event or other fault condition.

Note that the bit status does not change until the port state actually changes. There may be a
delay in disabling or enabling a port due to other host controller or bus events.

When the port is disabled (PED = ‘0’) downstream propagation of data is blocked on this port,
except for reset.

For USB2 protocol ports:

When the port is in the Disabled state, software shall reset the port (PR = ‘1’) to transition PED
to ‘1’ and the port to the Enabled state.

For USB3 protocol ports:

When the port is in the Polling state (after detecting an attach), the port shall automatically
transition to the Enabled state and set PED to ‘1’ upon the completion of successful link
training.

When the port is in the Disabled state, software shall write a ‘5’ (RxDetect) to the PLS field to
transition the port to the Disconnected state. Refer to section 4.19.1.2.

PED shall automatically be cleared to ‘0’ when PR is set to ‘1’, and set to ‘1’ when PR transitions

from ‘1’ to ‘0’ after a successful reset. Refer to Port Reset (PR) bit for more information on how
the PED bit is managed.

Note that when software writes this bit to a ‘1’, it shall also write a ‘0’ to the PR bit81.

This flag is ‘0’ if PP is ‘0’.

2 RsvdZ.

3 Over-current Active (OCA) – RO. Default = ‘0’. ‘1’ = This port currently has an over-current
condition. ‘0’ = This port does not have an over-current condition. This bit shall automatically
transition from a ‘1’ to a ‘0’ when the over-current condition is removed.

4 Port Reset (PR) – RW1S. Default = ‘0’. ‘1’ = Port Reset signaling is asserted. ‘0’ = Port is not in

Reset. When software writes a ‘1’ to this bit generating a ‘0’ to ‘1’ transition, the bus reset
sequence is initiated82; USB2 protocol ports shall execute the bus reset sequence as defined in
the USB2 Spec. USB3 protocol ports shall execute the Hot Reset sequence as defined in the

USB3 Spec. PR remains set until reset signaling is completed by the root hub.

Note that software shall write a ‘1’ to this flag to transition a USB2 port from the Polling state
to the Enabled state. Refer to sections 4.15.2.3 and 4.19.1.1.

This flag is ‘0’ if PP is ‘0’.

81 The PED and PR flags are mutually exclusive. Writing the PORTSC register with PED and PR set to ‘1’ shall result
in undefined behavior.

82A ‘0’ to ‘1’ transition of PR initiates a USB2 or USB3 reset signaling protocol (refer to section 7.1.7.5 in the USB2
spec and section 6.9.3 in the USB3 spec). The USB reset protocols are not designed to be interrupted or restarted
before they are complete, therefore setting PR = ‘1’ when it is already equal to ‘1’ shall be ignored by a port to

avoid possible USB reset protocol violations.

392

8:5 Port Link State (PLS) – RWS. Default = RxDetect (‘5’). This field is used to power manage the

port and reflects its current link state.

When the port is in the Enabled state, system software may set the link U state by writing this
field. System software may also write this field to force a Disabled to Disconnected state

transition of the port.

Write Value Description

 0 The link shall transition to a U0 state from any of the U states.

 284 USB2 protocol ports only. The link should transition to the U2 State.

 383 The link shall transition to a U3 state from the U0 state. This action

selectively suspends the device connected to this port. While the Port

Link State = U3, the hub does not propagate downstream-directed

traffic to this port, but the hub shall respond to resume signaling from

the port.

 5 USB3 protocol ports only. If the port is in the Disabled state (PLS =

Disabled, PP = 1), then the link shall transition to a RxDetect state and

the port shall transition to the Disconnected state, else ignored.

 10 USB3 protocol ports only. Shall enable a link transition to the

Compliance state, i.e. CTE = ‘1’. Refer to section 4.19.1.2.4.1 for more

information.

 184,4,6-9,11-14 Ignored.

 15 USB2 protocol ports only. If the port is in the U3 state (PLS = U3), then

the link shall remain in the U3 state and the port shall transition to the

Resume substate, else ignored. Refer to section 4.15.2 for more

information.

Note: The Port Link State Write Strobe (LWS) shall also be set to ‘1’ to write

this field.

For USB2 protocol ports: Writing a value of '2' to this field shall request LPM, asserting L1
signaling on the USB2 bus. Software may read this field to determine if the transition to the U2
state was successful. Writing a value of '0' shall deassert L1 signaling on the USB. Writing a

value of '1' shall have no effect. The U1 state shall never be reported by a USB2 protocol port.

 Read Value Meaning

 0 Link is in the U0 State

 1 Link is in the U1 State

 2 Link is in the U2 State

 3 Link is in the U3 State (Device Suspended)

 4 Link is in the Disabled State85

83Refer to section 4.19.1.1.12 for more information on the U0 to U3 transition of USB2 ports.

84The USB3 spec allows software to issue a SetPortFeature(PORT_LINK_STATE, U1 or U2) request. These requests
are strictly used for compliance testing to generate an LGO_U1 or LGO_U2 LMP. The xHCI does not support this

capability directly, e.g. by writing the PORTSC register with PLS = U1 or U2 and LWS = ‘1’ to immediately
transition a Root Hub port link to a U1 or U2 state.To initiate the transition of a Root Hub port link to a U1 or U2
state, software should write the USB3 PORTPMSC register and set the U1 Timeout or U2 Timeout fields,

respectively, to a value of ‘1’. This shall cause an LGO_U1 or LGO_U2 LMP to be generated after the respective
minimum delay, which is sufficient for compliance testing.

85Disabled corresponds to the SS.Disabled Port Link State defined by the USB3 spec (section 10.14.2.6.1).

 393

 5 Link is in the RxDetect State86

 6 Link is in the Inactive State87

 7 Link is in the Polling State

 8 Link is in the Recovery State

 9 Link is in the Hot Reset State

 10 Link is in the Compliance Mode State

 11 Link is in the Test Mode88 State

 12-14 Reserved

 15 Link is in the Resume State89

This field is undefined if PP = ‘0’.

Note: Transitions between different states are not reflected until the transition is complete.
Refer to section 4.19 for PLS transition conditions.

Refer to sections 4.15.2 and 4.23.5 for more information on the use of this field. Refer to the

USB2 LPM ECR for more information on USB link power management operation. Refer to
section 7.2 for supported USB protocols.

86RxDetect corresponds to the Rx.Detect Port Link State defined by the USB3 spec (section 10.14.2.6.1).

87Inactive corresponds to the SS.Inactive Port Link State defined by the USB3 spec (section 10.14.2.6.1).

88Test Mode indicates that the PORTPMSC Test Mode field of a USB2 protocol port is non-zero or a USB3 protocol
port is in the Loopback link state, or an SSIC port is in TEST_MODE (i.e.configured to the MPHY.TEST state, refer

to the SSIC spec).

89The Resume state is not defined as a Port Link State by the USB3 spec (section 10.14.2.6.1). Refer to section
4.15.2. for xHCI use of the Resume state.

394

9 Port Power (PP) – RWS. Default = ‘1’. This flag reflects a port's logical, power control state.

Because host controllers can implement different methods of port power switching, this flag
may or may not represent whether (VBus) power is actually applied to the port. When PP
equals a '0' the port is nonfunctional and shall not report attaches, detaches, or Port Link State

(PLS) changes. However, the port shall report over-current conditions when PP = ‘0’ if PPC = ‘0’.
After modifying PP, software shall read PP and confirm that it is reached its target state before
modifying it again90, undefined behavior may occur if this procedure is not followed.

0 = This port is in the Powered-off state.

1 = This port is not in the Powered-off state.

If the Port Power Control (PPC) flag in the HCCPARAMS1 register is '1', then xHC has port power

control switches and this bit represents the current setting of the switch ('0' = off, '1' = on).

If the Port Power Control (PPC) flag in the HCCPARAMS1 register is '0', then xHC does not have
port power control switches and each port is hard wired to power, and not affected by this bit.

When an over-current condition is detected on a powered port, the xHC shall transition the PP
bit in each affected port from a ‘1’ to ‘0’ (removing power from the port).

Note: If this is an SSIC Port, then the DSP Disconnect process is initiated by '1' to '0' transition of

PP. After an SSIC USP disconnect process, the port may be disabled by setting PED = 1. As
noted, the SSIC spec does not define a mechanism for the USP to request DSP to be re-enabled
for a subsequent re-connect. If PED is set to 1 without a prior negotiated disconnect with the

USP, subsequent re-enabling of the port requires DSP to issue a WPR to bring USP back to
Rx.Detect. Refer to section 5.1.2 in the SSIC Spec for more information.

Refer to section 4.19.4 for more information.

13:10 Port Speed (Port Speed) – ROS. Default = ‘0’. This field identifies the speed of the connected
USB Device. This field is only relevant if a device is connected (CCS = ‘1’) in all other cases this
field shall indicate Undefined Speed. Refer to section 4.19.3.

 Value Meaning

0 Undefined Speed

1 -15 Protocol Speed ID (PSI), refer to section 7.2.1 for the definition of PSIV
field in the PSI Dword

Note: This field is invalid on a USB2 protocol port until after the port is reset.

90A port implementation shall initiate a Port Power change immediately when PP is written, however the PP flag
may be delayed in reflecting this change, e.g. due to waiting for a port related state machine to complete reset

signaling or other operation.

 395

15:14 Port Indicator Control (PIC) – RWS. Default = 0. Writing to these bits has no effect if the Port

Indicators (PIND) bit in the HCCPARAMS1 register is a ‘0’. If PIND bit is a ‘1’, then the bit
encodings are:

 Value Meaning

0 Port indicators are off

1 Amber

2 Green

3 Undefined

Refer to the USB2 Specification section 11.5.3 for a description on how these bits shall be used.

This field is ‘0’ if PP is ‘0’.

16 Port Link State Write Strobe (LWS) – RW. Default = ‘0’. When this bit is set to ‘1’ on a write

reference to this register, this flag enables writes to the PLS field. When ‘0’, write data in PLS
field is ignored. Reads to this bit return ‘0’.

17 Connect Status Change (CSC) – RW1CS. Default = ‘0’. ‘1’ = Change in CCS. ‘0’ = No change. This

flag indicates a change has occurred in the port’s Current Connect Status (CCS) or Cold Attach
Status (CAS) bits. Note that this flag shall not be set if the CCS transition was due to software
setting PP to ‘0’, or the CAS transition was due to software setting WPR to ‘1’. The xHC sets this

bit to ‘1’ for all changes to the port device connect status91, even if system software has not
cleared an existing Connect Status Change. For example, the insertion status changes twice
before system software has cleared the changed condition, root hub hardware will be “setting”

an already-set bit (i.e., the bit will remain ‘1’). Software shall clear this bit by writing a ‘1’ to it.
Refer to section 4.19.2 for more information on change bit usage.

18 Port Enabled/Disabled Change (PEC) – RW1CS. Default = ‘0’. ‘1’ = change in PED. ‘0’ = No
change. Note that this flag shall not be set if the PED transition was due to software setting PP

to ‘0’. Software shall clear this bit by writing a ‘1’ to it. Refer to section 4.19.2 for more
information on change bit usage.

For a USB2 protocol port, this bit shall be set to ‘1’ only when the port is disabled due to the

appropriate conditions existing at the EOF2 point (refer to section 11.8.1 of the USB2
Specification for the definition of a Port Error).

For a USB3 protocol port, this bit shall never be set to ‘1’.

19 Warm Port Reset Change (WRC) – RW1CS/RsvdZ. Default = ‘0’. This bit is set when Warm

Reset processing on this port completes. ‘0’ = No change. ‘1’ = Warm Reset complete. Note that
this flag shall not be set to ‘1’ if the Warm Reset processing was forced to terminate due to
software clearing PP or PED to '0'. Software shall clear this bit by writing a '1' to it. Refer to

section 4.19.5.1. Refer to section 4.19.2 for more information on change bit usage.

This bit only applies to USB3 protocol ports. For USB2 protocol ports it shall be RsvdZ.

91The assertion of CSC is optional if CCS was cleared by the assertion of OCA. The assertion of OCC generates the

necessary Port Status Change Event.

396

20 Over-current Change (OCC) – RW1CS. Default = ‘0’. This bit shall be set to a ‘1’ when there is a

‘0’ to ‘1’ or ‘1’ to ‘0’ transition of Over-current Active (OCA). Software shall clear this bit by
writing a ‘1’ to it. Refer to section 4.19.2 for more information on change bit usage.

21 Port Reset Change (PRC) – RW1CS. Default = ‘0’. This flag is set to ‘1’ due to a '1' to '0'
transition of Port Reset (PR). e.g. when any reset processing (Warm or Hot) on this port is

complete. Note that this flag shall not be set to ‘1’ if the reset processing was forced to
terminate due to software clearing PP or PED to '0'. ‘0’ = No change. ‘1’ = Reset complete.
Software shall clear this bit by writing a '1' to it. Refer to section 4.19.5. Refer to section 4.19.2

for more information on change bit usage.

22 Port Link State Change (PLC) – RW1CS. Default = ‘0’. This flag is set to ‘1’ due to the following
PLS transitions:

 Transition Condition

U3 -> Resume Wakeup signaling from a device

Resume -> Recovery -> U0 Device Resume complete (USB3 protocol ports
only)

Resume -> U0 Device Resume complete (USB2 protocol ports
only)

U3 -> Recovery -> U0 Software Resume complete (USB3 protocol ports

only)

U3 -> U0 Software Resume complete (USB2 protocol ports

only)

U2 -> U0 L1 Resume complete (USB2 protocol ports only)92

U0 -> U0 L1 Entry Reject (USB2 protocol ports only)92

Any state -> Inactive Error (USB3 protocol ports only).

Note: PLC is asserted only on the first LTSSM

SS.Inactive.Disconnect.Detect to SS.Inactive.Quiet
substate transition after entering the SS.Inactive
state93.

Any State -> U3 U3 Entry complete. Note: PLC is asserted only if
U3E = ‘1’94.

Note that this flag shall not be set if the PLS transition was due to software

setting PP to ‘0’. Refer to section 4.23.5 for more information. '0' = No change.

'1' = Link Status Changed. Software shall clear this bit by writing a '1' to it. Refer

to “PLC Condition:” references in section 4.19.1 for the specific port state

92PLC shall not be set if an L1 Resume Complete or L1 Entry Reject condition was due to HW initiated LPM

transitions, i.e. while HLE = ‘1’. Refer to section 4.23.5.1.1 for more information on USB2 LPM support.

93The Any state -> Inactive transition shall assert PLS only when an attached device has entered the Inactive state. If
a device is disconnected when the link is in U0, the PLS will transition through the U0->Recovery->Inactive-

>RxDetect states. This requirement eliminates the assertion of PLC due the Recovery->SS.Inactive transition of a
disconnect.

94Refer to section 4.15.1 for more information.

 397

transitions that set this flag. Refer to section 4.19.2 for more information on

change bit usage.

23 Port Config Error Change (CEC) – RW1CS/RsvdZ. Default = ‘0’. This flag indicates that the port
failed to configure its link partner. 0 = No change. 1 = Port Config Error detected. Software shall

clear this bit by writing a '1' to it. Refer to section 4.19.2 for more information on change bit
usage.

Note: This flag is valid only for USB3 protocol ports. For USB2 protocol ports this bit shall be

RsvdZ.

24 Cold Attach Status (CAS) – RO. Default = ‘0’. ‘1’ = Far-end Receiver Terminations were detected
in the Disconnected state and the Root Hub Port State Machine was unable to advance to the
Enabled state. Refer to sections 4.19.8 for more details on the Cold Attach Status (CAS)

assertion conditions. Software shall clear this bit by writing a '1' to WPR or the xHC shall clear
this bit if CCS transitions to ‘1’.

This flag is ‘0’ if PP is ‘0’ or for USB2 protocol ports.

25 Wake on Connect Enable (WCE) – RWS. Default = ‘0’. Writing this bit to a ‘1’ enables the port to
be sensitive to device connects as system wake-up events95. Refer to section 4.15 for

operational model.

26 Wake on Disconnect Enable (WDE) – RWS. Default = ‘0’. Writing this bit to a ‘1’ enables the

port to be sensitive to device disconnects as system wake-up events95. Refer to section 4.15 for
operational model.

27 Wake on Over-current Enable (WOE) – RWS. Default = ‘0’. Writing this bit to a ‘1’ enables the

port to be sensitive to over-current conditions as system wake-up events95. Refer to section
4.15 for operational model.

29:28 RsvdZ.

30 Device Removable96 (DR) - RO. This flag indicates if this port has a removable device attached.
‘1’ = Device is non-removable. ‘0’ = Device is removable.

31 Warm Port Reset (WPR) – RW1S/RsvdZ. Default = ‘0’. When software writes a ‘1’ to this bit, the
Warm Reset sequence as defined in the USB3 Specification is initiated and the PR flag is set to
‘1’. Once initiated, the PR, PRC, and WRC flags shall reflect the progress of the Warm Reset

sequence. This flag shall always return ‘0’ when read. Refer to section 4.19.5.1.

This flag only applies to USB3 protocol ports. For USB2 protocol ports it shall be RsvdZ.

95If host software sets this bit to a ‘1’ when the port is not enabled (i.e. PED = ‘0’) the results are undefined.

96The DR field mimics the function of the USB Hub Descriptor DeviceRemovable flag for xHC Root Hub ports. Refer to
section 10.12.2.1 in the USB3 spec for more information.

398

5.4.8.1 USB2 to USB3 Port State Mapping

Figure 10-9 in the USB3 Specification describes the Downstream Facing Hub

Port State Machine (DFHPSM) of a USB3 hub port. Each DSPORT state specifies

the associated Port Link State (PLS) value presented by a port.

Figure 11-10 in the USB2 Specification describes the Downstream Facing Hub

Port State Machine of a USB2 hub port. Table 5-27 enumerates the Downstream

Facing Hub Port State Machine states defined in section 11.5.1 of the USB2 spec

and maps them to their equivalent xHCI Port Link State (PLS) values.

Table 5-27: USB2 to USB3 Port Link State Mapping

USB2 State USB3 Port Link State

Not Configured N/A97

Powered-off Disabled

Disconnected RxDetect

Disabled Polling98

Resetting Undefined

Enabled U0

Transmit U0

TransmitR U0

Suspended U3

Resuming Resume

SendEOR Preserves previous PLS state.99

Restart_S N/A100

97USB2 State does not apply to Root Hub ports.
98In this case PP and CCS = ‘1’, and PE and PR = ‘0’ for a USB2 port. This state is approximately equivalent to the

USB3 DSPORT.Polling state defined in Figure 10-9, section 10.3 of the USB3 spec, where a connected device has
been detected but the port is not enabled. This state is only presented by USB2 protocol ports. Refer to section
4.15.2.3.

99i.e. U0 if entered from Enabled, Resume if entered from Resuming or L1Resuming.

100Section 11.5.1.12 of the USB2 spec “Restart_S” describes a state that applies to the DFHPSM when implemented

as USB hub with an Upstream Receiver, as such, this state does not apply to a Root Hub port.

 399

Restart_E N/A101

WLPM102 U0

L1Suspend102 U2

L1Resuming102 Resume

5.4.9 Port PM Status and Control Register (PORTPMSC)

Address: Operational Base + (404h + (10h * (n-1)))

 where: n = Port Number (Valid values are 1, 2, 3, … MaxPorts)

Default: 0000 0000h

Attribute: RWS

Size 32 bits

The definition of the fields in the PORTPMSC register depend on the USB

protocol supported by the port.

This register is in the Aux Power well. It is only reset by platform hardware

during a cold reset or in response to a Host Controller Reset (HCRST).

5.4.9.1 USB3 Protocol PORTPMSC Definition

The USB3 Port Power Management Status and Control register controls the

SuperSpeed USB link U-State timeouts.

Refer to the section 11 of the USB3 spec for more information on Link Power

Management.

Figure 5-20: USB3 Port Power Management Status and Control Register (PORTPMSC)

RsvdP FLA U2 Timeout U1 Timeout

101Section 11.5.1.13 of the USB2 spec “Restart_E” describes a state that applies to the DFHPSM when implemented
as USB hub with an Upstream Receiver, as such, this state does not apply to a Root Hub port.

102USB2 Link Power Management state. Refer to USB2 LPM Figure 4-11.

400

Table 5-28: USB3 Port Power Management Status and Control Register Bit Definitions (PORTPMSC)

Bit Description

7:0 U1 Timeout – RWS. Default = ‘0’. Timeout value for U1 inactivity timer. If equal to FFh, the port
is disabled from initiating U1 entry. This field shall be set to ‘0’ by the assertion of PR to ‘1’. Refer

to section 4.19.4.1 for more information on U1 Timeout operation. The following are
permissible values:

 Value Description

 00h Zero (default)

 01h 1 µs.

 02h 2 µs.

 …

 7Fh 127 µs.

 80h–FEh Reserved

 FFh Infinite

15:8 U2 Timeout – RWS. Default = ‘0’. Timeout value for U2 inactivity timer. If equal to FFh, the port
is disabled from initiating U2 entry. This field shall be set to ‘0’ by the assertion of PR to ‘1’. Refer
to section 4.19.4.1 for more information on U2 Timeout operation. The following are

permissible values:

 Value Description

 00h Zero (default)

 01h 256 µs

 02h 512 µs

 …

 FEh 65,024 ms

 FFh Infinite

A U2 Inactivity Timeout LMP shall be sent by the xHC to the device connected on this port when

this field is written. Refer to Sections 8.4.3 and 10.4.2.10 of the USB3 specification for more
details.

16 Force Link PM Accept (FLA) - RW. Default = ‘0’. When this bit is set to ‘1’, the port shall generate
a Set Link Function LMP with the Force_LinkPM_Accept bit asserted (‘1’). When this bit is cleared
to ‘0’, the port shall generate a Set Link Function LMP with the Force_LinkPM_Accept bit de-

asserted (‘0’).

This flag shall be set to ‘0’ by the assertion of PR to ‘1’ or when CCS = transitions from ‘0’ to ‘1’.
Writes to this flag have no effect if PP = ‘0’.

The Set Link Function LMP is sent by the xHC to the device connected on this port when this bit
transitions from ‘0’ to ‘1’ or ‘1’ to ‘0’. Refer to Sections 8.4.2 and 10.14.2.2 of the USB3
specification for more details.

Improper use of the SS Force_LinkPM_Accept functionality can impact the performance of the
link significantly. This bit shall only be used for compliance and testing purposes. Software shall
ensure that there are no pending packets at the link level before setting this bit.

This flag is ‘0’ if PP is ‘0’.

31:17 RsvdP.

 401

Refer to the section 10.4.2.1 of the USB3 spec for more information on U1 and

U2 Timeouts.

5.4.9.2 USB2 Protocol PORTPMSC Definition

The USB2 Port Power Management Status and Control register provides the

USB2 LPM parameters necessary for the xHC to generate a LPM Token to the

downstream device.

Refer to section 4.23.5.1 for more information on xHCI Link Power Management

features.

Refer to the USB2 LPM ECR for more information on USB2 Link Power

Management.

Figure 5-21: USB2 Port Power Management Status and Control Register (PORTPMSC)

RWETest Mode L1SRsvzP L1 Device Slot BESLHLE

Table 5-29: USB2 Port Power Management Status and Control Register Bit Definitions (PORTPMSC)

Bit Description

2:0 L1 Status (L1S) - RO. Default = 0. This field is used by software to determine whether an L1-
based suspend request (LPM transaction) was successful, specifically:

 Value Meaning

 0 Invalid - This field shall be ignored by software

 1 Success - Port successfully transitioned to L1 (ACK)

 2 Not Yet - Device is unable to enter L1 at this time (NYET)

 3 Not Supported - Device does not support L1 transitions (STALL)

 4 Timeout/Error - Device failed to respond to the LPM Transaction or an error occurred

 5-7 Reserved

The value of this field is only valid when the port resides in the L0 or L1 state (PLS = ‘0’ or ‘2’).
Refer to section 4.23.5.1.1 for more information.

3 Remote Wake Enable (RWE) - RW. Default = ‘0’. System software sets this flag to enable or
disable the device for remote wake from L1. The value of this flag shall temporarily (while in L1)

override the current setting of the Remote Wake feature set by the standard Set/ClearFeature()
commands defined in Universal Serial Bus Specification, revision 2.0, Chapter 9.

402

7:4 Best Effort Service Latency (BESL) - RW. Default = ‘0’. System software sets this field to indicate

to the recipient device how long the xHC will drive resume if it (the xHC) initiates an exit from L1.
The BESL value encoding is defined in Table 13.

Note that the BESL field is used by both software and hardware controlled LPM. Refer to section

4.23.5.1.1 for more information on BESL use. Refer to section 5.2.5 for information on how
DBESL may be used to establish an initial value for BESL.

15:8 L1 Device Slot - RW. Default = ‘0’. System software sets this field to indicate the ID of the Device
Slot associated with the device directly attached to the Root Hub port. A value of ‘0’ indicates no
device is present. The xHC uses this field to lookup information necessary to generate the LPM

Token packet.

16 Hardware LPM Enable (HLE) - RW. Default = ‘0’. If this bit is set to ‘1’, then hardware controlled
LPM shall be enabled for this port. Refer to section 4.23.5.1.1.1.

If the USB2 Hardware LPM Capability is not supported (HLC = ‘0’) this field shall be RsvdZ.

Note the BESL LMP Capability support (i.e. HLE = ‘1’ and BLC = ‘1’) shall be mandatory for all
xHCI 1.1 compliant xHCs.

27:17 RsvdP.

31:28 Port Test Control (Test Mode) – RW. Default = ‘0’. When this field is ‘0’, the port is NOT
operating in a test mode. A non-zero value indicates that it is operating in test mode and the
specific test mode is indicated by the specific value.

A non-zero Port Test Control value is only valid to a port that is in the Powered-Off state (PLS =
Disabled). If the port is not in this state, the xHC shall respond with the Port Test Control field set
to Port Test Control Error. Refer to section 4.19.6 for the operational model for using these test

modes.

The encoding of the Test Mode bits for a USB2 protocol port are:

 Value Test Mode

 0 Test mode not enabled

 1 Test J_STATE

 2 Test K_STATE

 3 Test SE0_NAK

 4 Test Packet

 5 Test FORCE_ENABLE

 6-14 Reserved.

 15 Port Test Control Error.

Refer to the sections 7.1.20 and 11.24.2.13 of the USB2 spec for more information on Test

Modes.

Note: All fields in this register apply only to the device attached to and immediately

downstream of the associated Root Hub port. It is the responsibility of system

software to ensure the L1 Device Slot field is consistent with the selected port.

Note: L0 and L1 refer to the USB 2.0 “Line” states referred to in the USB2 LPM ECR.

These “Line” states map to the xHCI Port Link States (PLS) U0 and U2,

respectively.

 403

Note: Due to similar exit latencies (~1ms.), the USB 2.0 L1 state is mapped to the USB3

U2 state.

Note: The L1 Device Slot field provides the device address for generating USB2 LPM

transactions to the device attached to the Root Hub port.

5.4.10 Port Link Info Register (PORTLI)

Address: Operational Base + (408h + (10h * (n-1)))

 where: n = Port Number (Valid values are 1, 2, 3, … MaxPorts)

Default: 0000 0000h

Attribute: RO

Size 32 bits

The definition of the fields in the PORTLI register depend on the USB protocol

supported by the port.

5.4.10.1 USB3 Protocol PORTLI Definition

The USB3 Port Link Info register reports the Link Error Count.

Refer to the section 10.14.2.5 of the USB3 spec for more information on Link

error count reporting.

Figure 5-22: USB3 Port Link Info Register (PORTLI)

RLCTLC

31 16 15 0

RsvdP Link Error Count

24 20 1923

Table 5-30: USB3 Port Link Info Register Bit Definitions (PORTLI)

Bit Description

15:0 Link Error Count – RO. Default = ‘0’. This field returns the number of link errors detected by the

port. This value shall be reset to ‘0’ by the assertion of a Chip Hardware Reset, HCRST, when PR
transitions from ‘1’ to ‘0’, or when CCS = transitions from ‘0’ to ‘1’.

19:16 Rx Lane Count (RLC) - RO. Default = '0'. This field that identifies the number of Receive Lanes
negotiated by the port. This is a "zero-based" value, where 0 to 15 represents Lane Counts of 1

to 16, respectively. This value is valid only when CCS = '1'. RLC shall equal '0' for a simplex
Sublink. Refer to section 7.2.1 for more information.

23:20 Tx Lane Count (TLC) - RO. Default = '0'. This field that identifies the number of Transmit Lanes
negotiated by the port. This is a "zero-based" value, where 0 to 15 represents Lane Counts of 1

to 16, respectively. This value is valid only when CCS = '1'. TLC shall equal '0' for a simplex
Sublink. Refer to section 7.2.1 for more information.

404

31:24 RsvdP.

5.4.10.2 USB2 Protocol PORTLI Definition

The USB2 Port Link Info register is reserved and shall be treated as RsvdP by

software.

5.4.11 Port Hardware LPM Control Register (PORTHLPMC)

Address: Operational Base + (40Ch + (10h * (n-1)))

 where: n = Port Number (Valid values are 1, 2, 3, … MaxPorts)

Default: 0000 0000h

Attribute: RWS

Size 32 bits

The definition of the fields in the PORTHLPMC register depend on the USB

protocol supported by the port.

This register is in the Aux Power well. It is only reset by platform hardware

during a cold reset or in response to a Host Controller Reset (HCRST).

5.4.11.1 USB3 Protocol PORTHLPMC Definition

The USB3 Port Hardware LPM Control register is reserved and shall be treated as

RsvdP by software.

5.4.11.2 USB2 Protocol PORTHLPMC Definition

The optional normative USB2 Port Hardware LPM Control register provides the

USB2 LPM parameters necessary for the xHC to automatically generate a LPM

Token to the downstream device. If LPM is not supported (HLC = '0') then this

register is reserved. Refer to section 4.23.5.1.1.1 for more information.

Figure 5-23: USB2 Port Hardware LPM Control Register (PORTHLPMC)

RsvdP BESLD L1 Timeout HIRDM

31 14 13 10 9 2 1 0

 405

Table 5-31: USB2 Port Hardware LPM Control Register Bit Definitions (PORTHLPMC)

Bit Description

1:0 Host Initiated Resume Duration Mode (HIRDM) - RWS. Default = 0h. Indicates which HIRD value
should be used. The following are permissible values:

 Value Description

 0 Initiate L1 using BESL only on timeout. (default)

 1 Initiate L1 using BESLD on timeout. If rejected by device, initiate L1 using BESL.

 3-2 Reserved.

9:2 L1 Timeout – RWS. Default = 00h. Timeout value for the L1 inactivity timer (LPM Timer). This
field shall be set to 00h by the assertion of PR to ‘1’. Refer to section 4.23.5.1.1.1 for more
information on L1 Timeout operation. The following are permissible values:

 Value Description

 00h 128 µs. (default)

 01h 256 µs.

 02h 512 µs.

 03h 768 µs.

 …

 FFh 65,280 µs.

13:10 Best Effort Service Latency Deep (BESLD) - RWS. Default = ‘0’. System software sets this field

to indicate to the recipient device how long the xHC will drive resume on an exit from U2. Refer
to section 4.23.5.1.1.1 for more information on BESLD use. The BESLD value encoding is defined
in Table 13. Refer to section 5.2.6 for information on how DBESLD may be used to establish an

initial value for BESLD.

31:14 RsvdP.

Refer to Table 4-11 for the mapping of USB2 L-states to U-states.

5.5 Host Controller Runtime Registers

This section defines the xHCI Runtime Register space. The base address of this

register space is referred to as Runtime Base. The Runtime Base shall be 32-

byte aligned and is calculated by adding the value Runtime Register Space Offset

register (refer to Section 5.3.8) to the Capability Base address. All Runtime

registers are multiples of 32 bits in length.

Unless otherwise stated, all registers should be accessed with Dword references

on reads, with an appropriate software mask if needed. A software

read/modify/write mechanism should be invoked for partial writes.

406

Software should write registers containing a Qword address field using only

Qword references. If a system is incapable of issuing Qword references, then

writes to the Qword address fields shall be performed using 2 Dword references;

low Dword-first, high-Dword second.

Table 5-32: Host Controller Runtime Registers

Offset Mnemonic Register Name

0000h MFINDEX Microframe Index

001Fh:0004h RsvdZ

0020h IR0 Interrupter Register Set 0

… … …

8000h IR1023 Interrupter Register Set 1023

The Offset referenced in Table 5-32 is the offset from the beginning of the

Runtime Register space.

5.5.1 Microframe Index Register (MFINDEX)

Address: Runtime Base

Default Value: 0000 0000h

Attribute: RO

Size: 32 bits

This register is used by the system software to determine the current periodic

frame. The register value is incremented every 125 microseconds (once each

microframe).

This register is only incremented while Run/Stop (R/S) = ‘1’.

The value of this register affects the SOF value generated by USB2 Bus

Instances. Refer to section 4.14.2 for details. Also see Figure 4-21.

Figure 5-24: Microframe Index Register (MFINDEX)

RsvdP Microframe Index

31 014 13

 407

Table 5-33: Microframe Index Register Bit Definitions (MFINDEX)

Bit Description

13:0 Microframe Index – RO. The value in this register increments at the end of each microframe (e.g.
125us.). Bits [13:3] may be used to determine the current 1ms. Frame Index.

31:14 RsvdZ.

5.5.2 Interrupter Register Set

The Interrupter logic consists of an Interrupter Management Register, an

Interrupter Moderation Register, and the Event Ring Registers. A one to one

mapping is defined for Interrupter to MSI-X vector. Up to 1024 Interrupters are

supported.

Figure 5-25: Interrupter Register Set

Event Ring Dequeue Pointer Lo DESIEHB

RsvdP Event Ring Segment Table Size

RsvdP

RsvdP IPIE 03-00H

07-04H

Event Ring Segment Table Base Address Lo

Event Ring Segment Table Base Address Hi

0B-08H

0F-0CH

31 16 15 3 2 1 0

Interrupter Moderation Counter Interrupter Moderation Interval

RsvdP

Event Ring Dequeue Pointer Hi

13-10H

17-14H

1B-18H

1F-1CH

456

Refer to section 4.9.4.3 for a discussion of Primary and Secondary Interrupters

and Event Rings.

Note: All registers of the Primary Interrupter shall be initialized before setting the

Run/Stop (RS) flag in the USBCMD register to ‘1’. Secondary Interrupters may be

initialized after RS = ‘1’, however all Secondary Interrupter registers shall be

initialized before an event that targets them is generated. Not following these

rules, shall result in undefined xHC behavior.

Table 5-34: Interrupter Registers

Offset Size (bits) Mnemonic Register Name Section

00h 32 IMAN Interrupter Management 5.5.2.1

04h 32 IMOD Interrupter Moderation 5.5.2.2

08h 32 ERSTSZ Event Ring Segment Table Size 5.5.2.3.1

408

0Ch 32 RsvdP

10h 64 ERSTBA Event Ring Segment Table Base Address 5.5.2.3.2

18h 64 ERDP Event Ring Dequeue Pointer 5.5.2.3.3

5.5.2.1 Interrupter Management Register (IMAN)

Address: Runtime Base + 020h + (32 * Interrupter)

where: Interrupter is 0, 1, 2, 3, … 1023

Default Value: 0000 0000h

Attribute: RW

Size: 32 bits

The Interrupter Management register allows system software to enable, disable,

and detect xHC interrupts.

Table 5-35: Interrupter Management Register Bit Definitions (IMAN)

Bit Description

0 Interrupt Pending (IP) - RW1C. Default = ‘0’. This flag represents the current state of the

Interrupter. If IP = ‘1’, an interrupt is pending for this Interrupter. A ‘0’ value indicates that no
interrupt is pending for the Interrupter. Refer to section 4.17.3 for the conditions that modify the
state of this flag.

1 Interrupt Enable (IE) – RW. Default = ‘0’. This flag specifies whether the Interrupter is capable of

generating an interrupt. When this bit and the IP bit are set (‘1’), the Interrupter shall generate an
interrupt when the Interrupter Moderation Counter reaches ‘0’. If this bit is ‘0’, then the
Interrupter is prohibited from generating interrupts.

31:2 RsvdP.

Note: In systems that do not support MSI or MSI-X, the IP bit may be cleared by writing

a ‘1’ to it. Most systems have write buffers that minimize overhead, but this may

require a read operation to guarantee that the write has been flushed from

posted buffers.

Refer to section 4.17.2 for more information.

5.5.2.2 Interrupter Moderation Register (IMOD)

Address: Runtime Base + 024h + (32 * Interrupter)

where: Interrupter is 0, 1, 2, 3, … 1023

 409

Default Value: Field dependent

Attribute: RW

Size: 32 bits

The Interrupter Moderation Register controls the “interrupt moderation” feature

of an Interrupter, allowing system software to throttle the interrupt rate

generated by the xHC.

Table 5-36: Interrupter Moderation Register (IMOD)

Bit Description

15:0 Interrupt Moderation Interval (IMODI) – RW. Default = ‘4000’ (~1ms). Minimum inter-interrupt
interval. The interval is specified in 250ns increments. A value of ‘0’ disables interrupt throttling

logic and interrupts shall be generated immediately if IP = ‘0’, EHB = ‘0’, and the Event Ring is
not empty.

31:16 Interrupt Moderation Counter (IMODC) – RW. Default = undefined. Down counter. Loaded with
the IMODI value whenever IP is cleared to ‘0’, counts down to ‘0’, and stops. The associated

interrupt shall be signaled whenever this counter is ‘0’, the Event Ring is not empty, the IE and IP
flags = ‘1’, and EHB = ‘0’.

This counter may be directly written by software at any time to alter the interrupt rate.

Software may use this register to pace (or even out) the delivery of interrupts to

the host CPU. This register provides a guaranteed inter-interrupt delay between

interrupts asserted by the xHC, regardless of USB traffic conditions. To

independently validate configuration settings, software may use the following

algorithm to convert the inter-interrupt Interval value to the common

'interrupts/sec' performance metric:

interrupts/sec = 1/(250×10-9sec × Interval)

For example, if the interval is programmed to 500, the xHC guarantees the CPU

will not be interrupted by it for 125 microseconds from the last interrupt. The

maximum observable interrupt rate from the xHC should never exceed 8000

interrupts/sec.

Inversely, inter-interrupt interval value can be calculated as:

inter-interrupt interval = (250×10-9sec × interrupts/sec) -1

The optimal performance setting for this register is very system and

configuration specific.

Refer to section 4.17.2 for more information.

410

5.5.2.3 Event Ring Registers

Refer to section 4.9.4 for more information in Event Ring management. Refer to

section 6.5 for more information on the Event Ring Segment Table and its

entries.

5.5.2.3.1 Event Ring Segment Table Size Register (ERSTSZ)

Address: Runtime Base + 028h + (32 * Interrupter)

where: Interrupter is 0, 1, 2, 3, … 1023

Default Value: 0000 0000h

Attribute: RW

Size: 32 bits

The Event Ring Segment Table Size Register defines the number of segments

supported by the Event Ring Segment Table.

Table 5-37: Event Ring Segment Table Size Register Bit Definitions (ERSTS

Bit Description

15:0 Event Ring Segment Table Size – RW. Default = ‘0’. This field identifies the number of valid

Event Ring Segment Table entries in the Event Ring Segment Table pointed to by the Event Ring
Segment Table Base Address register. The maximum value supported by an xHC
implementation for this register is defined by the ERST Max field in the HCSPARAMS2 register

(5.3.4).

For Secondary Interrupters: Writing a value of ‘0’ to this field disables the Event Ring. Any events
targeted at this Event Ring when it is disabled shall result in undefined behavior of the Event

Ring.

For the Primary Interrupter: Writing a value of ‘0’ to this field shall result in undefined behavior
of the Event Ring. The Primary Event Ring cannot be disabled.

31:16 RsvdP.

Note: The Event Ring Segment Table Size may be set to any value up to ERST Max,

however software shall allocate a buffer for the Event Ring Segment Table that

rounds up its size to the nearest 64B boundary to allow full cache-line accesses.

5.5.2.3.2 Event Ring Segment Table Base Address Register (ERSTBA)

Address: Runtime Base + 030h + (32 * Interrupter)

where: Interrupter is 0, 1, 2, 3, … 1023

Default Value: 0000 0000 0000 0000h

Attribute: RW

Size: 64 bits

 411

The Event Ring Segment Table Base Address Register identifies the start address

of the Event Ring Segment Table (ERST). Refer to section 6.5 for the definition of

an ERST entry.

Table 5-38: Event Ring Segment Table Base Address Register Bit Definitions (ERSTBA)

Bit Description

5:0 RsvdP.

63:6 Event Ring Segment Table Base Address Register – RW. Default = ‘0’. This field defines the high

order bits of the start address of the Event Ring Segment Table.

Writing this register sets the Event Ring State Machine:EREP Advancement to the Start state.
Refer to Figure 4-12 for more information.

For Secondary Interrupters: This field may be modified at any time.

For the Primary Interrupter: This field shall not be modified if HCHalted (HCH) = ‘0’.

Note: Refer to section 5.1for register 64-bit address write conventions.

5.5.2.3.3 Event Ring Dequeue Pointer Register (ERDP)

Address: Runtime Base + 038h + (32 * Interrupter)

where: Interrupter is 0, 1, 2, 3, … 1023

Default Value: 0000 0000 0000 0000h

Attribute: RW

Size: 64 bits

The Event Ring Dequeue Pointer Register is written by software to define the

Event Ring Dequeue Pointer location to the xHC. Software updates this pointer

when it is finished the evaluation of an Event(s) on the Event Ring.

Table 5-39: Event Ring Dequeue Pointer Register Bit Definitions (ERDP)

Bit Description

2:0 Dequeue ERST Segment Index (DESI) – RW. Default = ‘0’. This field may be used by the xHC to
accelerate checking the Event Ring full condition. This field is written with the low order 3 bits of

the offset of the ERST entry which defines the Event Ring segment that the Event Ring Dequeue
Pointer resides in. Refer to section 6.5 for the definition of an ERST entry.

3 Event Handler Busy (EHB) - RW1C. Default = ‘0’. This flag shall be set to ‘1’ when the IP bit is set
to ‘1’ and cleared to ‘0’ by software when the Dequeue Pointer register is written. Refer to section

4.17.2 for more information.

5:4 RsvdP

412

63:6 Event Ring Dequeue Pointer - RW. Default = ‘0’. This field defines the high order bits of the 64-

bit address of the current Event Ring Dequeue Pointer.

Dequeue ERST Segment Index (DESI) usage:

When software finishes processing an Event TRB, it will write the address of that

Event TRB to the ERDP. Before enqueuing an Event, the xHC shall check that

space is available on the Event Ring. This check can be skipped if the xHC is

currently enqueuing Event TRBs in a different ERST segment than the one that

software is using to dequeue Events.

To enable this optimization, software provides a hint to the xHC by writing the

Dequeue ERST Segment Index (DESI) with the low order bits of the index of the

segment that the ERDP resides in when it writes the ERDP. The xHC may

compare this value with the ERST Segment Index of the Enqueue Pointer to

determine whether it should check for an Event Ring Full condition.

E.g. Consider an ERST that defines multiple segments (ERSTSZ > 1), and

software is dequeuing an Event TRB in the 1st segment of the ERST. In this case,

the Dequeue ERST Segment Index (DESI) field shall be written with the value of

‘0’ (i.e. the index of the associated Event Ring Segment Table Entry data

structure). If the Dequeue Pointer references an Event TRB in the 2nd segment,

then the Dequeue ERST Segment Index (DESI) field shall be written with the

value of ‘1’, and so on.

Note: If the ERSTSZ is > 8, then the Dequeue ERST Segment Index (DESI) shall provide

an alias of the actual ERST Segment that was written. e.g ERST Segment

Index(2:0).

Note: Software shall not write ERDP consecutively with the same value unless it is a

FULL to EMPTY advancement of the Event Ring.

5.6 Doorbell Registers

The Doorbell Array is organized as an array of up to 256 Doorbell Registers. One

32-bit Doorbell Register is defined in the array for each Device Slot. System

software utilizes the Doorbell Register to notify the xHC that it has Device Slot

related work for the xHC to perform.

The number of Doorbell Registers implemented by a particular instantiation of a

host controller is documented in the Number of Device Slots (MaxSlots) field of

the HCSPARAMS1 register (section 5.3.3).

 413

These registers are pointed to by the Doorbell Offset Register (DBOFF) in the

xHC Capability register space. The Doorbell Array base address shall be Dword

aligned and is calculated by adding the value in the DBOFF register (section

5.3.7) to “Base” (the base address of the xHCI Capability register address space).

 Refer to section 4.7 for more information on Doorbell registers.

Figure 5-26: Doorbell Register

RsvdZ

31 8 7 0

DB Task ID DB Target

16 15

All registers are 32 bits in length. Software should read and write these registers

using only Dword accesses.

Note: Software shall not write the Doorbell of an endpoint until after it has issued a

Configure Endpoint Command for the endpoint and received a successful

Command Completion Event.

Table 5-40: Doorbell Register Bit Field Definitions (DB)

Bit Description

7:0 DB Target – RW. Doorbell Target. This field defines the target of the doorbell reference. The
table below defines the xHC notification that is generated by ringing the doorbell. Note that
Doorbell Register 0 is dedicated to Command Ring and decodes this field differently than the

other Doorbell Registers.

Device Context Doorbells (1-255)

 Value Definition

 0 Reserved

 1 Control EP 0 Enqueue Pointer Update

 2 EP 1 OUT Enqueue Pointer Update

 3 EP 1 IN Enqueue Pointer Update

 4 EP 2 OUT Enqueue Pointer Update

 5 EP 2 IN Enqueue Pointer Update

 … ...

 30 EP 15 OUT Enqueue Pointer Update

 31 EP 15 IN Enqueue Pointer Update

 32:247 Reserved

 248:255 Vendor Defined

Host Controller Doorbell (0)

 Value Definition

 0 Command Doorbell

 1:247 Reserved

 248:255 Vendor Defined

This field returns ‘0’ when read and should be treated as “undefined” by software.

414

When the Command Doorbell is written, the DB Stream ID field shall be cleared to ‘0’.

15:8 RsvdZ.

31:16 DB Stream ID - RW. Doorbell Stream ID. If the endpoint of a Device Context Doorbell defines

Streams, then this field shall be used to identify which Stream of the endpoint the doorbell
reference is targeting. System software is responsible for ensuring that the value written to this
field is valid.

If the endpoint defines Streams (MaxPStreams > 0), then 0, 65535 (No Stream) and 65534
(Prime) are reserved Stream ID values and shall not be written to this field.

If the endpoint does not define Streams (MaxPStreams = 0) and a non-'0' value is written to this

field, the doorbell reference shall be ignored.

This field only applies to Device Context Doorbells and shall be cleared to ‘0’ for Host Controller
Command Doorbells.

This field returns ‘0’ when read.

Note: If virtualization is supported, an xHC implementation shall ensure that an invalid

values do not affect another function (PF0 of VFx).

 415

416

6 Data Structures

This section defines the interface data structures used to communicate control,

status and data between HCD (software) and the eXtensible Host Controller

(hardware). The data structure definitions in this chapter support a 32-bit or 64-

bit memory buffer address space. The interface consists of Transfer Request

Buffers (TRBs) that are managed in TRB Rings.

All transfer types (Isoch, Interrupt, Control, and Bulk) utilize the same basic TRB

structure. TRBs also support Scatter/Gather operations for Data Page

concatenation in systems that employ Virtual Memory.

TRBs are optimized to reduce the total memory footprint of the schedule and to

reduce (on average) the number of memory accesses needed to execute a USB

transaction.

Table 6-1 identifies the Max Size and alignment requirements of the various

xHCI data structures. Note that software shall ensure that no interface data

structure with a Max Size less than or equal to 64KB spans a 64KB boundary,

and that no interface data structure with a Max Size less than or equal to

PAGESIZE spans a PAGESIZE boundary.

The data structures defined in this chapter are (from the host controller’s

perspective) a mix of read-only and read/writable fields. Software shall preserve

the read-only fields on all data structure writes.

Note: Refer to notes at the end of section 5.1.1 for a description of the Reserved field

(RsvdZ, RsvdO, etc.) use in data structures.

Note: Whenever possible, software should read and write xHCI data structures as

“cache line” operations.

All multi-byte data structure fields follow little-endian ordering; i.e. lower

addresses contain the least significant parts of the field. Bytes/characters within

a field shall be in little-endian order, i.e. first char of string in least significant

byte, second char next significant byte, etc.

 417

Table 6-1: Data Structure Max Size, Boundary, and Alignment Requirement Summary

Data Structure Max Size in
Bytes

Boundary
Requirement103

Alignment in
Bytes

Section

Device Context Base
Address Array

2048 PAGESIZE 64 6.1

Device Context 2048 PAGESIZE 64 6.2.1

Input Control Context 64 PAGESIZE 64 6.2.5.1

Slot Context 64 PAGESIZE 32 6.2.2

Endpoint Context 64 PAGESIZE 32 6.2.3

Stream Context 16 PAGESIZE 16 6.2.4.1

Stream Array (Linear) 1M None 16 6.2.4

Stream Array (Pri/Sec) 4K104 PAGESIZE 16 6.2.4

Transfer Ring segments 64K 64KB 16 4.9.2

Command Ring segments 64K 64KB 64 4.9.3

Event Ring segments 64K 64KB 64 4.9.4

Event Ring Segment Table 512K None 64 6.5

Scratchpad Buffer Array 248 PAGESIZE 64 6.6

Scratchpad Buffers PAGESIZE PAGESIZE Page 4.20

103Boundary which data structure shall not span.

104Using the Primary/Secondary Stream Array mechanism described in section 4.12.2, Stream Arrays may be
limited to 4KB while allowing access to approximately 64K stream IDs.

418

6.1 Device Context Base Address Array

The Device Context Base Address Array (DCBAA) data structure is used to

associate an xHCI Device Slot with its respective Device Context data structure.

The Device Context Base Address Array entry associated with each allocated

Device Slot shall contain a 64-bit pointer to the base of the associated Device

Context. Refer to section 3.2.1 for more information.

System software initializes the Device Context Base Address Array to ‘0’, and

updates individual entries when the respective Device Slot is allocated. The xHC

reads an entry in the Device Context after a doorbell associated with the entries’

Device Slot is rung.

The Device Context Base Address Array shall be indexed by the Device Slot ID.

The Device Context Base Address Array shall be aligned to a 64 byte boundary.

The Device Context Base Address Array shall be physically contiguous within a

page.

The Device Context Base Address Array shall contain MaxSlotsEn + 1 entries. The

maximum size of the Device Context Base Address Array is 256 64-bit entries, or

2K Bytes.

Software shall set Device Context Base Address Array entries for unallocated

Device Slots to ‘0’.

Software shall set Device Context Base Address Array entries for allocated

Device Slots to point to the Device Context data structure associated with the

device.

System software shall not modify a Device Context Base Address Array entry

while the respective Device Slot is enabled.

The address of the Device Context Base Address Array shall be written to the

Device Context Base Address Array Pointer Register (DCBAAP, refer to section

5.4.6) before the xHC is placed into “run” mode (R/S = ‘1’).

The Device Context Base Address Array data structure is also used to reference

the Scratchpad Buffer Array data structure. Refer to section 4.20 for more

information on Scratchpad Buffer allocation.

If the Max Scratchpad Buffers field of the HCSPARAMS2 register is > ‘0’, then the

first entry (entry_0) in the DCBAA shall contain a pointer to the Scratchpad

Buffer Array. If the Max Scratchpad Buffers field of the HCSPARAMS2 register is

= ‘0’, then the first entry (entry_0) in the DCBAA is reserved and shall be cleared

to ‘0’ by software.

 419

Individual elements of the Device Context Base Address Array are defined in

Table 6-2 and Table 6-3.

Table 6-2: Device Context Base Address Array Element 1-n Field Bit Definitions

Bit Description

5:0 RsvdZ.

63:6 Device Context Base Address – RW. Default = ‘0’. This field contains a pointer to a Device
Context data structure. Device Context data structure is aligned on a 64 byte boundary; hence the

low order 6 bits are reserved and always cleared to ‘0’ when initialized by software.

Table 6-3: Device Context Base Address Array Element 0 Field Bit Definitions

Bit Description

5:0 RsvdZ.

63:6 Scratchpad Buffer Array Base Address – RW. Default = ‘0’. This field contains the high order bits

of a 64-bit pointer to a Scratchpad Buffer Array data structure. Scratchpad Buffers are aligned on
a Page Size boundary; hence the low order bits are reserved and always cleared to ‘0’ when
initialized by software. The number of low order bits cleared to ‘0’ depend on the value of the

Page Size register.

Note: The xHCI shall not access the Device Context Base Address Array entry associated

with a Device Slot that is in the Enabled state prior to receiving the first Address

Device Command for the slot, or a Device Slot that is in the Disabled state.

6.2 Contexts

xHC Contexts are data structures that act as containers for state information. In

some cases a Context may contain other Contexts.

Note: Software shall not modify Contexts “owned” by the xHC unless specifically

stated.

6.2.1 Device Context

The Device Context data structure consists of up to 32 entries. The first entry

(entry_0) is the Slot Context data structure and the remaining entries are

Endpoint Context data structures. The Context Entries field in the Slot Context

identifies the number of entries in the Device Context . Refer to section Slot for

420

the definition of the Slot Context data structure. Refer to section Endpoint

Context for the definition of the Endpoint Context data structure.

Figure 6-1: Device Context Data Structure

Slot Context

EP Context 0 BiDir

Direction = N/A

EP Context 1 OUT

Direction = 0

EP Context 1 IN

Direction = 1

...

EP Context 15 OUT

Direction = 0

 EP Context 15 IN

Direction = 1

0

1

...

Device Context Index (DCI)

2

3

30

31

400h

3E0h

3C0h

...

080h

060h

Offset

000h

020h

040h

The Device Context data structure is used in the xHCI architecture as Output by

the xHC to report device configuration and state information to system software.

The Device Context data structure is pointed to by an entry in the Device

Context Base Address Array (refer to section 6.1).

The Device Context Index (DCI) is used to reference the respective element of

the Device Context data structure.

All unused entries of the Device Context shall be initialized to ‘0’ by software.

Note: Figure 6-1 illustrates offsets with 32 byte Device Context data structures. i.e. the

Context Size (CSZ) field in the HCCPARAMS1 register = '0'. If the Context Size

(CSZ) field = '1' then the Device Context data structures consume 64 bytes each.

The offsets shall be 040h for the EP Context 0, 080h for EP Context 1, and so on.

Note: Ownership of the Output Device Context data structure is passed to the xHC

when software rings the Command Ring doorbell for the first Address Device

Command issued to a Device Slot after an Enable Slot Command, i.e. the first

transition of the Slot from the Enabled to the Default or Addressed state.

Software shall initialize the Output Device Context to 0 prior to the execution of

the first Address Device Command.

Ownership of the Device Context data structure is passed back to software

when the Device Slot transitions to the Disabled state.

 421

Software shall not write the Device Context data structure while the xHC has

ownership of it. This means that software shall not attempt to allocate an Input

Context data structure that overlaps or overlays an Output Device Context that

is owned by the xHC.

6.2.2 Slot Context

The Slot Context data structure defines information that applies to a device as a

whole.

Note: Unless otherwise stated: As Input, all fields of the Slot Context shall be initialized

to the appropriate value by software before issuing a command. As Output, the

xHC shall update each field to reflect the current value that it is using.

Refer to section 4.5.2 for more information on Slot Context initialization.

Figure 6-2: Slot Context Data Structure

Interrupter Target

MTTContext Entries
Rsvd

Z

xHCI Reserved (RsvdO) 17-14H

xHCI Reserved (RsvdO)

xHCI Reserved (RsvdO)

1F-1CH

1B-18H

Slot State RsvdZ USB Device Address 0F-0CH

 TT Port Number TT Hub Slot IDRsvdZ 0B-08H

Root Hub Port NumberNumber of Ports Max Exit Latency 07-04H

SpeedHub Route String 03-00H

xHCI Reserved (RsvdO) 13-10H

31 27 26 25 24 23 22 21 20 19 16 15 8 7 0

TTT

18 17

Table 6-4: Offset 00h – Slot Context Field Definitions

Bits Description

19:0 Route String. This field is used by hubs to route packets to the correct downstream port. The

format of the Route String is defined in section 8.9 the USB3 specification.

As Input, this field shall be set for all USB devices, irrespective of their speed, to indicate their
location in the USB topology105.

23:20 Speed. This field indicates the speed of the device. Refer to the PORTSC Port Speed field in
Table 5-26 for the definition of the valid values.

24 RsvdZ.

105If HS or FS hub in the path supports more than 14 ports the associated Route String Port field shall be set to 15.

422

25 Multi-TT (MTT)106. This flag is set to '1' by software if this is a High-speed hub (Speed = ‘3’ and

Hub = ‘1’) that supports Multiple TTs and the Multiple TT Interface has been enabled by
software, or if this is a Low-/Full-speed device (Speed = ‘1’ or ‘2’, and Hub = ‘0’) and connected
to the xHC through a parent107 High-speed hub that supports Multiple TTs and the Multiple TT

Interface of the parent hub has been enabled by software, or ‘0’ if not.

26 Hub. This flag is set to '1' by software if this device is a USB hub, or '0' if it is a USB function.

31:27 Context Entries. This field identifies the index of the last valid Endpoint Context within this
Device Context structure. The value of ‘0’ is Reserved and is not a valid entry for this field. Valid

entries for this field shall be in the range of 1-31. This field indicates the size of the Device
Context structure. For example, ((Context Entries+1) * 32 bytes) = Total bytes for this structure.

Note, Output Context Entries values are written by the xHC, and Input Context Entries values are

written by software.

Table 6-5: Offset 04h – Slot Context Field Definitions

Bits Description

15:0 Max Exit Latency. The Maximum Exit Latency is in microseconds, and indicates the worst case
time it takes to wake up all the links in the path to the device, given the current USB link level

power management settings.

Refer to section 4.23.5.2 for more information on the use of this field.

23:16 Root Hub Port Number. This field identifies the Root Hub Port Number used to access the USB

device. Refer to section 4.19.7 for port numbering information.

Note: Ports are numbered from 1 to MaxPorts.

31:24 Number of Ports. If this device is a hub (Hub = ‘1’), then this field is set by software to identify
the number of downstream facing ports supported by the hub. Refer to the bNbrPorts field

description in the Hub Descriptor (Table 11-13) of the USB2 spec. If this device is not a hub (Hub
= ‘0’), then this field shall be ‘0’.

106Software shall issue a Set Interface request to select the Multi-TT Interface of the hub prior to issuing any

transactions to devices attached to the hub.

107A “parent High-speed hub” is the hub whose downstream facing port isolates the High-speed signaling
environment from the Low-/Full-speed signaling environment for a device.

 423

Table 6-6: Offset 08h – Slot Context Field Definitions

Bits Description

7:0 TT Hub Slot ID. If this device is Low-/Full-speed and connected through a High-speed hub, then
this field shall contain the Slot ID of the parent High-speed hub108. If this device is attached to a

Root Hub port or it is not Low-/Full-speed then this field shall be '0'.

15:8 TT Port Number. If this device is Low-/Full-speed and connected through a High-speed hub,
then this field contains the number of the downstream facing port of the parent High-speed108
hub. If this device is attached to a Root Hub port or it is not Low-/Full-speed then this field shall

be '0'.

17:16 TT Think Time (TTT). If this is a High-speed hub (Hub = ‘1’ and Speed = High-Speed), then this
field shall be set by software to identify the time the TT of the hub requires to proceed to the

next full-/low-speed transaction.

 Value Think Time

 0 TT requires at most 8 FS bit times of inter-transaction gap on a full-/low-speed

downstream bus.

 1 TT requires at most 16 FS bit times.

 2 TT requires at most 24 FS bit times.

 3 TT requires at most 32 FS bit times.

Refer to the TT Think Time sub-field of the wHubCharacteristics field description in the Hub
Descriptor (Table 11-13) and section 11.18.2 of the USB2 spec for more information on TT

Think Time. If this device is not a High-speed hub (Hub = ‘0’ or Speed != High-speed), then this
field shall be ‘0’.

21:18 RsvdZ.

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive Bandwidth

Request Events and Device Notification Events generated by this slot, or when a Ring Underrun
or Ring Overrun condition is reported (refer to section 4.10.3.1). Valid values are between 0 and
MaxIntrs-1.

108A “parent High-speed hub” is the hub whose downstream facing port isolates the High-speed signaling

environment from the Low-/Full-speed signaling environment for a device.

424

Table 6-7: Offset 0Ch – Slot Context Field Definitions

Bits Description

7:0 USB Device Address. This field identifies the address assigned to the USB device by the xHC,

and is set upon the successful completion of a Set Address Command. Refer to the USB2 spec
for a more detailed description.

As Output, this field is invalid if the Slot State = Disabled or Default.

As Input, software shall initialize the field to ‘0’.

26:8 RsvdZ.

31:27 Slot State. This field is updated by the xHC when a Device Slot transitions from one state to

another.

 Value Slot State

 0 Disabled/Enabled

 1 Default

 2 Addressed

 3 Configured

 31-4 Reserved

Slot States are defined in section 4.5.3.

As Output, since software initializes all fields of the Device Context data structure to ‘0’, this field

shall initially indicate the Disabled state.

As Input, software shall initialize the field to ‘0’.

Refer to section 4.5.3 for more information on Slot State.

Note: The remaining bytes (10-1Fh) within the Slot Context are dedicated for exclusive

use by the xHC and shall be treated by system software as Reserved and Opaque

(RsvdO).

Note: Figure 6-2 illustrates a 32 byte Slot Context. i.e. the Context Size (CSZ) field in

the HCCPARAMS1 register = ‘0’. If the Context Size (CSZ) field = ‘1’ then each Slot

Context data structure consumes 64 bytes, where bytes 32 to 63 are also xHCI

Reserved (RsvdO).

Note: The Speed, TT Hub Slot ID and TT Port Number are used to construct the Split

Transaction token to the parent hub’s Transaction Translator. Refer to section

4.3.7 for more information on these fields.

Note: Depending on the internal organization of an xHC implementation, the USB

Device Address may not be unique across all Slot Contexts, however the USB

Device Address/Root Hub Port Number combination shall be.

Note: The value of Max Exit Latency shall depend on the link states that software has

allowed the links in the path to go to. This value is used by the xHC for generating

PINGs for periodic endpoints. Its value does not need to be modified when the

device is placed on the U3 state because the expectation is that all periodic

 425

endpoints of the device are stopped before the device is placed in U3 state, e.g.

no Pings will be generated if the periodic Transfer Rings are empty.

6.2.2.1 Address Device Command Usage

The Input Slot Context is considered “valid” by the Address Device Command if:

1) the Route String field defines a valid route string, 2) the Speed field identifies

the speed of the device, 3) the Context Entries field is set to ‘1’ (i.e. Only the

Control Endpoint Context is valid), 4) the value of the Root Hub Port Number

field is between 1 and MaxPorts, 5) if the device is LS/FS and connected through

a HS hub, then the TT Hub Slot ID field references a Device Slot that is assigned

to the HS hub, the MTT field indicates whether the HS hub supports Multi-TTs,

and the TT Port Number field indicates the correct TT port number on the HS

hub, else these fields are cleared to ‘0’, 6) the Interrupter Target field set to a

valid value, and 7) all other fields are cleared to ‘0’.

Prior to the first command execution, a 'valid' Output Slot Context for the first

Address Device Command issued for a Device Slot requires that the value of the

Slot State field shall be equal to Disabled and all other Slot Context fields

should be cleared to ‘0’. Refer to section 4.6.5 for more information on valid Slot

Context field values.

Any Output Slot Context is 'valid' for subsequent Address Device Commands

because all fields of the Output Slot Context are overwritten by the xHC.

6.2.2.2 Configure Endpoint Command Usage

A 'valid' Input Slot Context for a Configure Endpoint Command requires the

Context Entries field to be initialized to the index of the last valid Endpoint

Context that is defined by the target configuration. The Hub field shall also be

initialized. If Hub = ‘1’ and Speed = High-Speed, then the TT Think Time (TTT)

and Multi-TT (MTT) fields shall be initialized. Refer to Table 6-4 and Table 6-5

for the specific initialization values of these fields. If Hub = ‘1’, then the Number

of Ports field shall be initialized, else Number of Ports = ‘0’. Refer to section 4.6.6

for more information on the Configure Endpoint Command .

Prior to command execution, a 'valid' Output Slot Context for a Configure

Endpoint Command requires the Slot State field to be in the Addressed or

Configured state. If the Slot State is not in the Addressed or Configured state a

Context State Error shall be generated. The Output Context Entries and Slot

State fields may be updated by the xHC due to a Configure Endpoint Command.

If the Input Hub field = ‘1’, then the Output Hub and Number of Ports field shall

be initialized. If Input Hub = ‘1’ and Speed = High-Speed, then the Output TT

Think Time (TTT) and Multi-TT (MTT) fields shall be initialized.

426

6.2.2.3 Evaluate Context Command Usage

A 'valid' Input Slot Context for an Evaluate Context Command requires the

Interrupter Target and Max Exit Latency fields to be initialized. Only these fields

shall be evaluated when the xHC receives an Evaluate Context Command that

flags the Slot Context (i.e. Add Context 0 flag set to ‘1’). Refer to section 4.6.7 for

more information on the Evaluate Context Command.

Prior to command execution, a 'valid' Output Slot Context for an Evaluate

Context Command requires the Slot State field to be in the Default, Addressed or

Configured state. If the Slot State is not in the Default, Addressed or Configured

state a Context State Error shall be generated. Only the Output Interrupter

Target and Max Exit Latency fields are updated by the Evaluate Context

Command.

6.2.2.4 Reset Device Command Usage

Upon the completion of Reset Device Command, the Output Slot Context Route

String and Root Hub Port Number fields shall contain the same values that they

contained prior to the execution of the Reset Device Command. The Context

Entries field shall be set to '1' (indicating that only the Default Control Endpoint

is operational). And the Slot State field shall be set to the Default state. All other

fields shall be cleared to '0'.

6.2.3 Endpoint Context

The Endpoint Context data structure defines information that applies to a

specific endpoint.

Note: Unless otherwise stated: As Input, all fields of the Endpoint Context shall be

initialized to the appropriate value by software before issuing a command. As

Output, the xHC shall update each field to reflect the current value that it is using.

Figure 6-3: Endpoint Context Data Structure

Average TRB Length

Max ESIT Payload Hi LSA Mult

Max ESIT Payload Lo

EP StateMaxPStreams

CErr

Interval

Max Packet Size EP Type

RsvdZ

31 16 15 8 7 6 5 4 3 2 1 0

Rsvd

Z
Max Burst Size

03-00H

07-04H

0B-08H

0F-0CH

17-14H

xHCI Reserved (RsvdO)

xHCI Reserved (RsvdO)

1F-1CH

13-10H

1B-18H

TR Dequeue Pointer Lo

TR Dequeue Pointer Hi

RsvdZ

xHCI Reserved (RsvdO)

Rsvd

Z

10 91424 23

DCS

HID

 427

Table 6-8: Offset 00h – Endpoint Context Field Definitions

Bits Description

2:0 Endpoint State (EP State). The Endpoint State identifies the current operational state of the
endpoint.

 Value Definition

 0 Disabled The endpoint is not operational

 1 Running The endpoint is operational, either waiting for a doorbell ring or processing

TDs.

 2 Halted The endpoint is halted due to a Halt condition detected on the USB. SW shall issue
Reset Endpoint Command to recover from the Halt condition and transition to the Stopped

state. SW may manipulate the Transfer Ring while in this state.

 3 Stopped The endpoint is not running due to a Stop Endpoint Command or recovering
from a Halt condition. SW may manipulate the Transfer Ring while in this state.

 4 Error The endpoint is not running due to a TRB Error. SW may manipulate the Transfer
Ring while in this state.

 5-7 Reserved

As Output, a Running to Halted transition is forced by the xHC if a STALL condition is detected
on the endpoint. A Running to Error transition is forced by the xHC if a TRB Error condition is
detected.

As Input, this field is initialized to ‘0’ by software.

Refer to section 4.8.3 for more information on Endpoint State.

7:3 RsvdZ.

9:8 Mult. If LEC = ‘0’, then this field indicates the maximum number of bursts within an Interval that

this endpoint supports, where the valid range of values is ‘0’ to ‘2’, where ‘0’ = 1 burst, ‘1’ = 2
bursts, etc.109 This field shall be ‘0’ for all endpoint types except for SS Isochronous.

If LEC = ‘1’, then this field shall be RsvdZ and Mult is calculated as:

(Max ESIT Payload / Max Packet Size / Max Burst Size) rounded up to the nearest integer value.

109Note that there is no requirement that Max Burst Size must equal 16 if Mult is greater than 0.

428

14:10 Max Primary Streams (MaxPStreams). This field identifies the maximum number of Primary

Stream IDs this endpoint supports. Valid values are defined below. If the value of this field is ‘0’,
then the TR Dequeue Pointer field shall point to a Transfer Ring. If this field is > '0' then the TR
Dequeue Pointer field shall point to a Primary Stream Context Array. Refer to section 4.12 for

more information.

A value of ‘0’ indicates that Streams are not supported by this endpoint and the Endpoint
Context TR Dequeue Pointer field references a Transfer Ring.

A value of ‘1’ to ‘15’ indicates that the Primary Stream ID Width is MaxPstreams+1 and the
Primary Stream Array contains 2MaxPStreams+1 entries.

For SS Bulk endpoints, the range of valid values for this field is defined by the MaxPSASize field

in the HCCPARAMS1 register (refer to Table 5-13).

This field shall be '0' for all SS Control, Isoch, and Interrupt endpoints, and for all non-SS
endpoints.

15 Linear Stream Array (LSA). This field identifies how a Stream ID shall be interpreted.

Setting this bit to a value of ‘1’ shall disable Secondary Stream Arrays and a Stream ID shall be
interpreted as a linear index into the Primary Stream Array, where valid values for MaxPStreams

are ‘1’ to ‘15’.

A value of ‘0’ shall enable Secondary Stream Arrays, where the low order (MaxPStreams+1) bits
of a Stream ID shall be interpreted as a linear index into the Primary Stream Array, where valid

values for MaxPStreams are ‘1’ to ‘7’. And the high order bits of a Stream ID shall be interpreted
as a linear index into the Secondary Stream Array.

If MaxPStreams = ‘0’, this field RsvdZ.

Refer to section 4.12.2 for more information.

23:16 Interval. The period between consecutive requests to a USB endpoint to send or receive data.
Expressed in 125 μs. increments. The period is calculated as 125 μs. * 2Interval; e.g., an Interval

value of 0 means a period of 125 μs. (20 = 1 * 125 μs.), a value of 1 means a period of 250 μs. (21
= 2 * 125 μs.), a value of 4 means a period of 2 ms. (24 = 16 * 125 μs.), etc. Refer to Table 6-12
for legal Interval field values. See further discussion of this field below. Refer to section 6.2.3.6

for more information.

31:24 Max Endpoint Service Time Interval Payload High (Max ESIT Payload Hi). If LEC = '1', then this

field indicates the high order 8 bits of the Max ESIT Payload value. If LEC = '0', then this field
shall be RsvdZ. Refer to section 6.2.3.8 for more information.

Table 6-9: Offset 04h – Endpoint Context Field Definitions

Bits Description

0 RsvdZ.

 429

2:1 Error Count (CErr)110. This field defines a 2-bit down count, which identifies the number of

consecutive USB Bus Errors allowed while executing a TD. If this field is programmed with a
non-zero value when the Endpoint Context is initialized, the xHC loads this value into an internal
Bus Error Counter before executing a USB transaction and decrements it if the transaction fails.

If the Bus Error Counter counts from ‘1’ to ‘0’, the xHC ceases execution of the TRB, sets the
endpoint to the Halted state, and generates a USB Transaction Error Event for the TRB that
caused the internal Bus Error Counter to decrement to ‘0’. If system software programs this field

to ‘0’, the xHC shall not count errors for TRBs on the Endpoint’s Transfer Ring and there shall be
no limit on the number of TRB retries. Refer to section 4.10.2.7 for more information on the
operation of the Bus Error Counter.

Note: CErr does not apply to Isoch endpoints and shall be set to ‘0’ if EP Type = Isoch Out ('1') or
Isoch In ('5').

5:3 Endpoint Type (EP Type). This field identifies whether an Endpoint Context is Valid, and if so,
what type of endpoint the context defines.

 Value Endpoint Type Direction

 0 Not Valid N/A

 1 Isoch Out

 2 Bulk Out

 3 Interrupt Out

 4 Control Bidirectional

 5 Isoch In

 6 Bulk In

 7 Interrupt In

6 RsvdZ.

7 Host Initiate Disable (HID). This field affects Stream enabled endpoints, allowing the Host
Initiated Stream selection feature to be disabled for the endpoint. Setting this bit to a value of

‘1’ shall disable the Host Initiated Stream selection feature. A value of ‘0’ will enable normal
Stream operation. Refer to section 4.12.1.1 for more information.

15:8 Max Burst Size. This field indicates to the xHC the maximum number of consecutive USB
transactions that should be executed per scheduling opportunity. This is a “zero-based” value,

where 0 to 15 represents burst sizes of 1 to 16, respectively. Refer to section 6.2.3.4 for more
information.

31:16 Max Packet Size. This field indicates the maximum packet size in bytes that this endpoint is
capable of sending or receiving when configured. Refer to section 6.2.3.5 for more information.

110Software should set CErr to ‘3’ for normal operations. The values of ‘1’ or ‘2’ should be avoided during normal
operation because they will reduce transfer reliability. The value of ‘0’ is typically only used for test or
debug.Note that the xHCI handles CErr differently than the EHCI did.EHCI – if software programs a value of ‘1’ or

‘2’, that value will apply only for the first load of the EHCI Bus Error Counter. And all subsequent reloads of the
EHCI Bus Error Counter will use ‘3’. If software programmed ‘0’, then the EHCI will leave it at ‘0’ and disable
error counting.xHCI – the Bus Error Counter is always reloaded with the value of CErr, which means transactions

will be less robust (e.g. devices may halt due intermittent errors more frequently) if CErr = ‘1’ or ‘2’.

430

Table 6-10: Offset 08h – Endpoint Context Field Definitions

Bits Description

0 Dequeue Cycle State (DCS). This bit identifies the value of the xHC Consumer Cycle State (CCS)

flag for the TRB referenced by the TR Dequeue Pointer. Refer to section 4.9.2 for more
information. This field shall be ‘0’ if MaxPStreams > ‘0’.

3:1 RsvdZ.

63:4 TR Dequeue Pointer. As Input, this field represents the high order bits of the 64-bit base address
of a Transfer Ring or a Stream Context Array associated with this endpoint. If MaxPStreams = '0'

then this field shall point to a Transfer Ring. If MaxPStreams > '0' then this field shall point to a
Stream Context Array.

As Output, if MaxPStreams = ‘0’ this field shall be used by the xHC to store the value of the

Dequeue Pointer when the endpoint enters the Halted or Stopped states, and the value of the
this field shall be undefined when the endpoint is not in the Halted or Stopped states. if
MaxPStreams > ‘0’ then this field shall point to a Stream Context Array.

The memory structure referenced by this physical memory pointer shall be aligned to a 16-byte
boundary.

Table 6-11: Offset 10h – Endpoint Context Field Definition

Bits Description

15:0 Average TRB Length. This field represents the average Length of the TRBs executed by this

endpoint. The value of this field shall be greater than ‘0’. Refer to section 4.14.1.1 and the
implementation note TRB Lengths and System Bus Bandwidth for more information.

The xHC shall use this parameter to calculate system bus bandwidth requirements.

31:16 Max Endpoint Service Time Interval Payload Low (Max ESIT Payload Lo). This field indicates
the low order 16 bits of the Max ESIT Payload. The Max ESIT Payload represents the total

number of bytes this endpoint will transfer during an ESIT. This field is only valid for periodic
endpoints. Refer to section 6.2.3.8 for more information.

Note: The remaining bytes (14-1Fh) within the Endpoint Context are dedicated for

exclusive use by the xHC and shall be treated by system software as Reserved

and Opaque (RsvdO).

Note: Figure 6-3 illustrates a 32 byte Endpoint Context. i.e. the Context Size (CSZ) field

in the HCCPARAMS1 register = ‘0’. If the Context Size (CSZ) field = ‘1’ then each

Endpoint Context data structure consumes 64 bytes, where bytes 32 to 63 are

xHCI Reserved (RsvdO).

 431

Note: The requirement that TD Fragments shall not span Transfer Ring Segments

places a lower limit on the value of Average TRB Length. E.g. a 4KB Transfer Ring

Segment may describe up to 256 TRBs, where the last TRB of the segment is a

Link TRB. If the MBP is 16K, then the 16KB payload defined by a TD Fragment

may not be contain more than 255 Transfer TRBs, which means that software

shall not specify an Average TRB Length value less than 65B. Larger Transfer Ring

Segments allow smaller Average TRB Length values. Refer to section 4.11.7.1.

Note: Software shall set Average TRB Length to ‘8’ for control endpoints.

6.2.3.1 Address Device Command Usage

The Endpoint 0 Context (DCI = 1) is the only Endpoint Context of an Input

Context or Device Context referenced by the Address Device Command. All

other Endpoint Contexts (DCI = 2-31) are ignored by the Address Device

Command.

The Input Endpoint 0 Context is considered “valid” by the Address Device

Command if: 1) the EP Type field = Control, 2) the values of the Max Packet Size,

Max Burst Size, and the Interval are considered within range for endpoint type

and the speed of the device, 3) the TR Dequeue Pointer field points to a valid

Transfer Ring, 4) the DCS field = ‘1’, 5) the MaxPStreams field = ‘0’, and 6) all

other fields are within the valid range of values.

Note: The Max Packet Size field of the Control Endpoint Context 0 shall be set by

system software to the default max packet size for the endpoint as function of

the devices’ speed. e.g. 8 bytes for a Low/Full-speed device etc. After the Device

Descriptor is read from the device using the default Max Packet Size, software

may issue an Evaluate Context Command to inform the xHC of the actual Max

Packet Size for the control endpoint if it is different than the default value.

After the first Address Device Command execution, any Output Endpoint Context

is 'valid' for an Address Device Command because all fields of the Output

Endpoint Context are over written by the command.

6.2.3.2 Configure Endpoint Command Usage

The Configure Endpoint Command does not reference the Input or Output

Endpoint 0 Context (DCI = 1). Any other Endpoint Context (DCI = 2-31) may be

referenced by the Configure Endpoint Command.

An Input Endpoint Context is considered “valid” by the Configure Endpoint

Command if the Add Context flag is ‘1’ and: 1) the values of the Max Packet Size ,

Max Burst Size, and the Interval are considered within range for endpoint type

and the speed of the device, 2) if MaxPStreams > 0, then the TR Dequeue Pointer

field points to an array of valid Stream Contexts , or if MaxPStreams = 0, then the

TR Dequeue Pointer field points to a Transfer Ring, 3) the EP State field =

Disabled, and 4) all other fields are within their valid range of values.

432

6.2.3.3 Evaluate Context Command Usage

A 'valid' Input Endpoint Context for an Evaluate Context Command requires that

if the Add Context flag (A1) for Default Control Endpoint is set to ‘1’, the Max

Packet Size field shall be evaluated. Endpoint Contexts 2 through 31 shall not

be evaluated by the Evaluate Context Command. Refer to section 4.6.7 for more

information on the Evaluate Context Command .

Prior to command execution, a 'valid' Output Endpoint Context for an Evaluate

Context Command requires the Endpoint State (EP State) field to be in the

Running:Idle sub-state or the Stopped state. If the respective context is not in

one of these states when the command is executed, undefined behavior may

occur.

After the completion of the Evaluate Context Command, the updated field

values will be used by the xHC for the next transfer performed by the respective

endpoint. It is system software’s responsibility to coordinate the execution of

Evaluate Context Commands with Transfer Ring operations.

6.2.3.4 Max Burst Size

The Max Burst Size * Mult identifies the maximum number of USB transactions

that will be executed by the xHC per Transfer Ring scheduling opportunity.

For all Low-/Full-Speed endpoints this field shall be cleared to ‘0’.

For High-Speed control and bulk endpoints this field shall be cleared to ‘0’.

For High-Speed isochronous and interrupt endpoints this field shall be set to

the number of additional transaction opportunities per microframe, i.e. the value

defined in bits 12:11 of the USB2 Endpoint Descriptor wMaxPacketSize field.

Refer to section 9.6.6 of the USB2 Specification.

For SuperSpeed endpoints this field shall be set to the value defined in the

bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor. Refer to

section 9.6.7 of the USB3 Specification.

Refer to section 4.14.4.1 for more information on the use Max Burst Size .

6.2.3.5 Max Packet Size

The Max Packet Size field identifies the maximum number of bytes that shall be

moved per USB packet. If Max Burst Size is greater than 0, then a High -

bandwidth endpoint is defined and a USB transaction may contain up to Max

Burst Size+1 packets.

This field shall be set to the value defined in bits 10:0 of the USB Endpoint

Descriptor wMaxPacketSize field. Note that the Max Packet Size field is not

encoded the same as the USB wMaxPacketSize field Max Packet Size (e.g. as a

base 2 multiple), but as a linear byte count value.

 433

6.2.3.6 Interval

The Interval field defines the Interval for polling endpoint for data transfers,

expressed in 125 µs units. The periodic interval defined by the Endpoint Context

Interval field is computed as 125μs * 2 Interval, where Interval = 0 to 15.

For high-speed bulk and high-speed control OUT endpoints:

• The Interval shall specify the maximum NAK rate of the endpoint.

• A value of 0 indicates the endpoint never NAKs.

• Other values indicate at most 1 NAK each Interval number of microframes.

Refer to Table 6-8 for the definition of the Interval field.

Refer to Table 6-12 for the range of valid Interval values.

For SuperSpeedPlus and SuperSpeed bulk and control endpoints, the Interval

field shall not be used by the xHC.

For all other endpoint types and speeds, system software shall translate the

bInterval field in the USB Endpoint Descriptor to the appropriate value for this

field.

Table 6-12: Endpoint Type vs. Interval Calculation

Endpoint bInterval
Range

Time
Range

Time
Computation

Endpoint
Context

Valid Interval
range

FS/LS Interrupt 1 - 255 1 - 255 ms. bInterval * 1ms.111 3-10

FS Isoch 1 - 16 1 - 32,768
ms.

2bInterval-1 * 1ms. 3-18

SSP, SS or HS Interrupt or
Isoch

1 - 16 125 μs. -
4,096 ms.

2bInterval-1 * 125 μs. 0-15

6.2.3.7 Reset Device Command Usage

Upon the completion of Reset Device Command, the Output Default Control

Endpoint Context (DCI = ‘1’) Max Packet Size , EP Type, CErr, TR Dequeue Pointer,

and Average TRB Length fields shall contain the same values that they contained

111For FS/LS Interrupt endpoints software shall round the computed value of Endpoint Context Interval field down

to the nearest base 2 multiple of bInterval * 8.

434

prior to the execution of the Reset Device Command. And the EP State field shall

be set to the Running state. All other fields shall be cleared to ‘0’.

6.2.3.8 Max ESIT Payload

The Max ESIT Payload represents the total number of bytes this endpoint will

transfer during an ESIT. With the introduction of USB Gen 2 speed data rates

(SSP), the Max ESIT Payload values exceeded 64K. The Large ESIT Payload

Capability (LEC) flag in the HCCPARAMS2 register indicates if an xHC

implementation is capable of supporting Max ESIT Payload values greater than

48K bytes.

If LEC = ‘0’, then the largest value the xHC supports for the Max ESIT Payload is

48K bytes. Note that only devices attached to SSP or faster USB3 Root Hub

ports may support Max ESIT Payload values greater than 48KB.

If LEC = ‘1’, then the largest value the xHC supports for the Max ESIT Payload is

16MB-1 bytes.

Refer to section 4.14.2 for the definition of an “ESIT” and more information

related to setting the value of Max ESIT Payload.

For periodic endpoints, the Max ESIT Payload is used by the xHC to reserve the

bus transfer time for the endpoint in its Pipe Schedule.

6.2.4 Stream Context Array

The xHCI supports hierarchal Stream Context Arrays. Refer to section 4.12 for

more information on their use. A Stream Context Array contains Stream Context

data structures. Entries are addressed by a Stream ID. Steam ID 0 is reserved

and does not reference a Transfer Ring or another Stream Context Array.

6.2.4.1 Stream Context

The Stream Context data structure defines information that applies to a specific

Stream associated with an endpoint.

Note: Unless otherwise stated: As Input, all fields of the Stream Context shall be

initialized to the appropriate value by software before issuing a command. As

Output, the xHC shall update each field to reflect the current value that it is using.

Figure 6-4: Stream Context Data Structure

 Stopped EDTLA

03-00H

07-04H

0B-08H

0F-0CHxHCI Reserved (RsvdO)

xHCI Reserved (RsvdO)

TR Dequeue Pointer Lo

TR Dequeue Pointer Hi

SCT DCS

31 4 3 1 024 23

 435

Table 6-13: Offset 00h and 04h – Stream Context Field Definitions

Bits Description

0 Dequeue Cycle State (DCS). This bit identifies the value of the xHC Consumer Cycle State (CCS)
flag for the TRB referenced by the TR Dequeue Pointer. Refer to section 4.9.2 for more
information.

3:1 Stream Context Type (SCT). This field identifies whether the Stream Context is a member of a

Primary or Secondary Stream Context Array, if the TR Dequeue Pointer field references a Transfer
Ring or a Stream Context Array, and if a Stream Context Array is referenced, the size of the array.

 Value Stream Array Type Dequeue Ptr Secondary Stream Array Size

 0 Secondary Transfer Ring N/A

 1 Primary Transfer Ring N/A

 2 Primary SSA 8

 3 Primary SSA 16

 4 Primary SSA 32

 5 Primary SSA 64

 6 Primary SSA 128

 7 Primary SSA 256

Refer to section 4.12.2.1 for more information.

63:4 TR Dequeue Pointer. This field represents the high order bits of the 64-bit base address of the

TRB ring or Stream Context Array associated with this Stream.

The memory structure referenced by this physical memory pointer shall be aligned to a 16-byte
boundary. This field is initialized by software and shall be overwritten by the xHC to save the

value of the Dequeue Pointer when the endpoint enters the Halted or Stopped states. The value
of the this field shall be undefined when the endpoint is not in the Halted or Stopped states.

Table 6-14: Offset 08h and 0Ch – Stream Context Field Definitions

Bits Description

23:0 Stopped EDTLA. If the Stopped EDTLA Capability (SEC) field in the CCSPARAMS register = ‘1’,
then this field shall identify the value of the EDTLA when the Stream is in the Stopped State. If

SEC = ‘0’, then this field shall be RsvdO. Refer to sections 4.6.9, 4.12, and 5.3.6 for more
information.

63:24 RsvdO.

436

Note: The Context Size (CSZ) field in the HCCPARAMS1 register does not apply to

Stream Context data structures, they are always 16 bytes in size.

Note: A “valid” Stream Context requires:

• The TR Dequeue Pointer is ‘0’, i.e. no Transfer Ring or Stream Context is

assigned yet.

• The TR Dequeue Pointer points to a valid Transfer Ring and the DCS flag

represents the Cycle State of the segment referenced by the TR Dequeue

Pointer.

• The TR Dequeue Pointer points to a valid Stream Array.

6.2.5 Input Context

The Input Context data structure specifies the endpoints and the operations to

be performed on those endpoints by the Address Device, Configure Endpoint,

and Evaluate Context Commands . Refer to section 4.6 for more information on

these commands.

The Input Context is pointed to by an Input Context Pointer field of a Address

Device, Configure Endpoint, and Evaluate Context Command TRBs. The Input

Context is an array of up to 33 context data structure entries.

Figure 6-5: Input Context

Input Control

Context

Slot

EP Context 0

EP Context 1 OUT

Direction = 0

EP Context 1 IN

Direction = 1

...

EP Context 15 OUT

Direction = 0

 EP Context 15 IN

Direction = 1

0

1

...

Input Context Index (ICI)

2

3

31

32

420h

400h

3E0h

...

080h

060h

Offset

000h

020h

040h

0C0h

Device

Context

0

1

...

2

3

30

31

4

Device Context Index (DCI)

 437

The first entry (offset 000h) of the Input Context shall be the Input Control

Context data structure. The remaining entries shall be organized identically to

the Device Context data structures. Refer to section 6.2.5.1 for the definition of

the Input Control Context data structure. Refer to section 6.2 for the definition of

the Device Context and its data structures.

If the Add Context flag is set for an entry in the Input Context, then the entry

shall be initialized appropriately by software. All other entries of the Input

Context are ignored by the xHC. The Add Context and Drop Context flag indices

are calculated identically to the Device Context Index (DCI) described in section

4.5.1 for the Device Context portion of the Input Context. e.g. EP context 1 OUT

maps to D2 and A2, and so on, up to EP 15 IN mapping to D31 and A31.

Note: Figure 6-5 illustrates offsets with 32 byte Input Control Context data structures.

i.e. the Context Size (CSZ) field in the HCCPARAMS1 register = '0'. If the Context

Size (CSZ) field = '1' then the Input Control Context data structures consume 64

bytes each. The offsets shall be 040h for the Slot Context, 080h for EP Context

0, and so on.

Note: The Input Context shall be physically contiguous within a page.

6.2.5.1 Input Control Context

The Input Control Context data structure defines which Device Context data

structures are affected by a command and the operations to be performed on

those contexts.

Figure 6-6: Input Control Context

RsvdZ

A1 A0

RsvdZD31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2

A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2

03-00H

07-04H

0F-0CH

17-14H

RsvdZ

RsvdZ

1F-1CH

13-10H

1B-18H

RsvdZ

RsvdZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0B-08H

RsvdZ Alternate Setting Interface Number Configuration Value

Note: Figure 6-6 illustrates a 32 byte Input Control Context data structure. i.e. the

Context Size (CSZ) field in the HCCPARAMS1 register = '0'. If the Context Size

(CSZ) field = '1' then the Input Control Context data structure consumes 64 bytes,

where bytes 32 to 63 are RsvdZ.

Table 6-15: Offset 00h – Input Control Context Field Definitions

Bits Description

1:0 RsvdZ.

438

31:2 Drop Context flags (D2 - D31). These single bit fields identify which Device Context data

structures should be disabled by command. If set to ‘1’, the respective Endpoint Context shall be
disabled. If cleared to ‘0’, the Endpoint Context is ignored.

Table 6-16: Offset 04h – Input Control Context Field Definitions

Bits Description

31:0 Add Context flags (A0 - A31). These single bit fields identify which Device Context data

structures shall be evaluated and/or enabled by a command. If set to ‘1’, the respective Context
shall be evaluated. If cleared to ‘0’, the Context is ignored.

Table 6-17: Offset 1Ch – Input Control Context Field Definitions

Bits Description

7:0 Configuration Value. If CIC = ‘1’, CIE = ‘1’, and this Input Context is associated with a Configure

Endpoint Command, then this field contains the value of the Standard Configuration Descriptor
bConfigurationValue field associated with the command, otherwise the this field shall be
cleared to ‘0’.

15:8 Interface Number. If CIC = ‘1’, CIE = ‘1’, this Input Context is associated with a Configure

Endpoint Command, and the command was issued due to a SET_INTERFACE request, then this
field contains the value of the Standard Interface Descriptor bInterfaceNumber field associated
with the command, otherwise the this field shall be cleared to ‘0’.

23:16 Alternate Setting. If CIC = ‘1’, CIE = ‘1’, this Input Context is associated with a Configure
Endpoint Command, and the command was issued due to a SET_INTERFACE request, then this

field contains the value of the Standard Interface Descriptor bAlternateSetting field associated
with the command, otherwise the this field shall be cleared to ‘0’.

31:24 RsvdZ.

Note: The specific operations to be performed on a context by a command as a

function of the Drop Context and Add Context flag settings are defined in detail

in section 4.6.

 439

Note: The fields in this data structure shall not be modified by software from the time

the command is placed on the Command Ring until the associated Command

Completion Event is received.

Note: The Add Context and Delete Context flag indices are calculated identically to

the Device Context Index (DCI) described in section 4.5.1 for the Device Context

portion of the Input Context. e.g. EP context 1 OUT maps to D2 and A2, and so

on, up to EP 15 IN mapping to D31 and A31.

The Add Context and Delete Context flag indices relative to Input Context are

calculated as follows:

The Input Context Index (ICI) (refer to Figure 6-5) of the Input Control Context is

0.

The ICI of the Slot Context is 1.

For the remaining Input Context indices 2-31, the following rules apply:

1) For Isoch, Interrupt, or Bulk type endpoints the ICI is calculated using the

Endpoint Number and Direction with the following formula;

 ICI = ((Endpoint Number * 2) + 1 + Direction,

where Direction = ‘0’ for OUT endpoints and ‘1’ for IN endpoints.

2) For Control type endpoints, including the Default Control Endpoint:

 ICI = (Endpoint Number + 1) * 2.

Note: The extended Configuration Information fields Configuration Value, Interface

Number, and Alternate Setting shall be initialized by software if the Configuration

Information Enable (CIE) flag is set to ‘1’. Support for the extended Configuration

Information fields is required by all 1.1 compliant xHCI drivers.

Note: If the Configuration Information Capability of an xHC is enabled (CIE = ‘1’) the

system software shall ensure that each Configure Endpoint Command to the

xHCI represents the endpoint changes due to exactly one

SET_CONFIGURATION or SET_ALTERNATIVE)_INTERFACE request to a USB

device.

6.2.6 Port Bandwidth Context

The Port Bandwidth Context data structure is used to provide system software

with the percentage of periodic bandwidth available on each Root Hub Port, at

the Speed indicated by the Device Speed field of the Get Port Bandwidth

Command. Software allocates the Context data structure and the xHC updates it

during the execution of a Get Port Bandwidth Command. Refer to section 4.6.15

for more information.

440

Figure 6-7: Port Bandwidth Context

RsvdZ

31 24 23 16 15 0

03-00H

07-04H

...

Port 3 Port 1Port 2

8 7

Port 4Port 7 Port 5Port 6

Port n-3Port n Port n-2Port n-1

...

Note: Figure 6-7 illustrates a generic Port Bandwidth Context data structure. System

sizes this data structure as a function of the number of Root Hub ports supported

by the xHC (i.e. MaxPorts). Software shall round up the size of the buffer to the

nearest 8-byte boundary.

Table 6-18: Offset 00h – Port Bandwidth Context Field Definitions

Bits Description

7:0 RsvdZ.

15:8 Port 1 Bandwidth (Port 1). Percentage of Total Available Bandwidth available on Port 1.

23:16 Port 2 Bandwidth (Port 2). Percentage of Total Available Bandwidth on Port 2.

31:24 Port 3 Bandwidth (Port 3). Percentage of Total Available Bandwidth on Port 3.

Table 6-19: Offset n-03h – Port Bandwidth Context Field Definitions

Bits Description

7:0 Port n-3 Bandwidth (Port n-3). Percentage of Total Available Bandwidth on Port n-3.

15:8 Port n-2 Bandwidth (Port n-2). Percentage of Total Available Bandwidth on Port n-2.

23:16 Port n-1 Bandwidth (Port n-1). Percentage of Total Available Bandwidth on Port n-1.

31:24 Port n Bandwidth (Port n). Percentage of Total Available Bandwidth on Port n.

Note: Refer to section 4.14 for the definition of “Total Available Bandwidth”.

Note: The range of valid values depends on the value of the Dev Speed field in the Get

Port Bandwidth Command. 0 to 80% for HS, and 0 to 90% for SS and FS. Refer

to section 4.14.2 for more information.

Note: The Port fields of the Port Bandwidth Context shall report decimal percentage

values in hex, i.e. 0Ah = 10%, 50h = 80%, etc.

 441

6.3 TRB Ring

A TRB Ring is an array of TRB (Transfer Request Block) structures, which is used

by the xHCI as a circular queue to communicate with the host. Refer to section

4.9 for a detailed description of Ring operation.

6.4 Transfer Request Block (TRB)

The Transfer Request Block is the basic building block upon which all xHC USB

transfers are constructed. All Transfer Request Blocks shall be aligned on a 16-

byte boundary.

Each TRB has the basic format described in section 4.11.1. TRBs are used for all

transactions performed by an xHC, which includes commands sent to the host

controller, events generated by the host controller, and transactions associated

with USB endpoints.

Note: Vendor defined TRBs are shall support the TRB Type and Cycle bit fields.

6.4.1 Transfer TRBs

A Transfer TRB shall be found on a Transfer Ring. A Work Item on a Transfer

Ring is called a Transfer Descriptor (TD) and is comprised of one or more

Transfer TRB data structures. This section describes the transfer related TRBs.

Note: If a zero-length transfer is specified, the Data Buffer Pointer field is ignored by

the xHC, irrespective of the state of the IDT flag.

Note: Data buffers referenced by Transfer TRBs shall not span 64KB boundaries. If a

physical data buffer spans a 64KB boundary, software shall chain multiple TRBs

to describe the buffer.

6.4.1.1 Normal TRB

A Normal TRB is used in several ways; exclusively on Bulk and Interrupt Transfer

Rings for normal and Scatter/Gather operations, to define additional data

buffers for Fine and Coarse Grain Scatter/Gather operations on Isoch Transfer

Rings, and to define the Data stage information for Control Transfer Rings. Refer

to section 4.11.2.1 for information on the use of Normal TRBs. Refer to section

3.2.8 for an overview of xHCI scatter/gather support.

Figure 6-8: Normal TRB

BEI

Interrupter Target TD Size

22 21

RsvdZ ENT

Data Buffer Pointer Hi

RsvdZ CISPTRB Type IDT IOC NSCH

Data Buffer Pointer Lo

31 17 16 15 10 9 6 5 4 3 2 1 0

TRB Transfer Length

03-00H

0B-08H

0F-0CH

07-04H

78

442

Table 6-20: Offset 00h and 04h – Normal TRB Field Definitions

Bits Description

63:0 Data Buffer Pointer Hi and Lo. These fields represent the 64-bit address of the TRB data area for
this transaction or 8 bytes of immediate data. The Immediate Data (IDT) control flag selects this
option for each Normal TRB.

The memory structure referenced by this physical memory pointer is allowed to begin on a byte
address boundary. However, user may find other alignments, such as 64-byte or 128-byte
alignments, to be more efficient and provide better performance.

Table 6-21: Offset 08h – Normal TRB Field Definitions

Bits Description

16:0 TRB Transfer Length. For an OUT, this field defines the number of data bytes the xHC shall

send during the execution of this TRB. If the value of this field is ‘0’ when the xHC fetches this
TRB, the xHC shall execute a zero-length transaction.

Note: If a zero-length transfer is specified, the Data Buffer Pointer field is ignored by the xHC,

irrespective of the state of the IDT flag. Refer to section 4.9.1 for more information on zero-
length Transfer TRB handling.

For an IN, the value of the field identifies the size of the data buffer referenced by the Data

Buffer Pointer, i.e. the number of bytes the host expects the endpoint to deliver.

Valid values are 0 to 64K.

21:17 TD Size. This field provides an indicator of the number of packets remaining in the TD. Refer to
section 4.10.2.4 for how this value is calculated.

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events
generated by this TRB. Valid values are between 0 and MaxIntrs-1.

Table 6-22: Offset 0Ch – Normal TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of the Transfer ring.

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before

saving the endpoint state. Refer to section 4.12.3 for more information.

 443

2 Interrupt-on Short Packet (ISP). If this flag is ‘1’ and a Short Packet is encountered for this TRB

(i.e., less than the amount specified in TRB Transfer Length), then a Transfer Event TRB shall be
generated with its Completion Code set to Short Packet. The TRB Transfer Length field in the
Transfer Event TRB shall reflect the residual number of bytes not transferred into the associated

data buffer. In either case, when a Short Packet is encountered, the TRB shall be retired without
error and the xHC shall advance to the next Transfer Descriptor (TD).

Note that if the ISP and IOC flags are both ‘1’ and a Short Packet is detected, then only one

Transfer Event TRB shall be queued to the Event Ring. Also refer to section 4.10.1.1.

3 No Snoop (NS). When set to ‘1’, the xHC is permitted to set the No Snoop bit in the Requester
Attributes of the PCIe transactions it initiates if the PCIe configuration Enable No Snoop flag is
also set. When cleared to ‘0’, the xHC is not permitted to set PCIe packet No Snoop Requester

Attribute. Refer to section 4.18.1 for more information.

NOTE: If software sets this bit, then it is responsible for maintaining cache consistency.

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A

Transfer Descriptor (TD) is defined as one or more TRBs. The Chain bit is used to identify the
TRBs that comprise a TD. The Chain bit is always ‘0’ in the last TRB of a TD.

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes,
the Host Controller shall notify the system of the completion by placing an Transfer Event TRB

on the Event ring and asserting an interrupt to the host at the next interrupt threshold. Note that
the interrupt assertion may be blocked for the Transfer Event by BEI. Refer to sections 4.10.4
and 4.17.5.

6 Immediate Data (IDT). If this bit is set to ‘1’, it specifies that the Data Buffer Pointer field of this
TRB contains data, not a pointer, and the Length field shall contain a value between ‘0’ and ‘8’ to

indicate the number of valid bytes from offset 0 in the TRB that should be used as data.

Note: If the IDT flag is set in one Transfer TRB of a TD, then it shall be the only Transfer TRB of
the TD. An Event Data TRB may be included in the TD. Failure to follow this rule may result in

undefined xHC operation.

Note: IDT shall not be set (‘1’) for TRBs on endpoints that define a Max Packet Size < 8 bytes, or
on IN endpoints.

8:7 RsvdZ.

9 Block Event Interrupt (BEI). If this bit is set to ‘1’ and IOC = ‘1’, then the Transfer Event
generated by IOC shall not assert an interrupt to the host at the next interrupt threshold. Refer

to section 4.17.5.

15:10 TRB Type. This shall be set to Normal TRB type. Refer to Table 6-86 for the definition of the
valid Transfer TRB type IDs.

31:16 RsvdZ.

444

6.4.1.2 Control TRBs

Control transfers require two or three TDs to define them: a Setup Stage TD

followed by an Status Stage TD, if a data stage is required for the transfer an

optional Data Stage TD will reside between the Setup Stage and Status Stage

TDs. This sections defines the TRBs that comprise the respective TDs. Refer to

section 4.11.2.2 for more information on xHCI control transfers.

Note: The IOC flag should only be set in the Status Stage TRB of a Control transfer.

6.4.1.2.1 Setup Stage TRB

A Setup Stage TRB is created by system software to initiate a USB Setup packet

on a control endpoint. Refer to section 3.2.9 for more information on Setup

Stage TRBs and the operation of control endpoints. Also refer to section 8.5.3 in

the USB2 spec. for a description of “Control Transfers”.

Figure 6-9: Setup Stage TRB

RsvdZ TRT

Interrupter Target RsvdZ

22 21

RsvdZ RsvdZ

wLength wIndex

bmRequestTypebRequestwValue

CTRB Type IDT IOC

31 17 16 15 10 9 8 7 6 5 4 1 0

TRB Transfer Length

03-00H

07-04H

0B-08H

0F-0CH

18

Table 6-23: Offset 00h – Setup Stage TRB Field Definitions

Bits Description

7:0 bmRequestType. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification.

15:8 bRequest. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification.

31:16 wValue. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification.

Table 6-24: Offset 04h – Setup Stage TRB Field Definitions

Bits Description

15:0 wIndex. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification.

31:16 wLength. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification.

 445

Table 6-25: Offset 08h – Setup Stage TRB Field Definitions

Bits Description

16:0 TRB Transfer Length. Always 8.

21:17 RsvdZ.

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events
generated by this TRB. Valid values are between 0 and MaxIntrs-1.

Table 6-26: Offset 0Ch – Setup Stage TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue point of a Transfer ring.

4:1 RsvdZ.

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes,
the Host Controller shall notify the system of the completion by placing an Event TRB on the
Event ring and sending an interrupt at the next interrupt threshold. Refer to section 4.10.4.

6 Immediate Data (IDT). This bit shall be set to ‘1’ in a Setup Stage TRB. It specifies that the

Parameter component of this TRB contains Setup Data.

9:7 RsvdZ.

15:10 TRB Type. This field is set to Setup Stage TRB type. Refer to Table 6-86 for the definition of the
Type TRB IDs.

17:16 Transfer Type (TRT). This field indicates the type and direction of the control transfer.

 Value Definition

 0 No Data Stage

 1 Reserved

 2 OUT Data Stage

 3 IN Data Stage

 Refer to section 4.11.2.2 for more information on the use of TRT.

31:18 RsvdZ.

446

6.4.1.2.2 Data Stage TRB

A Data Stage TRB is used generate the Data stage transaction of a USB Control

transfer. Refer to section 3.2.9 for more information on Control transfers and

the operation of control endpoints. Also refer to section 8.5.3 in the USB2 spec.

for a description of “Control Transfers”.

Figure 6-10: Data Stage TRB

Interrupter Target TD Size

22 21

RsvdZ ENTDIR

Data Buffer Hi

CRsvdZ ISPTRB Type IDT IOC NSCH

Data Buffer Lo

31 17 16 15 10 9 6 5 4 3 2 1 0

TRB Transfer Length

03-00H

0B-08H

0F-0CH

07-04H

7

Table 6-27: Offset 00h and 04h – Data Stage TRB Field Definitions

Bits Description

63:0 Data Buffer Pointer Hi and Lo. These fields represent the 64-bit address of the Data buffer area
for this transaction

The memory structure referenced by this physical memory pointer is allowed to begin on a byte
address boundary. However, user may find other alignments, such as 64-byte or 128-byte
alignments, to be more efficient and provide better performance.

Table 6-28: Offset 08h – Data Stage TRB Field Definitions

Bits Description

16:0 TRB Transfer Length. For an OUT, this field is the number of data bytes the xHC will send
during the execution of this TRB.

For an IN, the initial value of the field identifies the size of the data buffer referenced by the Data

Buffer Pointer, i.e. the number of bytes the host expects the endpoint to deliver.

Valid values are 1 to 64K.

21:17 TD Size. This field provides an indicator of the number of packets remaining in the TD. Refer to
section 4.11.2.4 for how this value is calculated.

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events
generated by this TRB. Valid values are between 0 and MaxIntrs-1.

 447

Table 6-29: Offset 0Ch – Data Stage TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of the Transfer ring.

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before
saving the endpoint state. Refer to section 4.12.3 for more information.

2 Interrupt-on Short Packet (ISP). If this flag is ‘1’ and a Short Packet is encountered for this TRB
(i.e., less than the amount specified in TRB Transfer Length), then a Transfer Event TRB shall be
generated with its Completion Code set to Short Packet. The TRB Transfer Length field in the

Transfer Event TRB shall reflect the residual number of bytes not transferred into the associated
data buffer. In either case, when a Short Packet is encountered, the TRB shall be retired without
error and the xHC shall advance to the Status Stage TD.

Note: if the ISP and IOC flags are both ‘1’ and a Short Packet is detected, then only one Transfer
Event TRB shall be queued to the Event Ring. Also refer to section 4.10.1.1.

3 No Snoop (NS). When set to ‘1’, the xHC is permitted to set the No Snoop bit in the Requester

Attributes of the PCIe transactions it initiates if the PCIe configuration Enable No Snoop flag is
also set. When cleared to ‘0’, the xHC is not permitted to set PCIe packet No Snoop Requester
Attribute. Refer to section 4.18.1 for more information.

NOTE: If software sets this bit, then it is responsible for maintaining cache consistency.

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A Data
Stage TD is defined as a Data Stage TRB followed by zero or more Normal TRBs. The Chain bit is
used to identify a multi-TRB Data Stage TD. The Chain bit is always ‘0’ in the last TRB of a Data

Stage TD.

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes,
the Host Controller shall notify the system of the completion by placing an Event TRB on the
Event ring and asserting an interrupt to the host at the next interrupt threshold. Refer to section

4.10.4.

6 Immediate Data (IDT). If this bit is set to ‘1’, it specifies that the Data Buffer Pointer field of this

TRB contains data, not a pointer. If IDT = ‘1’, the Length field shall contain a value between 1 and
8 to indicate the number of valid bytes from offset 0 in the TRB that should be used as data.

Note: If the IDT flag is set in one Data Stage TRB of a TD, then it shall be the only Transfer TRB of

the TD. An Event Data TRB may also be included in the TD. Failure to follow this rule may result
in undefined xHC operation.

9:7 RsvdZ.

15:10 TRB Type. This shall be set to Data Stage TRB type. Refer to Table 6-86 for the definition of the
valid Transfer TRB type IDs.

448

16 Direction (DIR). This bit indicates the direction of the data transfer as defined in the Data State

TRB Direction column of Table 7. If cleared to ‘0’, the data stage transfer direction is OUT (Write
Data). If set to ‘1’, the data stage transfer direction is IN (Read Data). Refer to section 4.11.2.2 for
more information on the use of DIR.

31:17 RsvdZ.

6.4.1.2.3 Status Stage TRB

A Status Stage TRB is used to generate the Status stage transaction of a USB

Control transfer. Refer to section 3.2.9 for more information on Control transfers

and the operation of control endpoints.

Figure 6-11: Status Stage TRB

CH

Interrupter Target RsvdZ

22 21

RsvdZ ENTRsvdZDIR

RsvdZ

CRsvdZ TRB Type IOC

RsvdZ

31 17 16 15 10 9 5 4 1 0

03-00H

0B-08H

0F-0CH

07-04H

6 23

Table 6-30: Offset 08h – Status Stage TRB Field Definitions

Bits Description

21:0 RsvdZ.

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events

generated by this TRB. Valid values are between 0 and MaxIntrs-1.

Table 6-31: Offset 0Ch – Status Stage TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of the Transfer ring.

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before
saving the endpoint state. Refer to section 4.12.3 for more information.

 449

3:2 RsvdZ.

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A
Status Stage TD is defined as a Status Stage TRB followed by zero or one Event Data TRB. The

Chain bit is used to identify a multi-TRB Status Stage TD. The Chain bit is always ‘0’ in the last
TRB of a Status Stage TD.

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes,
the Host Controller shall notify the system of the completion by placing an Event TRB on the

Event ring and asserting an interrupt to the host at the next interrupt threshold. Refer to section
4.10.4.

9:6 RsvdZ.

15:10 TRB Type. This field shall be set to Status Stage TRB type. Refer to Table 6-86 for the definition
of the valid Transfer TRB type IDs.

16 Direction (DIR). This bit indicates the direction of the data transfer as defined in the Status State

TRB Direction column of Table 7. If cleared to ‘0’, the status stage transfer direction is OUT
(Host-to-device). If set to ‘1’, the status stage transfer direction is IN (Device-to-host). Refer to
section 4.11.2.2 for more information on the use of DIR.

31:17 RsvdZ.

A Transfer Event generated by this TRB shall reflect the status state response

from the USB device.

6.4.1.3 Isoch TRB

An Isoch TRB defines isochronous data transfers. Refer to section 3.2.11 for

more information on Isoch TRBs and the operation of isochronous endpoints.

Figure 6-12: Isoch TRB

BEI
TBC/

TRBSts

Interrupter Target TD Size/TBC

22

TLBPC ENTSIA

Data Buffer Pointer Hi

CFrame ID ISPTRB Type IDT IOC NSCH

Data Buffer Pointer Lo

31 30 29 17 16 15 10 9 6 5 4 3 2 1 0

TRB Transfer Length

03-00H

0B-08H

0F-0CH

07-04H

721 20 19 8

450

Table 6-32: Offset 00h and 04h – Isoch TRB Field Definitions

Bits Description

63:0 Data Buffer Pointer Hi and Lo. This field represents the 64-bit address of the TRB data area for
this transaction or 8 bytes of immediate data. The Immediate Data (IDT) control flag selects this

option for each Isoch TRB.

The memory structure referenced by this physical memory pointer is allowed to begin on a byte
address boundary. However, user may find other alignments, such as 64-byte or 128-byte

alignments, to be more efficient and provide better performance.

Table 6-33: Offset 08h – Isoch TRB Field Definitions

Bits Description

16:0 TRB Transfer Length. For an OUT, this field is the number of data bytes the host controller will
send during the execution of this TRB.

For an IN, the initial value of the field is the number of bytes the host expects the endpoint to

deliver, i.e. the number of bytes the host expects the endpoint to deliver.

Refer to section 4.9.1 for more information on zero-length Transfer TRB handling.

Valid values are 0 to 64K.

21:17 TD Size/TBC. If ETE = ‘0’, then this field defines the TD Size, which provides an indicator of the
number of bytes remaining in the TD. Refer to section 4.11.2.4 for how this value is calculated. If
ETE = ‘1’, then this field defines the Transfer Burst Count (TBC), which identifies the number of

bursts - 1 that shall be required to move this Isoch TD. All bursts except the last shall transfer
Max Burst Size packets. The last burst shall transfer TLBPC + 1 packets. Refer to section 4.11.2.3
for more information.

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events

generated by this TRB. Valid values are between 0 and MaxIntrs-1.

Table 6-34: Offset 0Ch – Isoch TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue point of a Transfer ring.

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before

saving the endpoint state. Refer to section 4.12.3 for more information.

 451

2 Interrupt-on Short Packet (ISP). If this flag is ‘1’ and a Short Packet is encountered for this TRB

(i.e., less than the amount specified in TRB Transfer Length), then a Transfer Event TRB shall be
generated with the with its Completion Status set to Short Packet. In either case when a Short
Packet is encountered, the TRB shall be retired without error and the xHC shall advance to the

next Transfer Descriptor (TD). Also refer to section 4.10.1.1.

Note: if the ISP and IOC flags are both ‘1’ and a Short Packet is detected, then only one Transfer
Event TRB shall be queued to the Event Ring.

3 No Snoop (NS). When set to ‘1’, the xHC is permitted to set the No Snoop bit in the Requester
Attributes of the PCIe transactions it initiates if the PCIe configuration Enable No Snoop flag is
also set. When cleared to ‘0’, the xHC is not permitted to set PCIe packet No Snoop Requester

Attribute. Refer to section 4.18.1 for more information.

NOTE: If software sets this bit, then it is responsible for maintaining cache consistency.

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. An

Isoch Transfer Descriptor is defined as an Isoch TRB followed by zero or more Normal TRBs. The
Chain bit is used to identify the TRBs that comprise the TD. The Chain bit is always ‘0’ in the last
TRB of an Isoch TD.

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes,
the Host Controller shall notify the system of the completion by placing an Event TRB on the

Event ring and sending an interrupt at the next interrupt threshold. Refer to section 4.10.4.

6 Immediate Data (IDT). If this bit is set to ‘1’, it specifies that the Data Buffer Pointer field of this
TRB contains data, not a pointer, and the Length field shall contain a value between ‘0’ and ‘8’ to

indicate the number of valid bytes from offset 0 in the TRB that should be used as data.

Note: If the IDT flag is set in one Transfer TRB of a TD, then it shall be the only Transfer TRB the
TD. An Event Data, Link TRB may also be included in the TD. Failure to follow this rule may

result in undefined xHC operation.

Note: The IDT flag shall not be set ('1') for TRBs on endpoints that define a Max Packet Size < 8
bytes, or on IN endpoints.

8:7 Transfer Burst Count (TBC/TRBSts). If ETE = ‘0’, then this field identifies number of bursts - 1
that shall be required to move this Isoch TD. All bursts except the last shall transfer Max Burst

Size packets. The last burst shall transfer TLBPC + 1 packets. Refer to section 4.11.2.3 for more
information. If ETE = ‘1’ and ETC_TSC=’1’ and ETC=’1’, then this field is set to 1 to explicitly
indicate that it is the last Transfer TRB of the TD. Other values for TRBSts are reserved. If ETE=’1’

and ETC_TSC=’0’ and ETC=’1’, then this field shall be RsvdZ.

9 Block Event Interrupt (BEI). If this bit is set to ‘1’ and IOC = ‘1’, then the Transfer Event
generated by IOC shall not assert an interrupt to the host at the next interrupt threshold. Refer
to section 4.17.5.

15:10 TRB Type. This field is set to Isoch TRB type. Refer to Table 6-86 for the definition of the Type

TRB IDs.

452

19:16 Transfer Last Burst Packet Count (TLBPC). This field indent if i es number of packets -1 that

shall be in the last burst of this Isoch TD, e.g. ‘0’ = 1 packet, ‘1’ = 2 packets, etc. Refer to section
4.11.2.3 for more information.

30:20 Frame ID. The value in this field identifies the target 1ms. frame that the Interval associated with
this Isochronous Transfer Descriptor will start on. Bits [13:3] of the Microframe Index field of the

MFINDEX register may be used to determine the current periodic frame. This field is ignored by
the xHC if the Start Isoch ASAP flag is set (‘1’). For more information on the programming of this
field refer to section 4.11.2.5.

31 Start Isoch ASAP (SIA). If this flag is set (‘1’), the Frame ID is ignored and the Isoch TD is
scheduled as soon as possible. If this flag is cleared (‘0’), the Frame ID is valid and the Isoch TD is

scheduled the next time there is a match between the Frame ID and the Frame Index portion
(bits 13:3) of the Microframe Index (MFINDEX) register. Refer to Figure 4-21. For more
information refer to section 4.11.2.3.

6.4.1.4 No Op TRB

The No Op TRB provides a simple means for verifying the operation of the basic

Transfer Ring mechanisms offered by the xHCI. It may be inserted on a Transfer

Ring to generate a Transfer Event.

Note: Consecutive No Op TRBs may impact xHC performance and should be avoided

by software. Refer to section 4.11.7 for more information on No Op TRB

placement rules.

Figure 6-13: No Op TRB

Interrupter Target

22 21

RsvdZ ENT

17

RsvdZ

RsvdZ

RsvdZRsvdZ CTRB Type IOC CH

RsvdZ

31 16 15 10 9 5 4 3 2 1 0

03-00H

0B-08H

0F-0CH

07-04H

6

Table 6-35: Offset 08h – No Op TRB Field Definitions

Bits Description

21:0 RsvdZ.

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive Transfer
Events generated by this TRB. Valid values are between 0 and MaxIntrs-1.

 453

Table 6-36: Offset 0Ch – No Op TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Transfer Ring.

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before
saving the endpoint state. Refer to section 4.12.3 for more information.

3:2 RsvdZ.

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A

Transfer Descriptor (TD) is defined as one or more TRBs. The Chain bit is used to identify the
TRBs that comprise a TD. The Chain bit is always ‘0’ in the last TRB of a TD.

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes,

the Host Controller shall notify the system of the completion by placing a Transfer Event TRB on
the Event ring and sending an interrupt at the next interrupt threshold. Refer to section 4.10.4.

9:6 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
No Op TRB type ID.

31:16 RsvdZ.

6.4.2 Event TRBs

Event TRBs shall be found on an Event Ring. A Work Item on an Event Ring is

called an Event Descriptor (ED). An ED shall be comprised of only one Event

TRB data structure. This section describes the event related TRBs.

6.4.2.1 Transfer Event TRB

A Transfer Event provides the completion status associated with a Transfer TRB.

Refer to section 4.11.3.1 for more information on the use and operation of

Transfer Events.

Note: The Primary Event Ring (0) or a Secondary Event Ring may receive a Transfer

Event TRB. Normally the xHC shall use the Interrupter Target field of the

originating Transfer TRB to determine the Event Ring that shall receive this event.

Refer to section 4.17.4 for the exception cases, which use the Slot Context

Interrupter Target field.

454

Figure 6-14: Transfer Event TRB

TRB Pointer Lo

Rsvd

Z
Endpoint IDSlot ID RsvdZ RsvdZ

TRB Pointer Hi

Completion Code

CEDTRB Type

31 24 23 21 20 16 15 10 9 3 2 1 0

TRB Transfer Length

03-00H

07-04H

0B-08H

0F-0CH

Table 6-37: Offset 00h and 04h – Transfer Event TRB Field Definitions

Bits Description

63:0 TRB Pointer Hi and Lo. This field represents the 64-bit address of the TRB that generated this

event or 64 bits of Event Data if the ED flag is ‘1’.

If a TRB memory structure is referenced by this field (ED = ‘0’), then it shall be physical memory
pointer aligned on a 16-byte boundary, i.e. bits 0 through 3 of the address are ‘0’.

Table 6-38: Offset 08h – Transfer Event TRB Field Definitions

Bits Description

23:0 TRB Transfer Length. This field shall reflect the residual number of bytes not transferred.

For an OUT, this field shall indicate the value of the Length field of the Transfer TRB, minus the

data bytes that were successfully transmitted. A successful OUT transfer shall return a Length of
‘0’.

For an IN, this field shall indicate the value of the TRB Transfer Length field of the Transfer TRB,

minus the data bytes that were successfully received. If the device terminates the receive
transfer with a Short Packet, then this field shall indicate the difference between the expected
transfer size (defined by the Transfer TRB) and the actual number of bytes received. If the

receive transfer completed with an error, then this field shall indicate the difference between
the expected transfer size and the number of bytes successfully received.

If the Event Data flag is ‘0’ the legal range of values is 0 to 10000h. If the Event Data flag is ‘1’ or

the Condition Code is Stopped - Short Packet, then this field shall be set to the value of the
Event Data Transfer Length Accumulator (EDTLA). Refer to section 4.11.5.2 for a description of
EDTLA.

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB.
Refer to section 6.4.5 for an enumerated list of possible error conditions.

 455

Table 6-39: Offset 0Ch – Transfer Event TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring.

1 RsvdZ.

2 Event Data (ED). When set to ‘1’, the event was generated by an Event Data TRB and the
Parameter Component (TRB Pointer field) contains a 64-bit value provided by the Event Data
TRB. If cleared to ‘0’, the Parameter Component (TRB Pointer field) contains a pointer to the TRB

that generated this event. Refer to section 4.11.5.2 for more information.

9:3 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the

Transfer Event TRB type ID.

20:16 Endpoint ID. The ID of the Endpoint that generated the event. This value is used as an index in

the Device Context to select the Endpoint Context associated with this event.

23:21 RsvdZ.

31:24 Slot ID. The ID of the Device Slot that generated the event. This is value is used as an index in
the Device Context Base Address Array to select the Device Context of the source device.

Note: For multi-TRB TDs, if ED = ‘0’, the TRB Transfer Length only reflects the number

of bytes transferred for the buffer associated with the Transfer TRB pointed to

by the Transfer Event, not the total bytes transferred for the TD.

Note: A Ring Overrun or Ring Underrun Event utilizes a Transfer Event TRB to report the

error. In this case, the TRB Pointer field is invalid.

Note: If an error occurs during the execution of a Transfer TRB that does not have its

IOC or ISP flags set, a Transfer Event shall be generated for the error and the

Transfer Event shall point to the offending TRB. Refer to sections 4.10.1 and

4.10.2 for more information on handling errors related to Transfer TRBs.

Note: CStream is not valid until a Streams endpoint transitions to the Start Stream

state for the first time. A Transfer Event generated by a Stop Endpoint Command

shall report ‘0’ in the TRB Pointer and TRB Length fields if the command is

executed and CStream is invalid. Refer to section 4.12.1.

6.4.2.2 Command Completion Event TRB

A Command Completion Event TRB shall be generated by the xHC when a

command completes on the Command Ring. Refer to section 4.11.4 for more

information on the use of Command Completion Events .

Note: The Primary Event Ring (0) shall receive all Command Completion Events.

456

Figure 6-15: Command Completion Event TRB

RsvdZ

RsvdZSlot ID VF ID

Command TRB Pointer Lo

31 24 23 16 15 10 9 4 3 0

03-00H

07-04H

0B-08H

0F-0CH

Command TRB Pointer Hi

Completion Code

CTRB Type

Command Completion Parameter

17 1

Table 6-40: Offset 00h and 04h – Command Completion Event TRB Field Definition

Bits Description

3:0 RsvdZ.

63:4 Command TRB Pointer Hi and Lo. This field represents the high order bits of the 64-bit address

of the Command TRB that generated this event. Note that this field is not valid for some
Completion Code values. Refer to Table 6-85 for specific cases.

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte

address boundary.

Table 6-41: Offset 08h – Command Completion Event TRB Field Definitions

Bits Description

23:0 Command Completion Parameter. This field may optionally be set by a command. Refer to
section 4.6.6.1 for specific usage. If a command does not utilize this field it shall be treated as

RsvdZ.

31:24 Completion Code. This field encodes the completion status of the command that generated the
event. Refer to the respective command definition for a list of the possible Completion Codes
associated with the command. Refer to section 6.4.5 for an enumerated list of possible error

conditions.

Table 6-42: Offset 0Ch – Command Completion Event TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring.

9:1 RsvdZ.

 457

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the

Command Completion Event TRB type ID.

23:16 VF ID. The ID of the Virtual Function that generated the event. Note that this field is valid only if
Virtual Functions are enabled. If they are not enabled this field shall be cleared to ‘0’.

31:24 Slot ID. The Slot ID field shall be updated by the xHC to reflect the slot associated with the
command that generated the event, with the following exceptions:

- The Slot ID shall be cleared to ‘0’ for No Op, Set Latency Tolerance Value, Get Port Bandwidth,
and Force Event Commands.

- The Slot ID shall be set to the ID of the newly allocated Device Slot for the Enable Slot

Command.

 - The value of Slot ID shall be vendor defined when generated by a vendor defined command.

This value is used as an index in the Device Context Base Address Array to select the Device

Context of the source device. If this Event is due to a Host Controller Command, then this field
shall be cleared to ‘0’.

Note: All commands for a Device Slot or VF are executed in order.

Note: All Vendor Defined Event TRBs shall support the Completion Code, Cycle bit,

and TRB Type fields. The remaining fields and reserved areas may be vendor

defined/allocated.

6.4.2.3 Port Status Change Event TRB

A Port Status Change Event TRB shall be generated by the xHC any time there is

a ‘0’ to ‘1’ transition of the Port Status Change Event Generation (PSCEG)

variable, e.g. a status change bit transitions to a non-zero value (CSC, PEC, OCC,

etc.). Refer to section 4.19.2 for more information on the use and generation of

the Port Status Change Event. Refer to section 5.4.8 for more information on the

port status change bits.

Note: The Primary Event Ring (0) shall receive all Port Status Change Events.

Figure 6-16: Port Status Change Event TRB

Port ID RsvdZ

RsvdZ

31 24 23 16 15 10 9 1 0

03-00H

07-04H

0B-08H

0F-0CHRsvdZRsvdZ

Completion Code

CTRB Type

RsvdZ

458

Table 6-43: Offset 00h – Port Status Change Event TRB Field Definitions

Bits Description

23:0 RsvdZ.

31:24 Port ID. The Port Number of the Root Hub Port that generated this event.

Table 6-44: Offset 08h – Port Status Change Event TRB Field Definitions

Bits Description

23:0 RsvdZ.

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB. The

Completion Code field shall be set to Success.

Table 6-45: Offset 0Ch – Port Status Change Event TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for

the definition of the Port Status Change Event TRB type ID.

31:16 RsvdZ.

6.4.2.4 Bandwidth Request Event TRB

A Bandwidth Event TRB shall be generated by the xHC when the Negotiate

Bandwidth Command is received. Refer to section 4.6.13 for more information

on Bandwidth Request Events.

Note: The Primary Event Ring (0) or a Secondary Event Ring may receive a Bandwidth

Request Event TRB. The xHC shall use the Interrupter Target field of the Slot

 459

Context indexed by the Bandwidth Request Event TRB Slot ID field to determine

the Event Ring that shall receive the event.

Figure 6-17: Bandwidth Request Event TRB

Completion Code

Slot ID RsvdZ RsvdZ CTRB Type

RsvdZ

RsvdZ

31 24 23 16 15 10 9 1 0

RsvdZ

03-00H

07-04H

0B-08H

0F-0CH

Table 6-46: Offset 08h – Bandwidth Request Event TRB Field Definitions

Bits Description

23:0 RsvdZ.

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB. The
Completion Code field shall always be set to Success for a Bandwidth Request Event.

Table 6-47: Offset 0Ch – Bandwidth Request Event TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the

Bandwidth Request TRB type ID.

23:16 RsvdZ.

31:24 Slot ID. The ID of the Device Slot that should evaluate its bandwidth requirements. This is value
is used as an index in the Device Context Base Address Array to select the Device Context of the

source device.

6.4.2.5 Doorbell Event TRB

A Doorbell Event TRB shall be generated by the xHC when an emulated doorbell

is written in a VF. A doorbell is emulated if the Slot Emulated bit is set to ‘1’ for

the respective VF Device Slot Assignment Register . Refer to section 7.7.3.

460

Note: The Primary Event Ring (0) shall receive all Doorbell Events.

Figure 6-18: Doorbell Event TRB

Completion Code

Slot ID VF ID

RsvdZ DB Reason

31 24 23 16 15 10 9 5 4 1 0

03-00H

07-04H

0B-08H

0F-0CH

RsvdZ

RsvdZ CTRB Type

RsvdZ

Table 6-48: Offset 00h – Doorbell Event TRB Field Definitions

Bits Description

4:0 DB Reason. This field contains the value written to the DB Target field of the associated Doorbell.

31:5 RsvdZ.

Table 6-49: Offset 08h – Doorbell Event TRB Field Definitions

Bits Description

23:0 RsvdZ.

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB. The

Completion Code field shall always be set to Success for a Doorbell Event.

Table 6-50: Offset 0Ch – Doorbell Event TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Doorbell Event TRB type ID.

23:16 VF ID. The ID of the Virtual Function that generated the event.

 461

31:24 Slot ID. The ID of the Device Slot that generated the event. This is value is used as an index in

the Device Context Base Address Array to select the Device Context of the source device. If this
Event is due to a Host Controller Command, then this field shall be cleared to ‘0’.

6.4.2.6 Host Controller Event TRB

A Host Controller Event TRB is a generic TRB, used to report xHC state changes

and Error conditions.

Note: The Primary Event Ring (0) or a Secondary Event Ring may receive a Host

Controller Event TRB, e.g. Event Ring Full Error.

Figure 6-19: Host Controller Event TRB

RsvdZ

RsvdZ

31 24 23 16 15 10 9 1 0

03-00H

07-04H

0B-08H

0F-0CHRsvdZRsvdZ

Completion Code

CTRB Type

RsvdZ

Table 6-51: Offset 08h – Host Controller Event TRB Field Definitions

Bits Description

23:0 RsvdZ.

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB.
Refer to section 6.4.5 for an enumerated list of possible completion code values.

Table 6-52: Offset 0Ch – Host Controller Event TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the

Host Controller Event TRB type ID.

462

31:16 RsvdZ.

6.4.2.7 Device Notification Event TRB

A Device Notification Event TRB is used to report the information received in

USB Device Notification (DEV_NOTIFICATION) Transaction Packets from USB

Devices. Refer to section 4.13 for more information on Device Notifications.

Note: The Primary Event Ring (0) or a Secondary Event Ring may receive a Device

Notification Event TRB. If enabled in the DNCTRL register (5.4.4), the xHC shall

use the Interrupter Target field of the Slot Context indexed by the Device

Notification Event TRB Slot ID field to determine the Event Ring that shall receive

the event.

Figure 6-20: Device Notification Event TRB

RsvdZNotification Type

Device Notification Data Hi

RsvdZ TRB TypeSlot ID

Device Notification Data Lo 03-00H

07-04H

0B-08H

0F-0CHRsvdZ

Completion Code

C

RsvdZ

31 24 23 16 15 4 310 9 8 7 1 0

Table 6-53: Offset 00h and 04h – Device Notification Event TRB Field Definitions

Bits Description

3:0 RsvdZ.

7:4 Notification Type. This field reports the value of the Notification Type field of the received USB
Device Notification Transaction Packet.

63:8 Device Notification Data. This field reports the value of bytes 05h through 0Bh of the received
USB Device Notification Transaction Packet (DNTP), i.e. Device Notification Event (DNE) TRB byte
01h = DNTP byte 05h,..., DNE TRB byte 07h = DNTP byte 0Bh.

 463

Table 6-54: Offset 08h – Device Notification Event TRB Field Definitions

Bits Description

23:0 RsvdZ.

31:24 Completion Code. This field encodes the completion status of the TRB, and shall always be set
to Success. Refer to section 6.4.5 for an enumerated list of the completion code values.

Table 6-55: Offset 0Ch – Device Notification Event TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Device Notification Event TRB type ID.

23:16 RsvdZ.

31:24 Slot ID. The ID of the Device Slot that generated the event. This value is used as an index in the

Device Context Base Address Array to select the Device Context of the source device.

6.4.2.8 MFINDEX Wrap Event TRB

A MFINDEX Wrap Event TRB may be used by software to report when the

MFINDEX register wrap from 0x3FFFh to 0. Refer to section 4.12.2 for more

information.

Note: The Primary Event Ring (0) shall receive all MFINDEX Wrap Events.

Figure 6-21: MFINDEX Wrap Event TRB

Completion Code

RsvdZ

RsvdZ

RsvdZ TRB Type

03-00H

07-04H

0B-08H

0F-0CHRsvdZ C

RsvdZ

31 16 15 10 9 1 024 23

464

Table 6-56: Offset 08h – MFINDEX Wrap Event TRB Field Definitions

Bits Description

23:0 RsvdZ.

31:24 Completion Code. This field encodes the completion status of the TRB, and shall always be set
to Success. Refer to section 6.4.5 for an enumerated list of the completion code values.

Table 6-57: Offset 0Ch – MFINDEX Wrap Event TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
MFINDEX Wrap Event TRB type ID.

31:16 RsvdZ.

6.4.3 Command TRBs

A Command TRB shall be found on a Command Ring. A Work Item on a

Command Ring is called a Command Descriptor (CD) and is comprised of a

single Command TRB. This section describes the command related TRBs.

Note: Data buffers referenced by Command TRBs shall not span PAGESIZE boundaries.

6.4.3.1 No Op Command TRB

The No Op Command TRB provides a simple means for verifying the operation of

the Command Ring mechanisms offered by the xHCI. Refer to section 4.6.2 for

more information.

 465

Figure 6-22: No Op Command TRB

Slot Type

RsvdZ

RsvdZ

RsvdZRsvdZ CTRB Type

RsvdZ

31 16 15 10 9 1 0

03-00H

0B-08H

0F-0CH

07-04H

21 20

Table 6-58: Offset 0Ch – No Op Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
No Op Command TRB type ID.

31:16 RsvdZ.

6.4.3.2 Enable Slot Command TRB

The Enable Slot Command TRB causes the xHC to select an available Device Slot

and return the ID of the selected slot to the host in a Command Completion

Event. Refer to section 4.6.3 for more information.

Figure 6-23: Enable Slot Command TRB

Slot Type

RsvdZ

RsvdZ

RsvdZRsvdZ CTRB Type

RsvdZ

31 16 15 10 9 1 0

03-00H

0B-08H

0F-0CH

07-04H

21 20

Table 6-59: Offset 0Ch – Enable Slot Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

9:1 RsvdZ.

466

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the

Enable Slot Command TRB type ID.

20:16 Slot Type. This field identifies the type of Slot that will be enabled by this command. Refer to
Table 7-9 for more information on the usage of Slot Type.

31:21 RsvdZ.

6.4.3.3 Disable Slot Command TRB

The Disable Slot Command TRB releases any bandwidth assigned to the

disabled slot and frees any internal xHC resources assigned to the slot. Refer to

section 4.6.4 for more information.

Figure 6-24: Disable Slot Command TRB

RsvdZRsvdZ

RsvdZ

31 24 23 16 15 10 9 1 0

03-00H

07-04H

0B-08H

0F-0CH

RsvdZ

Slot ID

RsvdZ

TRB Type C

Table 6-60: Offset 0Ch – Disable Slot Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Disable Slot Command TRB type ID.

23:16 RsvdZ.

31:24 Slot ID. The ID of the Device Slot to disable.

6.4.3.4 Address Device Command TRB

The Address Device Command TRB transitions the selected Device Context from

the Default to the Addressed state and causes the xHC to select an address for

the USB device in the Default State and issue a SET_ADDRESS request to the

USB device. Refer to section 4.6.5 for more information.

 467

Figure 6-25: Address Device Command TRB

RsvdZBSR

RsvdZ Input Context Pointer Lo

Input Context Pointer Hi

CSlot ID RsvdZ

31 24 23 16 15 10 9 4 3 1 0

03-00H

07-04H

0B-08H

0F-0CH

RsvdZ

TRB Type

8

Table 6-61: Offset 00h and 04h – Address Device Command TRB Field Definitions

Bits Description

3:0 RsvdZ.

63:4 Input Context Pointer Hi and Lo. This field represents the high order bits of the 64-bit base
address of the Input Context data structure associated with this command. Refer to section 6.2.5

for more information on the Input Context data structure.

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte
address boundary.

Table 6-62: Offset 0Ch – Address Device Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

8:1 RsvdZ.

9 Block Set Address Request (BSR). When this flag is set to ‘0’ the Address Device Command shall

generate a USB SET_ADDRESS request to the device. When this flag is set to ‘1’ the Address
Device Command shall not generate a USB SET_ADDRESS request. Refer to section 4.6.5 for
more information on the use of this flag.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Address Device Command TRB type ID.

23:16 RsvdZ.

31:24 Slot ID. The ID of the Device Slot that is the target of this command.

468

6.4.3.5 Configure Endpoint Command TRB

The Configure Endpoint Command TRB evaluates the bandwidth and resource

requirements of the endpoints selected by the command. Refer to section 4.6.6

for more information.

Figure 6-26: Configure Endpoint Command TRB

RsvdZDC

RsvdZ Input Context Pointer Lo

Input Context Pointer Hi

CSlot ID RsvdZ

31 24 23 16 15 10 9 4 3 1 0

03-00H

07-04H

0B-08H

0F-0CH

RsvdZ

TRB Type

8

Table 6-63: Offset 00h and 04h – Configure Endpoint Command TRB Field Definitions

Bits Description

3:0 RsvdZ.

63:4 Input Context Pointer Hi and Lo. This field represents the high order bits of the 64-bit base

address of the Input Context data structure associated with this event. Refer to section 6.2.5 for
more information on the Input Context data structure.

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte

address boundary.

Table 6-64: Offset 0Ch – Configure Endpoint Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

8:1 RsvdZ.

9 Deconfigure (DC). Set to ‘1’ by software to “deconfigure” the Device Slot. If the DC flag = ‘1’, the
Input Context Pointer field is ignored by the xHC.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Configure Endpoint Command TRB type ID.

23:16 RsvdZ.

31:24 Slot ID. The ID of the Device Slot that is the target of this command.

 469

6.4.3.6 Evaluate Context Command TRB

The Evaluate Context Command TRB is used by system software to inform the

xHC that the selected Context data structures in the Device Context have been

modified by system software and that the xHC shall evaluate any changes. Refer

to the Slot and Endpoint Context data structure descriptions (sections 6.2.2.3

and 6.2.3.3, respectively) for more information on how the xHC applies this

command. Refer to section 4.6.7 for more information.

Figure 6-27: Evaluate Context Command TRB

RsvdZBSR

RsvdZ Input Context Pointer Lo

Input Context Pointer Hi

CSlot ID RsvdZ

31 24 23 16 15 10 9 4 3 1 0

03-00H

07-04H

0B-08H

0F-0CH

RsvdZ

TRB Type

8

The Evaluate Context Command TRB uses the same format as the Address

Device Command TRB, with the following exceptions: 1) the TRB Type field is set

to the Evaluate Context Command TRB type ID, and 2) the BSR field is not used.

Refer to Table 6-62 for the definitions of the remaining fields in the Address

Device Command Control component.

6.4.3.7 Reset Endpoint Command TRB

The Reset Endpoint Command TRB is used by system software to reset a

specified Transfer Ring. Refer to section 4.6.8 for more information.

Figure 6-28: Reset Endpoint Command TRB

2

TSP

RsvdZ

RsvdZ

Endpoint ID RsvdZRsvdZ

31 24 23 16 15 10 9 1 0

03-00H

07-04H

0B-08H

0F-0CHSlot ID

RsvdZ

TRB Type C

2021 8

Table 6-65: Offset 0Ch – Reset Endpoint Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

8:1 RsvdZ.

470

9 Transfer State Preserve (TSP). Set to ‘1’ by software if the Reset operation does not affect the

current transfer state of the endpoint. Cleared to ‘0’ by software if the Reset operation resets the
current transfer state of the endpoint, i.e. The Data Toggle of a USB2 device or the Sequence
Number of a USB3 device is cleared to ‘0’. Also refer to section 4.6.8.1.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Reset Endpoint Command TRB type ID.

20:16 Endpoint ID. This field identifies the DCI of the endpoint to be reset.

23:21 RsvdZ.

31:24 Slot ID. The ID of the Device Slot.

6.4.3.8 Stop Endpoint Command TRB

The Stop Endpoint Command TRB command allows software to stop the xHC

execution of the TDs on a Transfer Ring and temporarily take ownership of TDs

that had previously been passed to the xHC. Refer to section 4.6.9 for more

information.

Figure 6-29: Stop Endpoint Command TRB

SP RsvdZ

RsvdZ

RsvdZ

Endpoint IDRsvdZ

31 24 23 16 15 10 9 1 0

Slot ID

RsvdZ

TRB Type C

2021

03-00H

07-04H

0B-08H

0F-0CH

22

Table 6-66: Offset 0Ch – Stop Endpoint Command TRB Field Definitions

Bits Description

0 Cycle (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Stop Endpoint Command TRB type ID.

20:16 Endpoint ID. This field identifies the DCI of the endpoint to be stopped. Valid values are ‘1’ to
Output Slot Context Context Entries.

22:21 RsvdZ.

 471

23 Suspend (SP). When ‘1’ this bit indicates that the Stop Endpoint Command is being issued to

stop activity on an endpoint that is about to be suspended, and the endpoint shall be stopped
for at least 10 ms. The xHC may use this information to power manage the endpoint hardware
resources. Refer to section 4.15 for more information.

31:24 Slot ID. The ID of the Device Slot.

In order to assure proper USB device operation, software shall wait for at least

10 ms. after a port indicates that it is suspended (PLS = ‘3’) before initiating a

port resume.

6.4.3.9 Set TR Dequeue Pointer Command TRB

The Set TR Dequeue Pointer Command TRB is used by system software to modify

the TR Dequeue Pointer and DCS fields of an Endpoint or Stream Context. Refer

to section 4.6.10 for more information.

Figure 6-30: Set TR Dequeue Pointer Command TRB

RsvdZTRB Type

DCS

Stream ID

Endpoint IDRsvdZ

2021

SCTNew TR Dequeue Pointer Lo

New TR Dequeue Pointer Hi

31 24 23 16 15 10 9 1 0

Slot ID

RsvdZ

C

4 3

03-00H

07-04H

0B-08H

0F-0CH

Table 6-67: Offset 00h and 04h – Set TR Dequeue Pointer Command TRB Field Definitions

Bits Description

0 Dequeue Cycle State (DCS). This bit identifies the value of the xHC Consumer Cycle State (CCS)
flag for the TRB referenced by the TR Dequeue Pointer.

3:1 Stream Context Type (SCT). If the Stream ID field is non-zero, this field identifies the type of the
Stream Context, otherwise this field shall be ‘0’. Refer to section Table 6-13 for the definition the
SCT field values.

63:4 New TR Dequeue Pointer Hi and Lo. This field represents the high order bits of the 64-bit base

address to be written to the TR Dequeue Pointer field in the target Endpoint or Stream Context.

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte
address boundary.

472

Table 6-68: Offset 08h – Set TR Dequeue Pointer Command TRB Field Definitions

Bits Description

15:0 RsvdZ.

31:16 Stream ID. If Streams are enabled for this endpoint, this field identifies the Stream Context that
will receive the new TR Dequeue Pointer. Refer to section 4.12.2.1 for the bounds checking that

the xHC shall perform on this value.

Table 6-69: Offset 0Ch – Set TR Dequeue Pointer Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Set TR Dequeue Pointer Command TRB type ID.

20:16 Endpoint ID. This field identifies the DCI of the endpoint that is the target of this command. If

Streams are not enabled for the endpoint, the Endpoint Context will receive the new TR
Dequeue Pointer.

23:21 RsvdZ.

31:24 Slot ID. The ID of the Device Slot.

Note: This command shall not be issued by software unless the target Transfer Ring is

in the Error or Stopped state or if it is a Streams endpoint and the target Stream

ID is active.

6.4.3.10 Reset Device Command TRB

The Reset Device Command TRB is used by software to inform the xHC that a

USB device has been Reset. The reset operation sets the device slot to the

Default state, sets the Device Address to ‘0’, and disables all endpoints except

for the Default Control Endpoint. Refer to section 4.6.11 for more information.

 473

Figure 6-31: Reset Device Command TRB

RsvdZ

RsvdZ

RsvdZ

RsvdZ

31 24 23 16 15 10 9 1 0

Slot ID

RsvdZ

TRB Type C

03-00H

07-04H

0B-08H

0F-0CH

Table 6-70: Offset 0Ch – Reset Device Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Reset Device Command TRB type ID.

23:16 RsvdZ.

31:24 Slot ID. The ID of the Device Slot that is being reset.

6.4.3.11 Force Event Command TRB (Optional Normative)

The Force Event Command TRB allows a VMM to inject an Event TRB on the

Event Ring of a selected VF. VMMs utilize this command when emulating a USB

device to a VM. Refer to section 8 for more information on virtualization. Refer

to section 4.6.12 for more information.

Figure 6-32: Force Event Command TRB

VF Interrupter Target

22 21

RsvdZ

RsvdZ C

Event TRB Pointer Lo

31 24 23 16 15 10 9 4 3 1 0

03-00H

07-04H

0B-08H

0F-0CH

Event TRB Pointer Hi

RsvdZ

RsvdZ

TRB TypeVF ID

Table 6-71: Offset 00h and 04h – Force Event Command TRB Field Definitions

Bits Description

3:0 RsvdZ.

474

63:4 Event TRB Pointer Hi and Lo. This field represents the high order bits of the 64-bit address of

the Event TRB that will be posted to the target Event Ring.

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte
address boundary.

Table 6-72: Offset 08h – Force Event Command TRB Field Definitions

Bits Description

21:0 RsvdP.

31:22 VF Interrupter Target. This field shall indicate the ID of the Interrupter, whose Event Ring will

receive the forced event. The Interrupter ID is the virtual value used by the target VF (based on
the Interrupter Offset field of the VF Interrupter Range Register), not a physical value. Refer to
section 7.7.2 for more information on virtual Interrupter mapping.

Table 6-73: Offset 0Ch – Force Event Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Force Event Command TRB type ID.

23:16 VF ID. The ID of the Virtual Function who’s Event Ring will receive this Event.

31:24 RsvdZ.

6.4.3.12 Negotiate Bandwidth Command TRB (Optional Normative)

The Negotiate Bandwidth Command TRB is used by system software to initiate

Bandwidth Request Events to periodic endpoints. This command may be used to

recover unused USB bandwidth from the system. Refer to section 4.6.3 for more

information.

The Negotiate Bandwidth Command TRB uses the same format as the Disable

Slot Command (6.4.3.3), with the exception that the TRB Type field is set to the

Negotiate Bandwidth Command TRB type ID, and the Slot ID is set to the ID of

 475

the slot that requires the bandwidth negotiation. Refer to Table 6-60 for the

definitions of the remaining fields in the Negotiate Bandwidth Command Control

component.

6.4.3.13 Set Latency Tolerance Value (LTV) Command TRB (Optional Normative)

The Set LTV Command TRB provides a simple means for host software to

provide a single Best Effort Latency Tolerance (BELT) value. This command is

optional normative, however it shall be supported if the xHC also supports a

corresponding host interconnect LTM mechanism. Refer to sections 4.6.14 and

4.13.1 for more information.

Figure 6-33: Set Latency Tolerance Value Command TRB

RsvdZ

RsvdZ

RsvdZ

Best Effort Latency Tolerance Value (BELT)RsvdZ

31 16 15 10 9 1 0

RsvdZ

TRB Type C

03-00H

07-04H

0B-08H

0F-0CH

28 27

Table 6-74: Offset 0Ch – Set Latency Tolerance Value Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the

Set Latency Tolerance Value Command TRB type ID.

27:16 Best Effort Latency Tolerance Value. The Best Effort Latency Tolerance (BELT) value provided

by software. This value shall be formatted as defined in the section of the USB3 Specification
describing Device Notification (DEV_NOTIFICATION) Transaction Packet (TP).

31:28 RsvdZ.

6.4.3.14 Get Port Bandwidth Command TRB

The Get Port Bandwidth Command TRB provides a means for host software to

identify the bandwidth available on xHC Root Hub Ports. Refer to section 4.6.15

for more information.

476

Figure 6-34: Get Port Bandwidth Command TRB

Hub Slot ID

RsvdZ

RsvdZ C

Port Bandwidth Context Pointer Lo

31 16 15 10 9 4 3 1 0

03-00H

07-04H

0B-08H

0F-0CH

Port Bandwidth Context Pointer Hi

RsvdZ

RsvdZ

TRB TypeDev Speed

20 1924 23

Table 6-75: Offset 00h and 04h – Get Port Bandwidth Command TRB Field Definitions

Bits Description

3:0 RsvdZ.

63:4 Port Bandwidth Context Pointer Hi and Lo. This field represents the high order bits of the 64-bit
address of the Port Bandwidth Context data structure that will receive the Port Bandwidth
information.

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte
address boundary.

Table 6-76: Offset 0Ch – Get Port Bandwidth Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Get Port Bandwidth Command TRB type ID.

19:16 Dev Speed. The bus speed of interest. Refer to the Port Speed field in Table 5-26 for a definition
of the allowed values. Note: The Undefined and Reserved Speeds are invalid values for this field.

23:20 RsvdZ.

31:24 Hub Slot ID. This field identifies the hub ports that the bandwidth information shall be returned

for. A value of ‘0’ shall update the Port Bandwidth Context with the Root Hub port bandwidth
information. If this field is set to the Slot ID of a High-speed hub, the Port Bandwidth Context
shall be updated with that port’s bandwidth information. This field is ignored if SBD = ‘0’. Refer

to section 4.16.2 for more information on the use of this field.

 477

6.4.3.15 Force Header Command TRB

A Force Header Command TRB is used to generate a USB Transaction or Link

Management Packet to a USB Device. Refer to section 4.6.16 for more

information.

Figure 6-35: Force Header Command TRB

Header Info Lo Type

Header Info Hi

RsvdZ

Header Info Mid

RsvdZ TRB TypeRoot Hub Port Number

03-00H

07-04H

0B-08H

0F-0CHC

31 24 23 16 15 10 9 1 05 4

Table 6-77: Offset 00h, 04h, and 08h – Force Header Command TRB Field Definitions

Bits Description

4:0 Packet Type (Type). This field identifies the packet type. Refer to section 8.3.1.2 in the USB3
specification for valid values.

95:5 Header Info. This field defines the value of bytes 00h through 0Bh of the transmitted USB
Transaction or Link Management Packet.

Refer to Section 8 in the USB3 specification for the definition of this field.

Table 6-78: Offset 0Ch – Force Header Command TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring.

9:1 RsvdZ.

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the
Force Header Command TRB type ID.

23:16 RsvdZ.

31:24 Root Hub Port Number. This field identifies the number of the Root Hub Port that the header
packet shall be issued to. Refer to section 4.19.7 for port numbering information.

478

6.4.4 Other TRBs

6.4.4.1 Link TRB

A Link TRB provides support for non-contiguous TRB Rings. Refer to section

4.11.5.1 for more information on Link TRBs and the operation of non-contiguous

TRB Rings.

Note: Consecutive Link TRBs may impact xHC performance and should be avoided by

software. Refer to section 4.11.7 for more information on Link TRB placement

rules.

Figure 6-36: Link TRB

Interrupter Target

CH

RsvdZ

Ring Segment Pointer Hi

RsvdZRsvdZ

RsvdZ

CTCTRB Type IOC RsvdZ

Ring Segment Pointer Lo

31 16 15 10 9 5 4 3 2 1 0

03-00H

0B-08H

0F-0CH

07-04H

17 622 21

Table 6-79: Offset 00h and 04h – Link TRB Field Definitions

Bits Description

3:0 RsvdZ. Ring Segments are TRB aligned (16 Byte boundaries).

63:4 Ring Segment Pointer Hi and Lo. These fields represent the high order bits of the 64-bit base

address of the next Ring Segment.

The memory structure referenced by this physical memory pointer shall begin on a 16-byte
address boundary.

Table 6-80: Offset 08h – Link TRB Field Definitions

Bits Description

21:0 RsvdZ.

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive Transfer
Events generated by this TRB. Valid values are between 0 and MaxIntrs-1.

This field is ignored by the xHC on Command Rings.

 479

Table 6-81: Offset 0Ch – Link TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer location of a Transfer or Command
Ring.

1 Toggle Cycle (TC). When set to ‘1’, the xHC shall toggle its interpretation of the Cycle bit. When
cleared to ‘0’, the xHC shall continue to the next segment using its current interpretation of the
Cycle bit.

3:2 RsvdZ.

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A

Transfer Descriptor (TD) is defined as one or more TRBs. The Chain bit is used to identify the
TRBs that comprise a TD. Refer to section 4.11.7 for more information on Link TRB placement
within a TD. On a Command Ring this bit is ignored by the xHC.

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes,

the Host Controller shall notify the system of the completion by placing an Event TRB on the
Event ring and sending an interrupt at the next interrupt threshold.

9:6 RsvdZ.

15:10 TRB Type. This field is set to Link TRB type. Refer to Table 6-86 for the definition of the Type
TRB IDs.

31:16 RsvdZ.

6.4.4.2 Event Data TRB

An Event Data TRB allows system software to generate a software defined event

and specify the Parameter field of the generated Transfer Event.

Note: When applying Event Data TRBs to control transfer: 1) An Event Data TRB may

be inserted at the end of a Data Stage TD in order to report the accumulated

transfer length of a multi-TRB TD. 2) An Event Data TRB may be inserted at the

end of a Status Stage TD in order to provide Event Data associated with the

control transfer completion.

Refer to section 4.11.5.2 for more information.

480

Figure 6-37: Event Data TRB

Interrupter Target

22 21

RsvdZ ENTCHIOC RsvdZ

Event Data Lo

Event Data Hi

RsvdZ CTRB Type

31 17 16 15 10 9 1 0

03-00H

0B-08H

0F-0CH

07-04H

5 4 3 2

RsvdZ

6

BEI

8

Table 6-82: Offset 00h and 04h – Event Data TRB Field Definitions

Bits Description

63:0 Event Data Hi and Lo. This field represents the 64-bit value that shall be copied to the TRB

Pointer field (Parameter Component) of the Transfer Event TRB.

Table 6-83: Offset 08h – Event Data TRB Field Definitions

Bits Description

21:0 RsvdZ.

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive Transfer

Events generated by this TRB. Valid values are between 0 and MaxIntrs-1.

Table 6-84: Offset 0Ch – Event Data TRB Field Definitions

Bits Description

0 Cycle bit (C). This bit is ignored by the xHC in a Link TRB.

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before
saving the endpoint state. Refer to section 4.12.3 for more information.

3:2 RsvdZ.

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Transfer
Ring. The Chain bit is used to identify the TRBs that comprise a TD. The Chain bit is always ‘0’ in
the last TRB of a TD.

 481

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes,

the Host Controller shall notify the system of the completion by placing an Event TRB on the
Event ring and sending an interrupt at the next interrupt threshold.

8:6 RsvdZ.

9 Block Event Interrupt (BEI). If this bit is set to '1' and IOC = '1', then the Transfer Event
generated by IOC shall not assert an interrupt to the host at the next interrupt threshold. Refer

to section 4.17.5.

15:10 TRB Type. This field is set to Event Data TRB type. Refer to Table 6-86 for the definition of the
Type TRB IDs.

31:16 RsvdZ.

6.4.5 TRB Completion Codes

The following TRB Completion Status codes will be asserted by the Host

Controller during status update if the associated error condition is detected.

Table 6-85: TRB Completion Code Definitions

Value Definition Description

0 Invalid Indicates that the Completion Code field has not been updated by the

TRB producer.

1 Success Indicates successful completion of the TRB operation.

2 Data Buffer Error Indicates that the Host Controller is unable to keep up with the reception
of incoming data (overrun) or is unable to supply data fast enough during

transmission (underrun). Section 4.10.2.5 defines the requirements of the
host controller when a Data Buffer Error occurs.

3 Babble Detected

Error

Asserted when “babbling” is detected during the transaction generated by

this TRB113.

4 USB Transaction
Error

Asserted in the case where the host did not receive a valid response from
the device (Timeout, CRC, Bad PID, unexpected NYET, etc.).

5 TRB Error Asserted when a TRB parameter error condition (e.g., out of range or

invalid parameter) is detected in a TRB. Refer to section 4.10.2.2 for
examples.

482

6 Stall Error Asserted when a Stall condition (e.g., a Stall PID received from a device) is

detected for a TRB. Refer to section 4.10.2.1 for more information on
Stalls.

This code also indicates that the USB device has an error that prevents it

from completing a command issued through a Control endpoint. Refer to
section 8.5.3.1 of the USB2 specification for more information.

7 Resource Error Asserted by a Configure Endpoint Command or an Address Device
Command if there are not adequate xHC resources available to
successfully complete the command. Refer to sections 4.6.5 and 4.6.6 for

more information.

8 Bandwidth Error Asserted by a Configure Endpoint Command if periodic endpoints are

declared and the xHC is not able to allocate the required Bandwidth. Refer
to section 4.16 for more information.

9 No Slots
Available Error

Asserted if a adding one more device would result in the host controller to
exceed the maximum Number of Device Slots (MaxSlots) for this

implementation. Refer to section 4.6.3 for more information.

10 Invalid Stream

Type Error

Asserted if a invalid Stream Context Type (SCT) value is detected. Refer to

section 4.12.2.1 for more information.

11 Slot Not

Enabled Error

Asserted if a command is issued to a Device Slot that is in the Disabled

state. The Slot ID is reported.

12 Endpoint Not
Enabled Error

Asserted if a doorbell is rung for an endpoint that is in the Disabled state.
The Slot ID and error Endpoint ID are reported. Also refer to section 4.7.

13 Short Packet Asserted if the number of bytes received was less than the TD Transfer
Size.

14 Ring Underrun Asserted in a Transfer Event TRB if the Transfer Ring is empty when an
enabled Isoch endpoint is scheduled to transmit data. Refer to section
4.10.3.1.

Note that the Transfer Event TRB Pointer field is not valid when this
condition is indicated and should be ignored by software.

15 Ring Overrun Asserted in a Transfer Event TRB if the Transfer Ring is empty when an
enabled Isoch endpoint is scheduled to receive data. Refer to section

4.10.3.1.

Note that the Transfer Event TRB Pointer field is not valid when this
condition is indicated and should be ignored by software.

16 VF Event Ring

Full Error

Asserted by a Force Event command if the target VF’s Event Ring is full.

Refer to section 4.9.4 for more information.

Note that the Transfer Event TRB Pointer field is not valid when this error
is indicated and should be ignored by software.

 483

17 Parameter Error Asserted by a command if a Context parameter is invalid.

18 Bandwidth
Overrun Error

Asserted during an Isoch transfer if the TD exceeds the bandwidth
allocated to the endpoint.

19 Context State
Error

Asserted if a command is issued to transition from an illegal context state.

20 No Ping
Response Error

Asserted if the xHC was unable to complete a periodic data transfer
associated within the ESIT, because it did not receive a PING_RESPONSE
in time. Refer to section 4.23.5.2.1 for more information.

21 Event Ring Full
Error

Asserted if the Event Ring is full, the xHC is unable to post an Event to the
ring (refer to section 4.9.4). This error is reported in a Host Controller
Event TRB.

22 Incompatible

Device Error

Asserted if the xHC detects a problem with a device that does not allow it

to be successfully accessed. e.g. due to a device compliance or
compatibility problem. This error may be returned by any command or
transfer, and is fatal as far as the Slot is concerned. Software shall issue a

Disable Slot Command to recover114,112.

23 Missed Service

Error

Asserted if the xHC was unable to service a Isochronous endpoint within

the Interval time (ESIT). Refer to sections 4.9.4 and 4.10.3.2 for more
information.

24 Command Ring
Stopped

Asserted in a Command Completion Event due to a Command Stop (CS)
operation. Refer to section 4.6 for more information.

25 Command
Aborted

Asserted in a Command Completion Event of an aborted command if the
command was terminated by a Command Abort (CA) operation. Refer to

section 4.6 for more information.

26 Stopped Asserted in a Transfer Event if the transfer was terminated by a Stop
Endpoint Command. Refer to section 4.6.9 for more information.

27 Stopped -
Length Invalid

Asserted in a Transfer Event if the transfer was terminated by a Stop
Endpoint Command and the Transfer Event TRB Transfer Length field is
invalid. Refer to section 4.6.9 for more information.

112USB system software stacks commonly support a number of “Quirk” devices. A Quirk device is any device that is
not compliant with the USB spec and requires software or the xHC to make a compliance exception to support it.

An Incompatible Device Error should be generated if the xHC detects a Quirk device that it does not support.

484

28 Stopped - Short

Packet

Asserted in a Transfer Event if the transfer was terminated by a Stop

Endpoint Command, and the transfer was stopped after Short Packet
conditions were met, but before the end of the TD was reached. The
Transfer Event TRB Transfer Length field shall contain the value of the

EDTLA.

Refer to section 4.6.9 for more information on the Stop Endpoint
Command, section 4.10.1.1 for Short Transfer information, and section

4.11.5.2 for EDTLA information.

29 Max Exit Latency
Too Large Error

Asserted by the Evaluate Context Command if the proposed Max Exit
Latency would not allow the periodic endpoints of the Device Slot to be
scheduled. Refer to sections 4.23.5.2.2 and 4.6.6.1.

30 Reserved

31 Isoch Buffer

Overrun

Asserted if the data buffer defined by an Isoch TD on an IN endpoint is

less than the Max ESIT Payload in size and the device attempts to send
more data than it can hold113. Refer to sections 4.14.2.1.1 and 4.14.2.1.3.

32 Event Lost Error Asserted if the xHC internal event overrun condition. If the condition is

due to TD related events, then the endpoint shall be halted. The
conditions that generate this error are xHC implementation specific114.
Refer to section 4.10.1.

33 Undefined Error May be reported by an event when other error codes do not apply. The
conditions that assert this condition code are xHC implementation

specific. Refer to section 4.11.6 for more information. An Undefined Error
shall be treated as a fatal error by software.

34 Invalid Stream
ID Error

Asserted if a invalid Stream ID is received. Refer to section 4.12.2.1 for
more information.

35 Secondary
Bandwidth Error

Asserted by a Configure Endpoint Command if periodic endpoints are
declared and the xHC is not able to allocate the required Bandwidth due
to a Secondary Bandwidth Domain. Refer to section 4.16 for more

information.

36 Split
Transaction
Error

Asserted if an error is detected on a USB2 protocol endpoint for a split
transaction. Refer to section 4.10.3.3.

113When a TD Babble condition occurs on non-Isoch endpoints it generates a Babble Detected Error and halts the

endpoint. However for Isoch endpoints, a TD Babble condition generates an Isoch Buffer Overrun and does not
halt the endpoint.

114Refer to the xHC vendor data sheet for more information on the possible sources of this error.

 485

37-

191

Reserved

192-

223

Vendor Defined

Error

Asserted by a vendor to indicate an error condition has occurred. Refer to

vendor documentation to identify specific error condition(s). If software
does not recognize the code, it shall interpret this range of vendor defined
values as a Undefined Error condition. Refer to section 4.11.6 for more

information.

224-

255

Vendor Defined

Info

Asserted by a vendor for informational purposes. Refer to vendor

documentation to identify specific information reported. If software does
not recognize the code, it shall interpret this range of vendor defined
values as a Success condition code. Refer to section 4.11.6 for more

information.

If multiple error conditions occur during the execution of a TRB only the first

detected condition will be reported.

6.4.6 TRB Types

TRB Types fall into three categories; Command, Event, or Transfer. These

categories relate to the TRB Ring that specific TRB(s) may appear on. Table 6-86

identifies the specific TRB Types that are “Allowed” on each Ring type.

Note: In Table 6-86 the ID values are uniquely assigned to each TRB Type, however

to conserve IDs as new TRB Types are defined in the future the same ID value

may identify different TRB types as a function of Ring type. e.g. a new TRB that is

only allowed on a Command Ring may use ID = 2.

Table 6-86: TRB Type Definitions

Allowed TRB Types

ID TRB Name

Command
Ring

Event
Ring

Transfer
Ring

 0 Reserved

 Allowed 1 Normal

 Allowed 2 Setup Stage

 Allowed 3 Data Stage

 Allowed 4 Status Stage

486

 Allowed 5 Isoch

Allowed Allowed 6 Link

 Allowed 7 Event Data

 Allowed 8 No-Op

Allowed 9 Enable Slot Command

Allowed 10 Disable Slot Command

Allowed 11 Address Device Command

Allowed 12 Configure Endpoint Command

Allowed 13 Evaluate Context Command

Allowed 14 Reset Endpoint Command

Allowed 15 Stop Endpoint Command

Allowed 16 Set TR Dequeue Pointer Command

Allowed 17 Reset Device Command

Allowed 18 Force Event Command (Optional, used with
virtualization only)

Allowed 19 Negotiate Bandwidth Command (Optional)

Allowed 20 Set Latency Tolerance Value Command
(Optional)

Allowed 21 Get Port Bandwidth Command

Allowed 22 Force Header Command

Allowed 23 No Op Command

 24-
31

Reserved

 Allowed 32 Transfer Event

 Allowed 33 Command Completion Event

 Allowed 34 Port Status Change Event

 Allowed 35 Bandwidth Request Event (Optional)

 487

 Allowed 36 Doorbell Event (Optional, used with

virtualization only)

 Allowed 37 Host Controller Event

 Allowed 38 Device Notification Event

 Allowed 39 MFINDEX Wrap Event

 40-
47

Reserved

Optional Optional Optional 48-
63

Vendor Defined

Note: Only the TRB Types specifically “Allowed” in the Command Ring column of Table

6-86 shall be executed on a Command Ring by the xHC. All other TRB types

found on a Command Ring shall generate a Command Completion Event with

the Completion Code set to TRB Error, the Command TRB Pointer set to the

address of the TRB in error, and the Slot ID field cleared to ‘0’.

Note: Only the TRB Types specifically “Allowed” in the Event Ring column of Table

6-86 shall be generated on an Event Ring by the xHC.

Note: Only the TRB Types specifically “Allowed” in the Transfer Ring column of Table

6-86 shall be executed on a Transfer Ring by the xHC. All other TRB types found

on a Transfer Ring shall generate a Transfer Event with the Completion Code set

to TRB Error, the TRB Pointer set to the address of the TRB in error, and the Slot

ID and Endpoint ID fields should reflect the Slot ID and Endpoint ID of the

Transfer Ring in error.

Note: The IDs available for the Vendor Defined TRB types shall be assigned by the

xHC vendor. System software shall qualify all Vendor Defined TRB type IDs with

the Vendor ID and Device ID fields in the PCI Configuration Space Header. If the

xHC is not based on PCI, then the xHC vendor shall provide an alternate means

of identifying the Vendor and Device Type to system software.

System software should provide interface extensions that allow vendor access

to proprietary xHC vendor defined features through the xHCD.

Table 6-87 defines the allowable Transfer Ring TRB Types as function of

endpoint type.

488

Table 6-87: Allowed TRB Type as function of Endpoint Type

 Allowed TRB Types

Transfer Ring TRB Type

Isoch Interrupt Control Bulk

Allowed Allowed Allowed Allowed Normal

 Allowed Setup Stage

 Allowed Data Stage

 Allowed Status Stage

Allowed Isoch

Allowed Allowed Allowed Allowed Link

Allowed Allowed Allowed Allowed Event Data

Allowed Allowed Allowed Allowed No-Op

Optional Optional Optional Optional Vendor Defined

Note: If the xHC detects a disallowed TRB type on a Transfer Ring, it shall generate

Transfer Event for the TD with the TRB Error completion code set and set the

state of the ring to Error.

Table 6-88 defines the allowable Transfer Ring TRB Types as function of

Transaction type.

Table 6-88: Allowed TRB Types as function of Transfer Descriptor Type

Transfer Descriptor Type Allowed TRB Types

Isoch Isoch, Normal, Event Data, No Op

Interrupt Normal, Event Data, No Op

Control Setup Stage, Data Stage, Status Stage, Normal, Event Data, No Op

Bulk Normal, Event Data, No Op

Vendor Defined Vendor Defined, Event Data, No Op

 489

Note: If the xHC detects a disallowed TRB type on a Transfer Ring, it shall generate

Transfer Event for the TD with the TRB Error completion code set and set the

state of the endpoint to Error.

6.5 Event Ring Segment Table

The Event Ring Segment Table (ERST) is used to define multi-segment Event

Rings and to enable runtime expansion and shrinking of the Event Ring. The

location of the Event Ring Segment Table is defined by the Event Ring Segment

Table Base Address Register (5.5.2.3.2). The size of the Event Ring Segment

Table is defined by the Event Ring Segment Table Base Size Register (5.5.2.3.1).

This section defines the properties of a single Event Ring Segment Table

element. Refer to section 4.9.4 for more information.

Figure 6-38: Event Ring Segment Table Entry

RsvdZ

RsvdZ

Ring Segment Base Address Hi

RsvdZ

Ring Segment Base Address Lo

31 0

Ring Segment Size

03-00H

0B-08H

0F-0CH

07-04H

16 15 6 5

Table 6-89: Offset 00 and 04 – Event Ring Segment Table Entry Field Definitions

Bits Description

5:0 RsvdZ.

63:6 Ring Segment Base Address Hi and Lo. These fields represent the high order bits of the 64-bit

base address of the Event Ring Segment.

The memory structure referenced by this physical memory pointer shall begin on a 64-byte
address boundary.

Table 6-90: Offset 08 – Event Ring Segment Table Entry Field Definitions

Bits Description

15:0 Ring Segment Size. This field defines the number of TRBs supported by the ring segment, Valid
values for this field are 16 to 4096, i.e. an Event Ring segment shall contain at least 16 entries.

32:16 RsvdZ.

490

Note: The Ring Segment Size may be set to any value from 16 to 4096, however

software shall allocate a buffer for the Event Ring Segment that rounds up its

size to the nearest 64B boundary to allow full cache-line accesses.

6.6 Scratchpad Buffer Array

The Scratchpad Buffer Array is used to define the locations of statically

allocated memory pages that are available for the private use of the xHC.

The location of the Scratchpad Buffer Array is defined by entry 0 of the Device

Context Base Address Array (6.1).

The size of the Scratchpad Buffer Array is defined by the Max Scratchpad Buffers

field in the HCSPARAMS2 Register (5.3.4).

Table 6-91 defines the properties of a single Scratchpad Buffer Array element.

All elements in the Scratchpad Buffer Array are identical. Refer to section 4.20

for more information.

Table 6-91: Scratchpad Buffer Array Element Field Bit Definitions

Bit Description

11:0 RsvdZ.

PSZ:12 RsvdZ.

Valid values for PSZ are 12 to 20, depending on the value of PAGESIZE. Note if PAGESIZE = 4K,
then this field is zero bits wide. Refer to section 6.6.1 for how PSZ is calculated. If PSZ = 12,

then no bits are reserved by this field.

63:PSZ Scratchpad Buffer Base Address – RW. Default = ‘0’. This field contains bits 63 to PSZ of a
pointer to a Scratchpad Buffer.

The actual number of bits used for the Scratchpad Buffer Base Address field depends on the
value of the PAGESIZE register. If PAGESIZE = 4K then bits 31-12 of the Scratchpad Buffer
Base Address field are valid, if PAGESIZE = 8K then bits 31-13 of the Scratchpad Buffer Base

Address field are valid, and so on. Valid values for PSZ are 12 to 20.

6.6.1 PSZ

The Page Size register determines the low-order boundary of the Scratchpad

Buffer Base Address field of a Scratchpad Buffer Array Element . This boundary is

referred to as “PSZ”. The calculation of the PSZ bit offset equals the Page Size

bit offset + 12. For example, if the Page Size register defines a 4K system page

 491

size, then the bit offset of PSZ = 12, if the Page Size register defines a 16K

system page size, then the bit offset of PSZ = 14.

492

7 xHCI Extended Capabilities

The xHC exports xHCI-specific extended capabilities utilizing a method similar to

the PCI extended capabilities. If an xHC implements any extended capabilities, it

specifies a non-zero value in the xHCI Extended Capabilities Pointer (xECP) field

of the HCCPARAMS1 register (5.3.6). This value is an offset into xHC MMIO space

from the Base, where the Base is the beginning of the host controller’s MMIO

address space. Each capability register has the format illustrated in Table 7-1.

Table 7-1: Format of xHCI Extended Capability Pointer Register

Bit Description

7:0 Capability ID – RO. This field identifies the xHCI Extended capability. Refer to Table 7-2 for a
list of the valid xHCI extended capabilities.

15:8 Next xHCI Extended Capability Pointer – RO. This field points to the xHC MMIO space offset of
the next xHCI extended capability pointer. A value of 00h indicates the end of the extended
capability list. A non-zero value in this register indicates a relative offset, in Dwords, from this

Dword to the beginning of the next extended capability.

For example, assuming an effective address of this data structure is 350h and assuming a
pointer value of 068h, we can calculate the following effective address:

350h + (068h << 2) -> 350h + 1A0h -> 4F0h

31:16 Capability Specific. The definition and attributes of these bits depends on the specific
capability.

Table 7-2: xHCI Extended Capability Codes

ID Name Description Size Section

0 Reserved

1 USB Legacy
Support

This capability provides the xHCI Pre-OS to OS
Handoff Synchronization support capability.

8B 7.1

2 Supported
Protocol

This capability enumerates the protocols and
revisions supported by this xHC. At least one of
these capability structures is required for all xHC

implementations.

12B 7.2

3 Extended Power
Management

This capability is required for all xHC non-PCI
implementations.

Refer to
PCI PM
spec.

7.3

 493

4 I/O

Virtualization

This capability is optional-normative for xHC

implementations that require hardware
virtualization support.

Up to

1280B

7.7

5 Message
Interrupt

Either this or the xHCI Extended Message
Interrupt capability is required for all xHC non-

PCI implementations.

Refer to
PCI spec.

7.5

6 Local Memory This capability is optional-normative for xHC
implementations that require local memory

support.

Up to 4TB 7.8

7-9 Reserved

10 USB Debug
Capability

This capability is optional-normative for xHC
implementations and describes the xHCI USB
Debug Capability.

56B 7.6

11-

16

Reserved

17 Extended

Message
Interrupt

Either this or the xHCI Message Interrupt

capability is required for all xHC non-PCI
implementations.

Refer to

PCI spec.

7.4

18-
191

Reserved

192-
255

Vendor Defined These IDs are available for vendor specific
extensions to the xHCI.

Vendor
defined

7.1 USB Legacy Support Capability

The USB Legacy Support provided by the xHC is optional normative functionality

that is applicable to pre-OS software (BIOS) and the operating system for the

coordination of ownership of the xHC.

This capability is chained through the xHCI Extended Capabilities Pointer (xECP)

field and resides in MMIO space.

494

Table 7-3: HC Extended Capability Registers

Configuration
Offset Mnemonic Register

Power
Well

Register
Access

xECP+0h USBLEGSUP USB Legacy Support Capability
Register

Aux
Power

RO, RWS

xECP+4h USBLEGCTLSTS USB Legacy Support Control
and Status Register

Aux
Power

RWS,
RW1CS

The xECP field is in the HCCPARAMS1 register, refer to Section 5.3.6.

Note: The USB Legacy Support Capability registers reside in the Aux Power well. Refer

to section 4.22.1 for reset conditions.

7.1.1 USB Legacy Support Capability (USBLEGSUP)

Offset: xECP + 00h

Default Value: Implementation Dependent

Attribute: RO, RW

Size: 32 bits

This register is an xHCI extended capability register. It includes a specific

function section and a pointer to the next xHCI Extended Capability. This

register is used by pre-OS software (BIOS) and the operating system to

coordinate ownership of the xHC. This register is in the Aux Power well.

Table 7-4: USB Legacy Support Extended Capability (USBLEGSUP)

Bit Description

7:0 Capability ID – RO. This field identifies the extended capability. Refer to Table 7-2 for the value
that identifies the capability as Legacy Support.

This extended capability requires one additional 32-bit register for control/status information
(USBLEGCTLSTS), and this register is located at offset xECP+04h.

15:8 Next Capability Pointer - RO. This field indicates the location of the next capability with respect
to the effective address of this capability. Refer to Table 7-1 for more information on this field.

16 HC BIOS Owned Semaphore – RW. Default = ‘0’. The BIOS sets this bit to establish ownership of

the xHC. System BIOS will set this bit to a ‘0’ in response to a request for ownership of the xHC
by system software.

23:17 RsvdP.

 495

24 HC OS Owned Semaphore – RW. Default = ‘0’. System software sets this bit to request

ownership of the xHC. Ownership is obtained when this bit reads as ‘1’ and the HC BIOS Owned
Semaphore bit reads as ‘0’.

31:25 RsvdP.

Note: To support the BIOS’s and OS’s ability to modify the Owned Semaphores

independently,

Byte (8-bit) accesses shall be supported by this register.

7.1.2 USB Legacy Support Control/Status (USBLEGCTLSTS)

Offset: xECP + 04h

Default Value: 0000 0000h

Attribute: RO, RW, RW1C

Size: 32 bits

Pre-OS (BIOS) software uses this register to enable System Management

Interrupts (SMIs) for every xHCI/USB event it needs to track. Bits [21:16] of this

register are simply shadow bit of USBSTS register [5:0]. This register is in the

Aux Power well.

Table 7-5: USB Legacy Support Control/Status (USBLEGCTLSTS)

Bit Description

0 USB SMI Enable – RW. Default = ‘0’. When this bit is a ‘1’, and the SMI on Event Interrupt bit
(below) in this register is a ‘1’, the host controller will issue an SMI immediately.

3:1 RsvdP.

4 SMI on Host System Error Enable – RW. Default = ‘0’. When this bit is a ‘1’, and the SMI on Host
System Error bit (below) in this register is a ‘1’, the host controller will issue an SMI immediately.

12:5 RsvdP.

13 SMI on OS Ownership Enable – RW. Default = ‘0’. When this bit is a ‘1’ AND the OS Ownership

Change bit is ‘1’, the host controller will issue an SMI.

14 SMI on PCI Command Enable – RW. Default = ‘0’. When this bit is ‘1’ and SMI on PCI Command

is ‘1’, then the host controller will issue an SMI.

15 SMI on BAR Enable – RW. Default = ‘0’. When this bit is ‘1’ and SMI on BAR is ‘1’, then the host
controller will issue an SMI.

496

16 SMI on Event Interrupt – RO. Default = ‘0’. Shadow bit of Event Interrupt (EINT) bit in the

USBSTS register. Refer to Section 5.4.2 for definition.

This bit follows the state the Event Interrupt (EINT) bit in the USBSTS register, e.g. it
automatically clears when EINT clears or set when EINT is set.

19:17 RsvdP.

20 SMI on Host System Error – RO. Default = ‘0’. Shadow bit of Host System Error (HSE) bit in the
USBSTS register refer to Section 5.4.2 for definition and effects of the events associated with
this bit being set to ‘1’.

To clear this bit to a ‘0’, system software shall write a ‘1’ to the Host System Error (HSE) bit in the
USBSTS register.

28:21 RsvdZ.

29 SMI on OS Ownership Change – RW1C. Default = ‘0’. This bit is set to ‘1’ whenever the HC OS
Owned Semaphore bit in the USBLEGSUP register transitions from ‘1’ to a ‘0’ or ‘0’ to a ‘1’.

30 SMI on PCI Command – RW1C. Default = ‘0’. This bit is set to ‘1’ whenever the PCI Command
Register is written.

31 SMI on BAR – RW1C. Default = ‘0’. This bit is set to ‘1’ whenever the Base Address Register (BAR)
is written.

Note: For all enable register bits, ‘1’ = Enabled, ‘0’ = Disabled.

Note: SMI – System Management Interrupt.

Note: BAR – Base Address Register.

Note: MSE – Memory Space Enable.

Note: SMI’s are independent of the interrupt threshold value.

7.2 xHCI Supported Protocol Capability

At least one of these capability structures is required for all xHCI

implementations. More than one may be defined for implementations that

support more that one bus protocol. Refer to section 4.19.7 for more

information.

 497

Figure 7-1: xHCI Supported Protocol Capability

LP

LP

Protocol Slot Type

PLT

PLTRsvdP

RsvdP

PFD

PFD

...

PSIE

PSIC

Revision Major Next Capability PointerRevision Minor Capability ID

31 16 15 8 7 024 23

Name String

Compatible Port OffsetCompatible Port CountProtocol Defined

03-00H

07-04H

0B-08H

PSIVProtocol Speed ID Mantissa 13-10H

...

PSIE PSIVProtocol Speed ID Mantissa
(PSIC*4)+13-

(PSIC*4)+10H

6 5 4 3928 27

RsvdP 0F-0CH

14 13

Table 7-6: Offset 00h - xHCI Supported Protocol Capability Field Definitions

Bits Description

7:0 Capability ID – RO. Refer to Table 7-2 for the value that identifies the capability as Supported
Protocol.

15:8 Next Capability Pointer – RO. This field indicates the location of the next capability with respect
to the effective address of this capability. Refer to Table 7-1 for more information on this field.

23:16 Minor Revision – RO. Minor Specification Release Number in Binary-Coded Decimal (i.e., version
x.10 is 10h). This field identifies the minor release number component of the specification with
which the xHC is compliant.

31:24 Major Revision – RO. Major Specification Release Number in Binary-Coded Decimal (i.e., version

3.x is 03h). This field identifies the major release number component of the specification with
which the xHC is compliant.

Table 7-7: Offset 04h - xHCI Supported Protocol Capability Field Definitions

Bits Description

31:0 Name String – RO. This field is a mnemonic name string that references the specification with

which the xHC is compliant. Four ASCII characters may be defined. Allowed characters are:
alphanumeric, space, and underscore. Alpha characters are case sensitive. Refer to section 7.2.2
for defined values.

498

Table 7-8: Offset 08h - xHCI Supported Protocol Capability Field Definitions

Bits Description

7:0 Compatible Port Offset – RO. This field specifies the starting Port Number of Root Hub Ports
that support this protocol. Valid values are ‘1’ to MaxPorts.

15:8 Compatible Port Count – RO. This field identifies the number of consecutive Root Hub Ports
(starting at the Compatible Port Offset) that support this protocol. Valid values are 1 to

MaxPorts.

27:16 Protocol Defined. This field is reserved for protocol specific definitions. Refer to section
7.2.2.1.3.

31:28 Protocol Speed ID Count (PSIC) – RO. This field indicates the number of Protocol Speed ID (PSI)
Dwords that the xHCI Supported Protocol Capability data structure contains.

If this field is non-zero, then all speeds supported by the protocol shall be defined using PSI

Dwords, i.e. no implied Speed ID mappings apply.

Refer to section 7.2.2 and its subsections for protocol specific requirements related to this field.

Note: An xHCI Supported Protocol Capability shall not reference a Root Hub port

number referenced by another xHCI Supported Protocol Capability.

Table 7-9: Offset 0Ch - xHCI Supported Protocol Capability Field Definitions

Bits Description

4:0 Protocol Slot Type115 – RO. This field specifies the Slot Type value which may be specified when

allocating Device Slots that support this protocol. Valid values are ‘0’ to ‘31’. Refer to sections
4.6.3 and 7.2.2.1.4.

31:5 RsvdP.

115The value of the Protocol Slot Type field declared by a xHCI Supported Protocol Capability structure is unique to an

xHC implementation. Software shall not assume a fixed mapping of the Protocol Slot Type value to a specific type

of Supported Protocol.Note that for compatibility reasons, the Protocol Slot Type value of ‘0’ is the exception to

this rule and reserved for the USB Protocol Device Slot type.

 499

7.2.1 Protocol Speed ID (PSI)

Protocol Speed ID (PSI) Dwords immediately follow the Dword at offset 10h in an

xHCI Supported Protocol Capability data structure. Table 7-10 defines the fields

of a PSI Dword.

Table 7-10: Offset 10h to (PSIC*4)+10h - xHCI Supported Protocol Capability Field Definitions

Bits Description

3:0 Protocol Speed ID Value (PSIV) – RO. If a device is attached that operates at the bit rate defined

by this PSI Dword, then the value of this field shall be reported in the Port Speed field of
PORTSC register (5.4.8) of a compatible port.

Note, the PSIV value of ‘0’ is reserved and shall not be defined by a PSI.

5:4 Protocol Speed ID Exponent (PSIE) – RO. This field defines the base 10 exponent times 3, that
shall be applied to the Protocol Speed ID Mantissa when calculating the maximum bit rate
represented by this PSI Dword.

 PSIE Value Bit Rate

 0 Bits per second

 1 Kb/s

 2 Mb/s

 3 Gb/s

7:6 PSI Type (PLT) – RO. This field identifies whether the PSI Dword defines a symmetric or

asymmetric bit rate, and if asymmetric, then this field also indicates if this Dword defines the
receive or transmit bit rate.

Note that the Asymmetric PSI Dwords shall be paired, i.e. an Rx immediately followed by a Tx,

and both Dwords shall define the same value for the PSIV.

 PLT Value Bit Rate Note

 0 Symmetric Single PSI Dword

 1 Reserved

 2 Asymmetric Rx Paired with Asymmetric Tx PSI Dword

 3 Asymmetric Tx Immediately follows Rx Asymmetric PSI Dword

8 PSI Full-duplex (PFD) – RO. If this bit is ‘1’ the link is full-duplex (dual-simplex), and if ‘0’ the link

is half-duplex (simplex).

13:9 RsvdP.

15:14 Link Protocol (LP) - RO. if xHCI Protocol Extended Capability:Major Revision = 03h, then this field
identifies the link-level protocol supported by the ports associated with this PSI Dword. Refer to

section 8.5.6.7 in the USB3 spec for more information. If xHCI Protocol Extended
Capability:Major Revision = 02h, then this field shall be ‘0’, and the link protocol (LS, FS, or HS)
depends on the reported link speed.

 LP Value Protocol

 0 SuperSpeed

 1 SuperSpeedPlus

 3-2 Reserved

500

31:16 Protocol Speed ID Mantissa (PSIM) – RO. This field defines the mantissa that shall be applied to

the PSIE when calculating the maximum bit rate represented by this PSI Dword.

Note: An xHC implementation that employs an Integrated Hub to provide USB Full-

speed and Low-speed support and only provided a USB 2.0 High-speed BI may

define a USB2 xHCI Supported Protocol Capability data structure with a single

PSI Dword (PSIC = 1), where the PSI Dword at offset 0Ch would define PSIV = 3,

PLT = 0, PFD = 0, PSIE = 2, and PSIM = 480.

Note: If the PSI Exponent (PSIE) and Mantissa (PSIM) fields do not allow the exact

definition of a protocol’s bit rate, then the PSIM should be rounded to the closest

value.

Note: The "symmetry" of a port is determined by the current PSI Type (PLT). To

determine the current PSI Type, inspect the value reported by the PORTSC Speed

field. If the Speed value refers to a PSI Dword whose PSI Type = Symmetric, then

the receive and transmit speed and lane counts are identical, i.e. the PSI Dword

defines the speed of the port and the USB3 PORTLI RLC and TLC fields shall

report identical values. If the Speed value refers to a PSI Dword whose PSI Type

= Asymmetric, then the receive and transmit speeds and/or the lane counts of

the port may be different. The PSI Dword with PLT = Asymmetric Rx identifies the

speed of the ports' receive path and the USB3 PORTLI RLC identifies the lane

count of the receive path, and the PSI Dword with PLT = Asymmetric Tx identifies

the speed of the ports' transmit path and the USB3 PORTLI TLC field identifies

the lane count of the transmit path. An Asymmetric port may report the same

speed in both directions, but different lane counts. Refer to section 5.4.10.1 for

more information on the PORTLI register.

7.2.2 Supported Protocols

Table 7-11 lists the Supported Protocols defined in this specification.

Table 7-11: xHCI Supported Protocols

Name String Major Revision Minor Revision116 Specification Reference

“USB ” or 20425355h 03h 10h USB 3.1 specification (USB3)

“USB ” or 20425355h 03h 00h USB 3.0 specification (USB3)

116 The Major and Minor Revision fields implement the same BCD format as described in Section 9.6.1 of the
spec for the bcdUSB field.

 501

“USB ” or 20425355h 02h 00h USB 2.0 specification (USB2)

Note: One xHCI Supported Protocol Capability shall define a Compatible Port Offset of

‘1’.

Note: Gaps are allowed in the port numbers assigned by xHCI Supported Protocol

Capabilities, e.g. the Compatible Port Offset of a xHCI Supported Protocol

Capability may not be equal to the sum of the Compatible Port Offset and

Compatible Port Count fields of the previous xHCI Supported Protocol

Capability.

Note: Multiple xHCI Supported Protocol Capabilities of the same type (i.e. identical

Name String, Major Revision, Minor Revision) may be declared by an xHCI

implementation, however the port numbers assigned by them shall not overlap.

Note: Undefined behavior may occur if software references Root Hub port numbers

not defined by xHCI Supported Protocol Capabilities.

Note: The Major Revision and Minor Revision fields contain a BCD version number. The

value of the Major Revision field is JJh and the value of the Minor Revision field

is MNh for version JJ.M.N, where JJ = major revision number, M - minor version

number, N = sub-minor version number, e.g. version 2.1.3 is represented with the

value 0213 and version 3.1 is represented with a value of 0310h. The intent is to

follow the USB3 spec (section 9.6.1) defined format for the Standard Device

Descriptor bcdUSB field.

7.2.2.1 USB Protocols

The following subsection define xHCI Supported Protocol Capability extensions

that are specific to USB protocols.

Note: The set of ports defined by a USB3 xHCI Supported Protocol Capability shall not

overlap those defined by a USB2 xHCI Supported Protocol Capability, and vice

versa.

Note: To support USB3 device certification requirements for USB 2 user attached

devices, USB 2.0 and USB 3.x Supported Protocol Capabilities shall be declared

if any USB3 connectors are associated with xHCI Root Hub ports that enable user

attached devices. Refer to sections 11.1 and 11.3 in the USB3 spec.

PSI Dwords shall be used to define the bit rate associated with an SSIC Profile.

Table 7-12 provides an example of values that define an SSIC implementation

capable of supporting HS-GEAR 1, 2, or 3 and Rate Series A or B speeds in each

GEAR. Also notice that in each case the protocol on the wire is USB3 and that

the SSIC-gB-Ll (i.e. Series B) PSIM values are rounded to the nearest value. Refer

to section 2.2.1 in the SSIC Spec for more information.

502

Table 7-12: Example SSIC PSI Dword values

SSIC Profile
Bit Rate

(Mb/s)
Protocol117

PSI Dword values

PSIV PLT PFD PSIE PSIM

SSIC-G1A-L1 1248 USB 3.0 1 0 1 2 1248

SSIC-G2A-L1 2496 USB 3.0 2 0 1 2 2496

SSIC-G3A-L1 4992 USB 3.0 3 0 1 2 4992

SSIC-G1B-L1 1457.6 USB 3.0 4 0 1 2 1458

SSIC-G2B-L1 2915.2 USB 3.0 5 0 1 2 2915

SSIC-G3B-L1 5830.4 USB 3.0 6 0 1 2 5830

7.2.2.1.1 Default USB Speed ID Mapping

The following default mappings apply to the USB2 and USB3 protocols.

Table 7-13: Default USB Speed ID Mapping

Default Speed ID
Value118 Definition Bit Rate Protocol

Equivalent PSI Dword values

PLT PFD PSIE PSIM

1 Full-speed 12 MB/s USB 2.0 0 0 2 12

2 Low-speed 1.5 Mb/s USB 2.0 0 0 1 1500

3 High-speed 480
Mb/s

USB 2.0 0 0 2 480

4 SuperSpeed 5 Gb/s USB 3.x 0 1 3 5

5 SuperSpeedPlus 10 Gb/s USB 3.1 0 1 3 10

117Refer to the SSIC spec for the specific protocol requirements of SSIC ports, e.g. and SSIC port may support a

SuperSpeed protocol (i.e. 3.0), an Enhanced SuperSpeed protocol, e,g, 3.1, etc.

118 The Default Speed ID Values shall be presented in PORTSC Port Speed field only if no PSI Dwords are defined
(PSIC = ‘0’).

 503

7.2.2.1.2 Protocol Speed ID Count (PSIC) field

USB xHCI Supported Protocol Capability data structures may define PSIC = ‘0’

field under the following conditions:

• For a USB 3.1 xHCI Supported Protocol Capability data structure (i.e. Name String -

20425355h, Major Revision = 03h, and Minor Revision = 10h) a PSIC value of ‘0’

implies that only the default SuperSpeed and SuperSpeedPlus bit rates are

supported. Refer to Table 7-13 for default USB 3.1 Speed ID mappings.

• For a USB 3.0 xHCI Supported Protocol Capability data structure (i.e. Name String =

20425355h, Major Revision = 03h, and Minor Revision = 00h) a PSIC value of ‘0’

implies that only the default SuperSpeed bit rate is supported. Refer to Table 7-13

for default USB 3.0 Speed ID mappings.

• For a USB 2.0 xHCI Supported Protocol Capability data structure (i.e. Name String =

20425355h, Major Revision = 02h, and Minor Revision = 00h) a PSIC value of ‘0’

implies that the default Full-speed, Low-speed, and High-speed bit rates are

supported. Refer to Table 7-13 for default USB 2.0 Speed ID mappings.

• Only these two protocols/revisions support implied mappings. All other protocols or

revisions of these protocols and SSIC ports shall define a non-zero PSIC value.

7.2.2.1.3 Protocol Defined field

The Protocol Defined field only applies to the specific protocol referenced by its

xHCI Supported Protocol Capability . This section identifies how the Protocol

Defined field applies to each of the protocols defined in this specification.

504

7.2.2.1.3.1 USB3

The following Protocol Defined fields are defined by a USB3 xHCI Supported

Protocol Capability.

All USB3 ports shall support Link Power Management.

Figure 7-2: USB3 Protocol Defined fields

MHD RsvdP

1627 2425

Table 7-14: USB3 Protocol Defined Field Definitions

Bits Description

24:16 RsvdP.

27:25 Hub Depth (MHD) - RO. Default = Implementation dependent. If this field is ‘0’, then the

standard USB3 hub depth constrains apply, if this field is > ‘0’, then it indicates the maximum
hub depth supported by the USB3 ports.

 505

7.2.2.1.3.2 USB2

The following Protocol Defined fields are defined by a USB 2.0 xHCI Supported

Protocol Capability.

Figure 7-3: USB 2.0 Protocol Defined fields

MHD IHI HSO
Rsvd

P
RsvdP

1617181927

HLC

2021

BLC

2425

Table 7-15: USB 2.0 Protocol Defined Field Definitions

Bits Description

16 RsvdP.

17 High-speed Only (HSO) - RO. Default = Implementation dependent. If this bit is cleared to ‘0’,
the USB2 ports described by this capability are Low-, Full-, and High-speed capable. If this bit is

set to ‘1’, the USB2 ports described by this capability are High-speed only, e.g. the ports don’t
support Low- or Full-speed operation. High-speed only implementations may introduce a “Tier
mismatch”, refer to section 4.24.2 for more information.

18 Integrated Hub Implemented (IHI) - RO. Default = Implementation dependent. If this bit is
cleared to ‘0’, the Root Hub to External xHC port mapping adheres to the default mapping

described in section 4.24.2.1. If this bit is set to ‘1’, the Root Hub to External xHC port mapping
does not adhere to the default mapping described in section 4.24.2.1, and an ACPI or other
mechanism is required to define the mapping.

19 Hardware LPM Capability (HLC) - RO. Default = Implementation dependent. If this bit is set to
‘1’, the ports described by this xHCI Supported Protocol Capability support hardware controlled
USB2 Link Power Management. Refer to section 4.23.5.1.1.1.

20 BESL LPM Capability119 (BLC) - RO. Default = Implementation dependent. If this bit is set to '1',
the ports described by this xHCI Supported Protocol Capability shall apply BESL timing to BESL
and BESLD fields of the PORTPMSC and PORTHLPMC registers, as defined in Table 13. If this bit

is cleared to '0', the ports described by this xHCI Supported Protocol Capability shall apply HIRD
timing to BESL and BESLD fields of the PORTPMSC and PORTHLPMC registers, as defined in
Table 13. Refer to section 4.23.5.1.1.1 for more information.

Note the BESL LMP Capability support (i.e. HLE = ‘1’ and BLC = ‘1’) shall be mandatory for all
xHCI 1.1 compliant xHCs.

119In 2007, an ECN to the USB spec defined the "USB 2.0 Link Power Management Addendum". This ECN added the
concept of an LPM Token and Host Initiated Resume Duration (HIRD) to the USB2 spec to support better link

power management. And in 2011, the "Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007" was

506

24:20 RsvdP.

27:25 Hub Depth (MHD) - RO. Default = Implementation dependent. If this field is ‘0’, then the
standard USB2 hub depth constrains apply, if this field is > ‘0’, then it indicates the maximum

hub depth supported by the USB2 ports.

7.2.2.1.4 Protocol Slot Type Field

The Protocol Slot Type field of a USB3 or USB2 xHCI Supported Protocol

Capability shall be set to ‘0’.

7.3 HCI Extended Power Management Capability

This capability is required for all xHC implementations that do not support PCI

based system interfaces.

The xHCI Extended Power Management Capability shall utilize the format of the

Power Management Register Block Definition defined in section 3.2 of the PCI

PM Specification with the following exception. For xHCI the definition of the

“Next Capability Pointer” register field is modified from the PCI definition. A

non-zero value in the “Next Capability Pointer” register indicates a rel ative

offset, in 32-bit words, from this 32-bit word to the beginning of the first

extended capability.

Note: Refer to section 5.2.7 for details on register definition and structure organization.

7.4 xHCI Extended Message Interrupt Capability

Either this capability or the xHCI Message Interrupt Capability is required for all

xHC implementations that do not support PCI based system interfaces. The

choice is xHC implementation dependent.

The xHCI Extended Message Interrupt Capability shall utilize the format of the

MSI-X Capability and Table Structures defined in section 6.8.2 of the PCI

Specification with the following exception. For xHCI the definition of the “Next

Capability Pointer” register field is modified from the PCI definition. A non-zero

value in the “Next Capability Pointer” register indicates a relative offset, in 32-

bit words, from this 32-bit word to the beginning of the first extended capability.

generated to address some shortcomings of the original ECN, which redefined the HIRD field of the LPM Token to
be Best Effort Service Latency (BESL). The BESL LPM Capability flag in the xHCI Supported Protocol Capability

identifies whether an xHCI implementation supports the pre- or post-errata USB2.0 LPM definition.A key aspect
of the LPM Errata is that it makes a distinction between the Best Effort Service Latency that a device should
expect, and the Host Initiated Resume Delay that will be signaled on the bus to exit the L1 state.

 507

Note: Refer to section 5.2.8 for details on register definition and structure organization.

7.5 xHCI Message Interrupt Capability

Either this capability or the xHCI Extended Message Interrupt Capability is

required for all xHC implementations that do not support PCI based system

interfaces. The choice is xHC implementation dependent.

The xHCI Message Interrupt Capability shall utilize the format of the MSI

Capability Structure defined in section 6.8.1 of the PCI Specification with the

following exception. For xHCI the definition of the “Next Capability Pointer”

register field is modified from the PCI definition. A non-zero value in the “Next

Capability Pointer” register indicates a relative offset, in 32-bit words, from this

32-bit word to the beginning of the first extended capability.

Note: Refer to section 5.2.8 for details on register definition and structure organization.

7.6 Debug Capability (DbC)

The USB Debug Capability provided by the xHC is optional functionality that

enables low-level system debug over USB. The xHCI debugging capability

provides a means of connecting two systems where one system is a Debug Host

and the other a Debug Target (System Under Test).

This section describes the xHCI USB Debug Capability used by a Debug Target to

present a Debug Device to a Debug Host. A Debug Device is fully compliant with

the USB Framework. A Debug Device provides the equivalent of a very high

performance full-duplex serial link between a Debug Host and a Debug Target.

The USB Debug Capability provides an interface that is completely independent

of the xHCI interface described in the other sections of this specificat ion. This

section describes the required implementation and behavior of a USB3 Debug

Capability as part of an xHCI compatible controller. Specific features of the xHCI

USB Debug Capability are:

• The interface provided by the xHCI USB Debug Capability is independent of the

standard xHCI interface utilized by the Operating System, e.g The USBCMD register

R/S flag has no effect on the operation of the Debug Capability.

• If DbC System Bus Reset (SBR) = ‘0’, then a Chip Hardware Reset or the assertion of

Host Controller Reset (HCRST = ‘1’) or Light Host Controller Reset (LHCRST = ‘1’) shall

reset the Debug Capability, or optionally if SBR = ‘1’, then a Chip Hardware Reset, a

System Bus (e.g. the assertion of PCI RST#), or a transition from the PCI PM D3hot

state to the D0 state shall reset the DbC.

• Only works with a SuperSpeed capable host.

508

• The Debug Capability is automatically assigned to the first xHCI Root Hub Port on

that detects an attach of the downstream facing port of a SuperSpeed capable Root

Hub or an external Hub.

• The Root Hub port assigned to the Debug Capability appears through the xHCI as a

fully functional Root Hub port that never sees a device attach.

• The Debug Capability is operational anytime the port is not suspended AND the host

controller is in D0 power state.

• The Debug Capability works through standard USB3 Hubs, allowing large numbers

of systems to be debugged with a single host.

• High bandwidth data transfers are supported.

This capability is chained through the xHCI Extended Capabilities Po inter (xECP)

field and resides in MMIO space.

Wherever possible, the Debug Capability attempts to reuse logic blocks defined

for the xHCI architecture. For instance, the operation and definition of the Debug

Capability Event Ring Management register block is identical to the xHCI Event

Ring Registers defined in section 5.5.2.3, except that it provides an Event Ring

that is dedicated to the Debug Capability.

Because the Debug Capability presents a “device side” interface to USB, which is

used to manage the upstream facing port of a device rather than the

downstream facing port of a Root Hub, some of the register definitions in the

Debug Capability may appear to be very similar to those in the xHCI, however

they may have subtle differences to support “device side” operation. e.g. Many

of the fields in the Debug Capability DCPORTSC Register are named the same as

fields in the xHCI PORTSC register, however they work differently because the

DCPORTSC register shall manage “device side” operation.

The Debug Capability also utilizes xHCI Endpoint Context data structures,

however their organization is different than the xHCI’s.

Note: Keep the “device side” difference of the Debug Capability in mind when reading

the register definitions in the following sections.

7.6.1 Debugging Topologies

A Debug Target enumerates as “normal” USB device to the Debug Host, allowing

a Debug Host to access a Debug Target through the standard USB software

stack. Multiple Debug Targets may be attached to a Debug Host. Debug Targets

may be connected to any downstream facing port below a Debug Host (i.e.

anywhere in the fabric, refer to Figure 7-4). A Debug Target may only connect to

a Debug Host through a Root Hub port of the target. Connection of a Debug

 509

Target to a Debug Host through the ports of an external hub controlled by the

Debug Target is not supported.

Figure 7-4: Example Debugging Topology

Device A

Hub

Device C

P1 P2

System 1

Debug Host
P1 P2 P3

System 3

Debug Target
P1 P2 P3

Device B

Debug

Capability

(Enabled)

System 2

Debug Target
P1 P2 P3

Debug

Capability

(Enabled)

Debug

Capability

(Disabled)

In the example illustrated by Figure 7-4, System 1 is the Debug Host. It is

attached to two Debug Targets; Systems 2 and 3. Port 1 (P1) of System 2 is

attached to a Root Hub port of System 1 and Port 2 (P2) of System 3 is attached

to the downstream facing port of a Hub controlled by System 1. Note that other

(non-Debug Target) USB devices may also be attached to a Debug Host or Target

system. Device A is attached to System 1, and Devices B and C are attached to

System 3. All 3 systems support xHCI Debug Capability hardware, software

distinguishes a Debug Target from a Debug Host by enabling the Debug

Capability on Targets.

The Debug Host provides a USB Debug Capability class driver, which will

manage Debug Targets when they are enumerated and provide an API for

debugger applications.

The Debug Target provides software to manage communications between the

Debug Device and the Debug Host. The Debug Target software interfaces to the

xHCI Debug Capability to manage Debug Device emulation and service Debug

Device Class specific requests from the Debug Host.

Note: A Debug Target may only expose its USB Debug Capability through a Root Hub

port. A Debug Target cannot connect to a Debug Host through the downstream

facing port of a hub owned by the Debug Target.

510

7.6.2 Debug Stacks

Figure 7-5 shows an example of the software stacks in the Debug Host and

Debug Target, and their relationships.

Figure 7-5: Example Debug Software Stacks

xHCI

P1 P2 P3

xHCI

P1 P2 P3

Debug

Capability

(Enabled)

Debug

Capability

(Disabled)

xHCI Driver

USB Bus Driver

Debug

Class

Driver

xHCI Driver

USB Bus Driver

Class

Driver

Class

Driver
...Class

Driver

Class

Driver
...

Debug Host Debug Target

Debug

Capability

Driver

System

Debug

Hooks

Device A Device CDevice B

OS Stack

Debugger AppApp A App B App C

In Figure 7-5, the Debug Host provides a Debug Class Driver which

communicates with the System Debug Hooks in the Debug Target, through the

Debug Capability (blue path).

On the Debug Target, the Debug Capability Driver is completely independent of

the OS Stack (USB Bus Driver, xHCI driver, etc.). The Debug Capability Driver is

expected to be loaded immediately after POST so that the OS stack can be

debugged. The Debug Capability Driver manages the xHCI Debug Capability

register set, and the standard USB OS stack manages all non-Debug USB devices

attached to the system.

On the Debug Host, the xHCI Debug Capability is disabled and there is no driver

associated with it. And the standard USB OS stack manages all USB devices

attached to the system, including the Debug device presented by the Debug

Capability Driver on the Debug Target.

The user interface through which a programmer enables a system’s xHCI USB

Debug Capability or its features are outside the scope of this specification. The

Debug Device Class is defined in section 7.6.10.

 511

7.6.2.1 Debug Software Startup

There are two general cases for debug software startup: 1) when the xHC has not been initialized

by the system host controller driver, and 2) when the xHC has been initialized by the system host

controller driver. Debug software generally knows what case it has to deal with (typically case 1),

but can do further determination by examining the MaxSlotsEn field in the xHC CONFIG register.

If the MaxSlotsEn field is non-zero, then the system host controller driver has already initialized

the xHC. Generic startup procedures for the two cases are the same. Other than being linked into

the xHCI Extended Capabilities list the Debug Capability is able to function completely

independently of the xHCI interface used by a system host controller driver. As such, it can be

initialized before or after the system host controller driver loads. The only effects that the system

host controller driver sees is that one of its Root Hub ports will never generate a Port Status

Change Event for a connect, and that port shall report no bandwidth available when querying for

bandwidth with a Get Port Bandwidth Command.

7.6.3 Memory Map

The xHCI Debug Capability register set resides in the xHCI MMIO space. The

MMIO space is located through the xHCI Extended Capability chain.

A variety of data structures required by the Debug Capability reside in System

Memory and are accessed by the xHC DMA mechanisms. The DbC Structure

contains pointers to the memory based data structures that it utilizes.

Figure 7-6: Debug Capability Memory Map

xHCI

Debug Port

Ext Cap

Transfer

Ring

Event

Ring
Event Ring

Segment

Table

MMIO Space System Memory

Data

Buffer

Data

Buffer

Transfer

Ring

Event Ring

Management

Endpoint

Management

DbC Info

Context

OUT EP

Context

IN EP

Context

7.6.3.1 ERST and Event Ring

The Debug Capability supports a dedicated Event Ring, which is managed

through an Event Ring Segment Table data structure. The format and use of the

Debug Capability's Event Ring Segment Table data structure is identical to the

xHCI Event Ring mechanism described in section 6.5. And the Event Ring

Segments referenced by the Debug Capability Event Ring Segment Table work

identically to those described in section 4.9.3. More information on the use of

the Event Ring data structures by the Debug Capability is described in section

Event Generation.

512

The Event Ring Segment Table is pointed to by the Debug Capability Event Ring

Segment Table Base Address Register described in section Event Ring Segment

Table Base Address Register (ERSTBA). The number of entries in the Event Ring

Segment Table is defined by the Debug Capability Event Ring Segment Table

Size Register described in section Event Ring Segment Table Size Register

(ERSTSZ).

7.6.3.2 Endpoint Contexts and Transfer Rings

The Debug Capability maps all its endpoints to two Transfer Rings. Endpoint

Context data structures (as described in section 6.2.3) are used to define and

manage these Transfer Rings. The Debug Capability Endpoint Contexts are

organized as a two element array, where element ‘0’ defines an OUT Transfer

Ring and the element ‘1’ defines an IN Transfer Ring.

The IN and OUT Bulk endpoints presented by a Debug Device to a Debug Host

are cross-coupled to the two OUT and IN Transfer Rings, respectively. This is

because the USB Debug Device presented by the Debug Capability shall output

data when it receives an IN TP from the Debug Host, and it shall input data when

it receives an OUT DP from the Debug Host.

The Debug Capability Endpoint Contexts are contained in the Debug Capability

Context data structure (7.6.9) which is pointed to by the Debug Capability

Context Pointer Register described in section 7.6.8.7.

Note: xHCI power management effects the DbC. Software should shut down all DbC

activity prior to transitioning the xHC a D3 state. If not, undefined behavior may

occur.

Software shall initialize the fields of the Endpoint Context as follows:

Max Packet Size = 1024.

Max Burst Size = Debug Max Burst Size120.

EP Type = 2 for the OUT Bulk endpoint and 6 for the IN Bulk endpoint.

TR Dequeue Pointer = for the OUT Bulk endpoint, a pointer to the Transfer Ring that

will contain data to be sent to the Debug Host, and for the IN Bulk endpoint, a pointer

to the Transfer Ring that will contain buffers which will receive data from the Debug

Host

Average TRB Length = initialized to software defined value.

All other fields shall be initialized to ‘0’.

The Endpoint Context Interval, LSA, MaxPStreams, Mult, HID, CErr, FE, and Max

ESIT Payload fields do not apply to the DbC.

120 Note that a DbC implementation may utilize a smaller Max Burst Size than set by software.

 513

The EP State field shall be updated as described in section 4.8.3.

The DbC shall update the Endpoint Context TR Dequeue Pointer field, if the HOT

or HIT flags are set to '1', the DbC Port State Machine exits the DbC-Configured

state, or if SBR = ‘0’ and HCRST is set to '1'.

7.6.4 Operational Model

This section describes the general operational model for the xHCI Debug

Capability (DbC) interface. This model is managed by the xHCI Debug Capability

driver. Each significant operational feature of the Debug Capability is discussed

in a separate subsection. Each subsection presents the operational model

requirements for the Debug Capability hardware. Where appropriate,

recommended system software operational models for features are also

presented.

The xHCI Debug Capability Structure (or DbC Structure) is located using the

methods described at the beginning of section 7. The DbC Structure (section

Debug Capability Structure) defines a set of registers that Debug Target

software uses to emulate USB Debug Device to a Debug Host.

The DbC Structure is divided into seven register sets; Capability, Doorbell, Event

Ring Management, Control, Status, Port Management, and Endpoint

Management. The Capability registers allow the DbC to be linked into the xHCI’s

list of Extended Capabilities and define static features of the DbC. The Doorbell

and Endpoint Management registers are used to define and manage the Control

and Bulk pipes presented by the DbC. The Event Ring Management, Control, and

Status registers provide the Debug Capability driver with the means to track and

manage the execution of DbC operations.

Note: The DbC shall respond with a ACK TP to a SetFeature(FUNCTION_SUSPEND)

Setup Stage request.

7.6.4.1 Debug Capability Initialization

Typically the DbC will be initialized and enabled prior to the Operating System

loading on the target system, however it may be enabled at any time. In this

section “software” refers to the code that manages the DbC.

In order to initialize the DbC software should perform the following steps:

• Allocate and initialize all DbC memory data structures

• The DbC Event Ring Segment Table and the Event Ring Segments that it points

to.

• The DbC IN and OUT Endpoint Contexts and the Transfer Rings that they point

to.

514

• Initialize the Debug Capability Event Ring Segment Table Size Register (DCERSTSZ)

with number of entries in the Event Ring Segment Table.

• Initialize the Debug Capability Event Ring Segment Table Base Address Register

(DCERSTBA) with the physical memory address of the Event Ring Segment Table.

• Initialize the Debug Capability Event Ring Segment Table Dequeue Pointer Register

(DCERDP) with the physical memory address of the Event Ring Segment pointed to

by Event Ring Segment Table entry 0.

• Initialize the Debug Capability Context Pointer (DCCP) with the physical memory

address of the Debug Capability Context.

• Set the Debug Capability Enable (DCE) bit to ‘1’ in the Debug Capability Control

Register (DCCTRL).

At this point, the Debug Capability is initialized, the Root Hub ports are looking

for an attached Debug Host, and the DCPORTSC register is enabled to report a

Debug Host connection.

When a Debug Host connection is detected, a Port Status Change Event will be

generated on the DbC Event Ring.

To detect the Debug Host connection, or any event generated by the DbC,

software shall periodically poll the Event Ring Not Empty bit in the Debug

Capability Status Register (DCST), or evaluate the DbC Event Ring for change in

the Event Ring Enqueue Pointer (i.e. a Cycle bit change, refer to section 4.9.4 for

more information on the Event Ring Enqueue Pointer).

After the Debug Host connection is detected, software shall wait for the Debug

Device to be configured by the Debug Host. The transition of the DbC Run (DCR)

bit to ‘1’ indicates the successful configuration of the Debug Device.

Software shall impose a timeout between the detection of the Debug Host

connection and the DbC Run transition to ‘1’. If the DbC Run transition takes too

long, software may toggle the DCE bit to disable then re-enable the DbC to retry

the Debug Device enumeration process.

Note: If a Debug Host attempts to attach to a Debug Target before the DCE flag is set,

both ends of the link shall transition to the Inactive state. So a Debug Host should

periodically issue a Warm Reset to ports that are Inactive to enable a connection

to the DbC of the Debug Target.

Note: If the OS code that is being debugged resets the xHC (e.g. asserts HCRST), then

the Debug Capability will also be reset. This condition may be detected by the

Debug Capability Driver if DCE = ‘0’, after having previously been enabled (set to

‘1’). If this condition occurs, the Debug Capability Driver is required to re-initialize

the Debug Capability to continue communication with the Debug Host.

Note: The Debug Capability registers should not be accessed while the Controller Not

Ready (CNR) bit is set.

 515

7.6.4.2 Event Generation

There are four DCPORTSC status change bits in the DCPORTSC register Connect

Status Change (CSC), Port Reset Change (PRC), Port Link State Change (PLC), and

Port Config Error Change (CEC), refer to section 7.6.8.6 for more information on

these bits.

DCPORTSC status change bits may be set due to hardware or software initiated

conditions. When set, these bits remain set until cleared by a system software

write to the DCPORTSC register with the appropriate status change bit(s) set to

‘1’, a Chip Hardware Reset, or disabling the Debug Capability (DCE = ‘0’).

All DCPORTSC status change bits are ORed together to form an internal Debug

Capability DCPORT Port Status Change Event Generation variable (DCPSCEG).

When a DCPORTSC status change bit is set, if the assertion of a status change

bit results in a ‘0’ to ‘1’ transition of DCPSCEG, the Debug Capability responds by

generating a Port Status Change Event (as described in section 6.4.2.3).

The Port ID field of the Port Status Change Event TRB (shown in Figure 6-16) is

always ‘0’ for Port Status Change Events found on the Debug Capability’s Event

Ring.

System software shall acknowledge Debug Capability status change(s) by

clearing the respective DCPORTSC status change bit(s). The acknowledgment

clears the change state so future status changes may reported.

Note: DbC Event Ring management is performed identically to xHCI Event Ring

management, as described in section 4.9.4.

Note: Possible Completion Codes for DbC Transfer Event are Success, Stall Error, USB

Transaction Error, Babble Detected Error121, TRB Error, Short Packet, Undefined

Error, Event Ring Full Error, and Vendor Defined Error (refer to Table 6-85).

7.6.4.3 Halted DbC Endpoints

If a bulk endpoint is transferring data when its Halt Out Transfer Ring (HOT) or

Halt In Transfer Ring (HIT) flags is set to '1', the following actions shall occur:

121Section 8.11.3 of the USB3 spec defines a possible cause of a DPP Error as “Data length in the DPH does not match

the actual data payload length”, i.e. a Packet Babble condition. And Table 8-27 states that if a device detects a
DPP Error it shall “Discard DP, send an ACK TP with the sequence number of the DP expected (thereby
indicating that the DP was not received), the Retry bit set and the number of DPs that the device can receive for

this endpoint.” So for a USB3 device, a Packet Babble condition, is not fatal. The USB3 spec is silent in how a
device should interpret a TD Babble condition. A DbC shall not generate Babble Detected Error due to a Packet
Babble condition, however if a TD Babble condition is detected, it may treat it as fatal, generating a Babble

Detected Error and STALLing the endpoint, or “silently”, i.e. sending an ACK TP with the sequence number of the
DP expected and the Retry bit set, then waiting for the host to resend the DP in error. Refer to section 4.10.2.4
for more information on Babble Errors.

516

• The current value of the TR Dequeue Pointer for the endpoint should be written to

its Endpoint Context.

• A Transfer Event shall be generated and:

• The TRB Pointer field of the Transfer Event shall reference the Transfer TRB that

the error occurred on.

• The TRB Transfer Length field of the Transfer Event may indicate that the

Transfer TRB had been partially completed.

• The Completion Code field of the Transfer Event shall indicate Stall Error.

• This Transfer Event shall be generated whether the IOC flag was set or not in the

associated Transfer TRB.

The HIT or HOT flags may be set by the DbC hardware if Data Buffer Error,

Parameter Error, TRB Error, Vendor Defined Error, or Undefined Error is detected,

or by software.

The reception of a ClearFeature(ENDPOINT_HALT) request by the DbC shall

clear the HIT or HOT flag for the respective endpoint, and shall clear any internal

endpoint state, such that the address stored in the TR Dequeue Pointer field of

the Endpoint Context shall point to the next TRB that shall be executed the next

time the doorbell is rung, i.e. the DbC does not support Soft Retry.

The DbC shall not support the Set Halt Feature option. Note, section 9.4.5 in the

USB3 spec defines the Set Halt Feature option, with the statement "The Halt

feature may optionally be set with the SetFeature(ENDPOINT_HALT) request",

however it does not explicitly define a device's response (i.e. ACK or STALL) to a

SetFeature(ENDPOINT_HALT) request if a device chooses not to set Halt feature

when it receives the request. It is highly recommended that the DbC respond

with an ACK because this is what the USB device compliance tests expect when a

SetFeature(ENDPOINT_HALT) request is issued to a devce, irrespective of

whether a device supports the Set Halt Feature option or not.

Refer to Table 7-22 for more information on the HOT and HIT flags.

Note: The DbC is not required to advance the Dequeue Pointer of an endpoint to the

next TD boundary when the HIT or HOT flag is asserted.

Note: The value of the Endpoint Context TR Dequeue Pointer field may not be equal to

the value of the last Transfer Event TRB Pointer field when a halt condition

occurs.

7.6.4.4 DbC-Configured Exit Behavior

There are several conditions which will cause the DbC to exit the DbC-

Configured state (i.e. causing the DCCTRL.DCR field to make a ‘1’ to ‘0’ transition

and DCCTRL.DRC to be set to ‘1’):

• Debug Host initiates a Warm or Hot USB Reset

 517

• Debug Host issues a SetConfiguration(0) device request

• Timeout occurs in the DbC-Configured state

• USB cable is disconnected

• Debug Capability driver writes ‘0’ to DCPORTSC.PED

• Debug Capability driver writes ‘0’ to DCCTRL.DCE

Note: A port transition from the DbC-Configured state to the DbC-Error state shall also

cause the DbC endpoints to transition to the Error state. And when the Debug

Host issues reset the endpoints shall transition to the Stopped state.

When the DbC exits the DbC-Configured state or if the HIT or HOT flags are set

to ‘1’, the following actions shall occur:

• If there is a valid Transfer TRB on the Transfer Ring, a Transfer Event shall be

generated and:

• The TRB Pointer field of the Transfer Event shall reference the Transfer TRB that

the event occurred on.

• The TRB Transfer Length field of the Transfer Event may indicate that the

Transfer TRB had been partially completed.

• The Completion Code field of the Transfer Event shall indicate USB Transaction

Error.

• This Transfer Event shall be generated whether the IOC flag was set or not in the

associated Transfer TRB.

• The DbC shall advance its TR Dequeue Pointer to reference the next TRB.

• The Endpoint Context shall be written with:

• The TR Dequeue Pointer field set to the address of the next TRB that will be

fetched.

• The Endpoint State field reflecting the current endpoint state.

Software may detect the actions described above have occurred by reading the

DCCTRL.DRC field as ‘1’ and the Endpoint State as Disabled. In response,

software may read the TR Dequeue Pointer field in the Endpoint Context to

determine where the DbC will restart the Transfer Ring, or update the TR

Dequeue Pointer field to point to the next TRB that shall be executed after

software clears DCCTRL.DRC and rings the doorbell.

Note: The DbC is not required to advance the Dequeue Pointer of an endpoint to the

next TD boundary when exiting the DbC-Configured state.

Normally while the DbC port is in the DbC-Configured state (DCCTRL.DCR = ‘1’)

its endpoints are in the Running state. The exception is if the HIT or HOT flags

are asserted, which shall cause a DbC endpoint to transition to the Halted state.

And when the Debug Host issues ClearFeature(ENDPOINT_HALT) request, the

518

respective endpoint shall then transition to the Stopped state. When software

rings the doorbell, the endpoint shall transition to the Running state.

7.6.5 Port Routing and Control

Figure 7-7 provides a detailed view of the state of the Debug Capability Port

Multiplexing mechanism after a Root Hub port (P1) is assigned to the Debug

Capability.

Figure 7-7: Debug Port Multiplexing

xHC

P1 P2 P3

Device

P4

Debug

Capability
xHCI

1 2 3 4

Debug

Host

PORTSC

Registers

xHCI Driver
Debug

Capability

Driver

..
.

..
.

Port Mux

DCPORTSC

Register

Root Hub ports

The xHCI Driver accesses the xHCI Port Status and Control (PORTSC) registers

(5.4.8) and the Debug Capability Driver accesses the Debug Capability Port

Status and Control (DCPORTSC) register (Debug). When the Root Hub port (P1 in

Figure 7-7) is assigned to the Debug Capability, the associated PORTSC register

(PORTSC 1 in Figure 7-7) shall mimic operations as if no device is attached it.

Refer to section 4.19.1.2.4.3 for the states presented by PORTSC register to

system software during this condition.The remaining PORTSC registers are still

associated with their respective Root Hub ports and are fully operational

through the xHCI.

After the Root Hub port is assigned to the DbC, the xHC shall begin emulating a

USB Debug Class device, responding to enumeration related USB requests from

the Debug Host, transitioning the Debug Device emulator through the standard

USB Device States described in section 8.1 of the USB3 specification.

7.6.6 DbC Port State Machine

This section describes the DbC Port state machine. The following state ma chines

utilize the following notation:

 519

State Name

Port Link State

Signal State

Where the State Name is an informative name defined by the xHCI specification,

the Port Link State identifies the possible values for the DCPORTSC PLS field,

and Signal State values are:

DCCTRL Debug Capability Enable (DCE), DCPORTSC Current Connect Status (CCS),

DCPORTSC Port Enabled/Disabled (PED), DCPORTSC Port Reset (PR), and DCCTRL

DbC Run (DCR), respectively, e.g. 0,0,0,0,0 all signals are ‘0’.

Figure 7-8: DbC Port State Machine

DbC Port Capability LMP

DbC-Error

Inactive

1,1,x,0,0

DbC-

Configured

U0, U1, U2,

U3, Resume,

or Recovery

1,1,1,0,1

DbC-

Disconnected

RxDetect

1,0,0,0,0

DbC-

Disabled

Disabled

1,1,0,0,0

DbC-

Enabled

Not Inactive

1,1,1,0,0

DbC-

Resetting

RxDetect

1,1,0,1,0

Upstream Mode

Debug Port Number >0

DbC-Off

Disabled

0,0,0,0,0

CSC=1

Error

Note that in all states except for DbC-Off and DbC-Disconnected, the Root Hub

port is assigned to the Debug Capability (Debug Port Number > ‘0’) and in

operating in a Upstream facing mode.

The PLS values cited in Figure 7-8 are not comprehensive. Refer to the

respective state descriptions below for the more details on the specific PLS

values that may be presented while in a state.

7.6.6.1 DbC-Off

This is the initial state after a Chip Hardware Reset or the assertion of HCRST.

In this DbC port state:

520

• The DbC Capability is off.

• All Root Hub ports act as normal downstream facing ports, i,e, only assert the

Downstream Direction flag in the Port Capability LMPs that they generate and the

Debug Capability Port Multiplexing mechanism will not switch the link to the DbC

Port if a Downstream Direction flag is detected in a received Port Capability LMP.

• The Debug Port Number = ‘0’.

• The DbC Capability shall be in the Attached USB Device State.

• The ports’ LTSSM is not applicable.

A write to the DCCTRL register with DCE cleared to ‘0’ or a write to the USBCMD

register with the HCRST flag set to ‘1’ shall transition from the DbC port from

any state to the DbC-Off state (Wr(DCE=0)).

A write to the DCCTRL register with DCE set to ‘1’ shall transition from the DbC

port to the DbC-Disconnected state (Wr(DCE=1)).

7.6.6.2 DbC-Disconnected

In this DbC port state:

• The DbC Capability shall be in the Attached USB Device State.

• The ports’ LTSSM state may be in the RxDetect, Polling, or U0 state.

• The Debug Port Number = ‘0’.

A transition of the USB3 Root Hub Port Polling substate machine (4.19.1.2.4.2)

from the CfgExg state to the DbC state shall transition the DbC port to the DbC-

Enabled state (DbC Port Capability LMP Exchange Successful). This transition

shall set the CSC flag to ‘1’.

A Disconnect Detect in the any state, except DbC-Off, shall transition the DbC

port to the DbC-Disconnected state (Disconnect Detect). This transition shall set

the CSC flag to ‘1’.

7.6.6.3 DbC-Enabled

In this DbC port state:

• The Debug Host enumerates the DbC Capability, and the USB Device State of the

DbC Capability attempts to advance from the Powered state, through the Default and

Address states, to the Configured state. Refer to section 9.1 of the USB3 spec for

more information on USB Device States.

• The ports’ LTSSM shall not be in the SS.Inactive or SS.Disabled states.

• The Debug Port Number > ‘0’.

 521

If the USB Device State of the DbC Capability successfully advances to the

Configured state, the DbC Port shall transition to the DbC-Configured state

(Set_Config Successful).

If the USB Device State of the DbC Capability fails to enumerate successfully (i.e.

the DbC USB Device State fails to advance to the Configured state), the DbC Port

shall transition to the DbC-Error state (Enum Error). Note that this transition

occurs only if an internal DbC resource or other issue caused an enumeration

failure. Normally the Debug Host gives up if there is an external error (e.g. link,

retry, etc.) that prevents the enumeration process from completing successfully,

not vice versa. The DbC does not maintain any timers, retry counts, etc. related

to external enumeration errors.

If any LTSSM Polling substate times out or if a tPortCongfigurationTimeout

occurs, the DbC Port shall transition to the DbC-Disabled state (Error). An

LTSSM Polling timeout shall set the PLC flag to ‘1’ (PLC Condition: Training Error

or Error). A tPortCongfigurationTimeout shall set the CEC flag to ‘1’.

If a Hot or Warm Reset is detected, the DbC Port shall transition to the DbC-

Resetting state (Reset Rcvd).

7.6.6.4 DbC-Configured

In this DbC port state:

• DCR is asserted (‘1’).

• The USB Device State of the DbC Capability is the Configured state.

• The ports’ LTSSM may be in the U0, U1, U2, U3, or Recovery states.

If the Debug Host deconfigures the device (i.e. issues a SET_CONFIGURATION(0)

request), the DbC Port shall transition to the DbC-Enabled state (Deconfigure).

If the LTSSM exits the Recovery state after a timeout, the DbC Port shall

transition to the DbC-Error state (Timeout). This transition shall set the PLC flag

to ‘1’ (PLC Condition: Error).

If a Hot or Warm Reset is detected, the DbC Port shall transition to the DbC-

Resetting state (Reset Rcvd).

Note: While in this state the PLC flag shall be set to ‘1’ if the DbC enters or exits the

suspend state (PLC Condition: U0 -> U3 or U3 -> U0).

7.6.6.5 DbC-Resetting

In this DbC port state:

• The Debug Host is signaling a Hot or Warm reset.

• PED = ‘0’ and PR = ‘1’.

522

• The USB Device State of the DbC Capability is the Powered state.

• The ports’ LTSSM may be in the RxDetect, Recovery, Polling, U0, or Hot Reset state.

When the reset signaling is complete, the DbC Port shall transition to the DbC-

Enabled state, and PED and PRC shall be asserted (‘1’) (Reset Cmp).

Note: Reset Cmp is true for a Hot Reset when the LTSSM Exit from Hot Reset.Active

conditions described in section 7.5.12.3.2 of the USB3 spec are met.

Reset Cmp is true for a Warm Reset after a Port Capability LMP Exchange is

successful.

7.6.6.6 DbC-Disabled

Software may place the DbC Port in this state to disconnect from the Debug

Host but maintain ownership of the Root Hub Port (i.e. the USB3 Root Hub Port

Polling substate machine remains in the DbC state).

In this DbC port state:

• The USB Device State of the DbC Capability is the Attached state.

• The ports’ LTSSM shall be in the SS.Disabled state.

A write to the DCPORTSC register with PED cleared to ‘0’ shall transition from

the DbC port from the DbC-Enabled, DbC-Configured, DbC-Resetting, or DbC-

Error state to the DbC-Disabled state (Wr(PED=0)).

A write to the DCPORTSC register with PED set to ‘1’ shall transition the DbC

port to the DbC-Enabled state (Wr(PED=1)).

7.6.6.7 DbC-Error

This state is entered due to the detection of an error condition in the DbC port

DbC-Enabled or Configured states.

In this DbC port state:

• The PED flag shall maintain the value asserted by the previous state.

• The USB Device State of the DbC Capability shall maintain the value asserted by the

previous state.

• The ports LTSSM shall be in the SS.Inactive state.

If a Hot or Warm Reset is detected, the DbC Port shall transition to the DbC-

Resetting state (Reset Rcvd).

7.6.7 The USB Debug Device

A DbC is a standard USB device, in the sense that it supports a Default Control

Endpoint, which responds to standard USB requests, e.g. SET_ADDRESS,

GET_DESCRIPTOR, GET_CONFIGURATION, etc. Additionally, the DbC supports a

 523

single configuration with a single interface that contains a pair of bulk endpoints

(one IN and one OUT). The xHC hardware provides the necessary logic to

enumerate a DbC to a Debug Host and advance the Debug Device to the

Configured state, where the two bulk endpoints are enabled. When the Debug

Device is configured and the bulk endpoints are operational, the DbC Run bit in

the DCCTRL register shall transition to ‘1’.

The Debug Host will expect the DbC to be ready to accept standard requests

(GET_DESCRIPTOR, SET_ADDRESS, etc.) as soon as an attach is detected.

The USB descriptors presented by the Debug Device during the enumeration

process are defined in section 7.6.10.

The protocol used to move debugger information between a Debug Host and a

Debug Target is outside the scope of this specification.

7.6.7.1 Enumeration Mode

The transition of the Debug Capability Enable flag from ‘0’ to ‘1’ sets the Debug

Capability into Enumeration Mode.

While in Enumeration Mode, debug capability logic services the standard USB

enumeration related requests from the Debug Host (GET_DESCRIPTOR,

SET_ADDRESS, SET_FEATURE, CLEAR_FEAURE, and SET_CONFIGURATION)

though its Default Control Endpoint.

In Enumeration Mode, the IN and OUT Transfer Rings of the Debug Capability

are disabled.

After the Debug Device software successfully completes a SET_CONFIGURATION

request, the DbC Run bit in the DCCTRL register shall transition to ‘1’.

7.6.7.2 Run Mode

When the DbC Run bit is ‘1’, the Debug Capability is in Run Mode.

While in Run Mode, Debug Capability software services Debug Capability IN and

OUT data transfer requests from the Debug Host through the Data Endpoints of

the Debug Capability. A Debug Device always declares a pair of Data endpoints,

one bulk IN and one bulk OUT endpoint, which respond to TPs and DPs

addressed to Endpoint Number 1.

In Run Mode, the IN and OUT Transfer Rings of the Debug Capability are

dedicated to the OUT and IN Bulk endpoints of the Debug Device, respectively.

Any IN TP or OUT DP targeted at a Data Endpoint of the Debug Device while it is

in Run Mode, shall automatically be flow controlled, e.g. transmit a NRDY TP if

the target Transfer Ring is empty.

524

Software rings the Debug Capability Doorbell Register with the DB Target field

set to Data EP 1 OUT Enqueue Pointer Update to inform the xHC that data is

available to transfer to the Debug Host. And sets the DB Target field set to Data

EP 1 IN Enqueue Pointer Update to inform the xHC that buffers are available to

receive data from the Debug Host.

7.6.7.2.1 Data Transfers

Software use Normal TRBs on the IN and OUT Transfer Rings to transfer data

from/to the Debug Host. Software rings the Debug Capability Data IN or OUT

doorbells to notify the xHC that work items are available on the respective

Transfer Ring.

The operation of a Debug Capability Data endpoint is identical to a standard

xHCI bulk endpoint, with the following exception: The Debug Capability Transfer

Ring direction is the opposite of the TP/DP direction responded to by the Debug

Capability. i.e. the Debug Capability IN Transfer Ring is used to receive data

transferred by OUT DPs from the Debug Host, and the OUT Transfer Ring is used

to send data transferred by Debug Host IN TPs.

If a DbC Bulk pipe had previously sent an NRDY, a doorbell ring shall cause the

xHC to generate an ERDY. If an IN TP or OUT DP had not been received, the xHCI

shall wait for the TP/DP transaction from the Debug Host. Software may use the

TRB IOC flag to generate a Transfer Event on the Debug Event Ring when a Data

TD completes.

Note: The Debug Capability software shall not set the Immediate Data (IDT) flag to ‘1’

in any TRB.

7.6.7.3 Event Generation

7.6.7.3.1 Data Transfers

Software shall use the TRB IOC flag to generate Transfer Events on the Debug

Event Ring when a TD completes.

7.6.7.3.2 Debug Capability Status Changes

The Debug Capability automatically generates Port Status Change Events to

report Debug Capability port state changes. Refer to section Event Generation

for a discussion on Event Generation, and section Debug for more information

on the individual Debug Capability status change flags.

7.6.7.4 Port Reset

Detection of Reset Signaling from the Debug Host by the Debug Device shall set

the Port Reset (PR) flag to ‘1’ and clear the DbC Run bit, the DbC Port

Enabled/Disabled (DCPORTSC:PED) bit, and the DbC Device Address field to ‘0’.

When the Reset Signaling completes the Port Reset (PR) bit shall be cleared to

 525

‘0’ and the DbC Port Enabled/Disabled bit shall be set to ‘1’ in the DBPORTSC

register. When the DbC Port Enabled/Disabled bit transitions to ‘1’, the Debug

Device shall be ready to receive standard USB requests and enumerate itself.

When the Debug Capability reports a port reset operation by the Debug Host to

software, software is responsible for resetting the state of its USB Debug Device

emulator.

When the port assigned to the Debug Capability is reset by the Debug Host (i.e. a

transition to the DbC-Resetting state), the Debug Capability Transfer Rings shall

be automatically disabled, and shall remain disabled until a

SET_CONFIGURATION() request is received from the Debug Host. Any Debug

Host generated TP or DP will not be responded to by the Debug Capability while

the Transfer Rings are disabled and will time out. This action allows software to

remove TDs that were pending before the port reset, reinitialize its internal

Debug Device state, and cleanly restart Transfer Ring operation. The endpoints

are re-enabled when the SET_CONFIGURATION() request is received from the

Debug Host, after which the DbC bulk endpoints shall respond to any Debug

Host generated TP or DP with an NRDY until software notifies the DbC that the

respective Transfer Rings have been initialized by ringing their doorbells.

7.6.8 Debug Capability Structure

The xHCI Extended Capability List is used to provide a standard method for

software to find and use the xHCI Debug Capability. Figure 7-9 illustrates the

Debug Capability register layout, which consists of seven register sets;

Capability, Doorbell, Event Ring Management, Control, Status, Port Management,

and Endpoint Management.

Figure 7-9: Debug Capability Register Layout

SBR

RsvdP DRCDebug Max Burst Size

CECRsvdZ PED CCSPLC PRC RsvdZ CSC RsvdZ Port Speed
Rsvd

Z
PLS PR RsvdZ

DCERST Max

DB Target RsvdZRsvdZ

RsvdP Next Capability Pointer Capability ID = Debug Port 03-00H

07-04H

0B-08H

0F-0CH

14-10H

17-14H

RsvdZ Event Ring Segment Table Size

RsvdZ

Event Ring Segment Table Base Address Lo

Event Ring Segment Table Base Address Hi

Event Ring Dequeue Pointer Lo

RsvdZ

Event Ring Dequeue Pointer Hi

RsvdZ

Debug Capability Context Pointer Lo

Debug Capability Context Pointer Hi

RsvdZ

1B-18H

1F-1CH

23-20H

27-24H

2B-28H

2F-2CH

31 30 24 23 22 21 20 18 17 16 15 1314 9 8 7 5 4 3 2 1 0

RsvdP

33-30H

37-34H

HIT HOT LSEDevice AddressDCE DCR

Debug Port Number RsvdP ER

10

Product IDDevice Revision

Vendor ID RsvdZ DbC Protocol 3B-38H

3F-3CH

526

Table 7-16: Debug Capability Structure

Register Name Offset Size (B) Mnemonic Section

Capability ID 0x00h 4 DCID 7.6.8.1

Doorbell 0x04h 4 DCDB 7.6.8.2

Event Ring Management

 Event Ring Segment Table Size 0x08h 4 DCERSTSZ 7.6.8.3.1

 Event Ring Segment Table Base Address 0x10h 8 DCERSTBA 7.6.8.3.2

 Event Ring Dequeue Pointer 0x18h 8 DCERDP 7.6.8.3.3

Control 0x20h 4 DCCTRL 7.6.8.4

Status 0x24h 4 DCST 7.6.8.5

Port Management

 Port Status and Control 0x28h 4 DCPORTSC 7.6.8.6

Endpoint Management

 Debug Capability Context Pointer 0x30h 8 DCCP 7.6.8.7

Device Descriptor Information

 Device Descriptor Info Register 1 0x38h 4 DCDDI1 7.6.8.8

 Device Descriptor Info Register 2 0x3Ch 4 DCDDI2 7.6.8.9

7.6.8.1 Debug Capability ID Register (DCID)

Address: Debug Capability Base + 0h

Default Value: Refer to Table 7-17.

Attribute: RO

Size: 32 bits

The Debug Capability ID Register links the USB Debug Capability into the xHCI

list of Extended Capabilities and defines its basic capabilities.

 527

Table 7-17: Offset 00h - Debug Capability Field Definitions (DCID)

Bits Description

7:0 Capability ID – RO. Refer to Table 7-2 for the value that identifies that the function supports a
Debug Device.

15:8 Next Capability Pointer – RO. Default = Implementation defined. This field indicates the
location of the next capability with respect to the effective address of this capability. Refer to

Table 7-1 for more information on this field.

20:16 Debug Capability Event Ring Segment Table Max (DCERST Max) – RO. Default =
implementation dependent. Valid values are 0 – 15. This field determines the maximum value
supported the Debug Capability Event Ring Segment Table Base Size registers (5.5.2.3.1), where:

 The maximum number of Event Ring Segment Table entries = 2 DCERST Max.

e.g. if DCERST Max = 7, then the Debug Capability Event Ring Segment Table(s) supports up to
128 entries, 15 then 32K entries, etc.

31:21 RsvdP.

7.6.8.2 Debug Capability Doorbell Register (DCDB)

Address: Debug Capability Base + 04h

Default Value: 0000 0000

Attribute: RW

Size: 32 bits

Table 7-18: Offset 04h - Debug Capability Field Definitions (DCDB)

Bits Description

7:0 RsvdP.

15:8 Doorbell Target (DB Target) – RW. This field defines the target of the doorbell reference. The

table below defines the Debug Capability notification that is generated by ringing the doorbell.

 Value Definition

 0 Data EP 1 OUT Enqueue Pointer Update

 1 Data EP 1 IN Enqueue Pointer Update

 2:255 Reserved

This field returns ‘0’ when read and the value should be treated as undefined by software.

23:16 RsvdP.

528

7.6.8.3 Debug Capability Event Ring Registers

7.6.8.3.1 Debug Capability Event Ring Segment Table Size Reg (DCERSTSZ)

Address: Debug Capability Base + 08h

Default Value: 0000 0000h

Attribute: RW

Size: 32 bits

The Debug Capability Event Ring Segment Table Size Register defines the

number of segments supported by the Debug Capability Event Ring Segment

Table.

Table 7-19: Offset 08h - Debug Capability Bit Definitions (DCERSTSZ)

Bit Description

15:0 Event Ring Segment Table Size – RW. Default = ‘0’. This field identifies the number of valid

Event Ring Segment Table entries in the Event Ring Segment Table pointed to by the Debug
Capability Event Ring Segment Table Base Address register. The maximum value supported by
an xHC implementation for this register is defined by the DCERST Max field in the DCID register

(7.6.8.1).

Software shall initialize this register before setting the Debug Capability Enable field in the
DCCTRL register to ‘1’.

31:16 RsvdP.

7.6.8.3.2 Debug Capability Event Ring Segment Table Base Address Register (DCERSTBA)

Address: Debug Capability Base + 10h

Default Value: 0000 0000 0000 0000h

Attribute: RW

Size: 64 bits

The Debug Capability Event Ring Segment Table Base Address Register

identifies the start address of the Debug Capability Event Ring Segment Table.

Table 7-20: Offset 10h - Debug Capability Bit Definitions (DCERSTBA)

Bit Description

3:0 RsvdP.

 529

63:4 Event Ring Segment Table Base Address Register – RW. Default = ‘0’. This field defines the high

order bits of the start address of the Debug Capability Event Ring Segment Table.

Software shall initialize this register before setting the Debug Capability Enable field in the
DCCTRL register to ‘1’.

7.6.8.3.3 Debug Capability Event Ring Dequeue Pointer Register (DCERDP)

Address: Debug Capability Base + 18h

Default Value: 0000 0000 0000 0000h

Attribute: RW

Size: 64 bits

The Debug Capability Event Ring Dequeue Pointer Register is written by software

to define the Debug Capability Event Ring Dequeue Pointer location to the xHC.

Software updates this pointer when it has finished the evaluation of an Event(s)

on the Debug Capability Event Ring.

Table 7-21: Offset 18h - Debug Capability Bit Definitions (DCERDP)

Bit Description

2:0 Dequeue ERST Segment Index (DESI) - RW. Default = ‘0’. This field may be used by the xHC to
accelerate checking the Event Ring full condition. This field is written with the low order 3 bits of

the offset of the ERST entry which defines the Event Ring segment that the Event Ring Dequeue
Pointer resides in.

3 RsvdP.

63:4 Dequeue Pointer - RW. Default = ‘0’. This field defines the high order bits of the 64-bit address of
the current Debug Capability Event Ring Dequeue Pointer.

Software shall initialize this register before setting the Debug Capability Enable field in the

DCCTRL register to ‘1’.

7.6.8.4 Debug Capability Control Register (DCCTRL)

Address: Debug Capability Base + 20h

Default Value: 0000 0000.

Attribute: RO, RW, RW1S, RW1C

Size: 32 bits

The Debug Capability Control Register is used to manage the Debug Capability.

530

Table 7-22: Offset 20h - Debug Capability Field Definitions (DCCTRL)

Bits Description

0 DbC Run (DCR) – RO. Default = 0. When ‘0’, Debug Device is not in the Configured state. When
‘1’, Debug Device is in the Configured state and bulk Data pipe transactions are accepted by

Debug Capability and routed to the IN and OUT Transfer Rings. A ‘0’ to ‘1’ transition of the Port
Reset (DCPORTSC:PR) bit will clear this bit to ‘0’.

1 Link Status Event Enable (LSE) - RW. Default = ‘0’. Setting this bit to a ‘1’ enables the Debug
Capability to generate Port Status Change Events due the Port Link Status Change bit

transitioning from a ‘0’ to a ‘1’. Refer to section 4.19.2 for more information.

2 Halt OUT TR (HOT) - RW1S. Default = 0. While this bit is ‘1’ the Debug Capability shall generate
STALL TPs for all IN TPs received for the OUT TR. The Debug Capability shall clear this bit when
a ClearFeature(ENDPOINT_HALT) request is received for the endpoint. This field is valid only

when the Debug Capability is in Run Mode (DCR = ‘1’). When not in Run Mode, this field shall
return ‘0’ when read, and writes will have no effect. Refer to section 7.6.4.3.

3 Halt IN TR (HIT) - RW1S. Default = 0. While this bit is ‘1’ the Debug Capability shall generate
STALL TPs for all OUT DPs received for the IN TR. The Debug Capability shall clear this bit when
a ClearFeature(ENDPOINT_HALT) request is received for the endpoint. This field is valid only

when the Debug Capability is in Run Mode (DCR = ‘1’). When not in Run Mode, this field shall
return ‘0’ when read, and writes will have no effect. Refer to section 7.6.4.3.

4 DbC Run Change (DRC) - RW1C. Default = 0. This bit shall be set to '1' when DCR bit is cleared

to '0', i.e. by any DbC Port State transition that exits the DbC-Configured state. While this bit is
‘1’ the Debug Capability Doorbell Register (DCDB) is disabled. Software shall clear this bit to re-
enable the DCDB.

15:5 RsvdP.

23:16 Debug Max Burst Size - RO. Default = xHC Vendor defined. This field identifies the maximum
burst size supported by the bulk endpoints of this DbC implementation.

30:24 Device Address – RO. Default = 0. This field reports the USB device address assigned to the
Debug Device during the enumeration process. This field is valid when the DbC Run bit is ‘1’.

31 Debug Capability Enable (DCE) – RW. Default = 0. Setting this bit to a ‘1’ enables xHCI USB
Debug Capability operation. This bit is a ‘0’ if the USB Debug Capability is disabled. Clearing this
bit releases the Root Hub port assigned to the Debug Capability, and terminates any Debug

Capability Transfer or Event Ring activity. Note that DCE may be cleared to ‘0’ by the assertion of
a reset condition. Refer to the definition of SBR in Table 7-23 for more information on DbC reset
conditions.

 531

7.6.8.5 Debug Capability Status Register (DCST)

Address: Debug Capability Base + 24h

Default Value: 0000 0000

Attribute: RO

Size: 32 bits

The Debug Capability Status Register reports capability related status

information to software.

Table 7-23: Offset 24h - Debug Capability Field Definitions (DCST)

Bits Description

0 Event Ring Not Empty (ER) – RO. Default = ‘0’. When ‘1’, this field indicates that the Debug
Capability Event Ring has a Transfer Event on it. It is automatically cleared to ‘0’ by the xHC
when the Debug Capability Event Ring is empty, i.e. the Debug Capability Enqueue Pointer is

equal to the Debug Capability Event Ring Dequeue Pointer register.

1 DbC System Bus Reset (SBR) - RO. When ‘1’, this field indicates that the assertion of Chip
Hardware Reset, a System Bus (e.g. the assertion of PCI RST#), or a transition from the PCI PM
D3hot state to the D0 state shall reset the DbC. When ‘0’, this field indicates that a Chip

Hardware Reset or the assertion of Host Controller Reset (HCRST = '1') or Light Host Controller
Reset (LHCRST = '1') shall reset the DbC. Resetting the DbC shall clear DCE to ‘0’.

23:2 RsvdP.

31:24 Debug Port Number – RO. Default = 0. This field provides the ID of the Root Hub port that the

Debug Capability has been automatically attached to. The value is ‘0’ when the Debug Capability
is not attached to a Root Hub port.

7.6.8.6 Debug Capability Port Status and Control Register (DCPORTSC)

Address: Debug Capability Base + 28h

Default Value: 0000 0000 (field dependent)

Attribute: RO, RW, RW1C (field dependent)

Size: 32 bits

The fields of the Debug Capability PORTSC Register are defined below and

provide information about the state of the Root Hub port that is assigned to the

Debug Capability. Note that the fields in this register function differently than

those in a normal Port Status and Control Register (described in section 5.4.8)

because the Root Hub port assigned to the Debug Capability is acting as an

Upstream Facing Port, not a Downstream Facing Port.

532

Table 7-24: Offset 28h - Debug Capability Field Definitions (DCPORTSC)

Bits Description

0 Current Connect Status (CCS) – RO. Default = ‘0’. ‘1’ = A Root Hub port is connected to a Debug
Host and assigned to the Debug Capability. ‘0’ = No Debug Host is present. This value reflects

the current state of the port, and may not correspond to the value reported by the Connect
Status Change (CSC) field in the Port Status Change Event that was generated by a ‘0’ to ‘1’
transition of this bit.

This flag is ‘0’ if Debug Capability Enable (DCE) is ‘0’.

1 Port Enabled/Disabled (PED) – RW. Default = ‘0’. ‘1’ = Enabled. ‘0’ = Disabled. This flag shall be
set to '1' by a '0' to '1' transition of CCS or a '1' to '0' transition of the PR. When PED transitions
from '1' to '0' due to the assertion of PR, the port's link shall transition to the Rx.Detect state.

This flag may be used by software to enable or disable the operation of the Root Hub port
assigned to the Debug Capability. The Debug Capability Root Hub port operation may be
disabled by a fault condition (disconnect event or other fault condition, e.g. a LTSSM Polling

substate timeout, tPortConfiguration timeout error, etc.), the assertion of DCPORTSC PR, or by
software.

 0 = Debug Capability Root Hub port is disabled.

 1 = Debug Capability Root Hub port is enabled.

When the port is disabled (PED = ‘0’) the port’s link shall enter the SS.Disabled state and remain
there until PED is reasserted ('1') or DCE is negated ('0'). Note that the Root Hub port is remains

mapped to Debug Capability while PED = '0'. While PED = '0' the Debug Capability will appear to
be disconnected to the Debug Host.

This field is ‘0’ if DCE or CCS are ‘0’.

3:2 RsvdZ.

4 Port Reset (PR) – RO. Default = ‘0’. ‘1’ = Port is in Reset. ‘0’ = Port is not in Reset. This bit is set to
‘1’ when the bus reset sequence as defined in the USB Specification is detected on the Root Hub

port assigned to the Debug capability. It is cleared when the bus reset sequence is completed by
the Debug Host, and the DbC shall transition to the USB Default state.

A ‘0’ to ‘1’ transition of this bit shall clear DCPORTSC PED (‘0’).

This field is ‘0’ if DCE or CCS are ‘0’.

 533

8:5 Port Link State (PLS) – RO. Default = undefined. This field reflects its current link state. This

field is only relevant when a Debug Host is attached (Debug Port Number > ‘0’).

 Value Meaning

 0 Link is in the U0 State

 1 Link is in the U1 State

 2 Link is in the U2 State

 3 Link is in the U3 State (Device Suspended)

 4 Link is in the Disabled State

 5 Link is in the RxDetect State

 6 Link is in the Inactive State

 7 Link is in the Polling State

 8 Link is in the Recovery State

 9 Link is in the Hot Reset State

 15:10 Reserved

Note: Transitions between different states are not reflected until the transition is complete.

9 RsvdZ.

13:10 Port Speed (Port Speed) – RO. Default = ‘0’. This field identifies the speed of the port. This field
is only relevant when a Debug Host is attached (CCS = ‘1’) in all other cases this field shall

indicate Undefined Speed.

 Value Meaning

 0 Undefined Speed

 1-15 Protocol Speed ID (PSI), refer to section 7.2.1 for the definition of PSIs.

Note: The Debug Capability does not support LS, FS, or HS operation.

16:14 RsvdZ.

17 Connect Status Change (CSC) – RW1C. Default = ‘0’. ‘1’ = Change in Current Connect Status. ‘0’
= No change. Indicates a change has occurred in the port’s Current Connect Status. The xHC sets

this bit to ‘1’ for all changes to the Debug Device connect status, even if system software has not
cleared an existing DbC Connect Status Change. For example, the insertion status changes twice
before system software has cleared the changed condition, hardware will be “setting” an

already-set bit (i.e., the bit will remain ‘1’). Software shall clear this bit by writing a ‘1’ to it.

This field is ‘0’ if DCE is ‘0’.

20:18 RsvdZ.

21 Port Reset Change (PRC) – RW1C. Default = ‘0’. This bit is set when reset processing on this port

is complete (i.e. a '1' to '0' transition of PR). ‘0’ = No change. ‘1’ = Reset complete.Software shall
clear this bit by writing a '1' to it.

This field is ‘0’ if DCE is ‘0’.

534

22 Port Link Status Change (PLC) = RW1C. Default = ‘0’. This flag is set to ‘1’ due to the following

PLS transitions:

 Transition Condition

 U0 -> U3 Suspend signaling detected from Debug Host

 U3 -> U0 Resume complete

 Polling -> Disabled Training Error

 Ux or Recovery -> Inactive Error

Software shall clear this bit by writing a '1' to it.

This field is ‘0’ if DCE is ‘0’.

23 Port Config Error Change (CEC) – RW1C. Default = ‘0’. This flag indicates that the port failed to
configure its link partner. 0 = No change. 1 = Port Config Error detected. Software shall clear this

bit by writing a '1' to it.

31:24 RsvdZ.

Note: If the Debug Capability Event Ring is full, the xHC will be unable to generated

Port Status Change Events due to transitions in the Change bits. In this case, a

Change bit will remain set until cleared by software.

7.6.8.7 Debug Capability Context Pointer Register (DCCP)

Address: Debug Capability Base + 30h

Default Value: 0000 0000 0000 0000

Attribute: RW

Size: 64 bits

The Debug Capability Context Pointer Register identifies the start address of the

array of data structures that are used to manage the Debug Capability Transfer

Rings.

Table 7-25: Offset 30h - Debug Capability Context Pointer Field Definitions (DCCP)

Bits Description

3:0 RsvdP.

63:4 Debug Capability Context Pointer Register – RW. Default = ‘0’. This field defines the high order

bits of the start address of the Debug Capability Context data structure (refer to section 7.6.9)
associated with the Debug Capability.

Software shall initialize this register before setting the Debug Capability Enable bit in the Debug

Capability Control Register to ‘1’.

 535

7.6.8.8 Debug Capability Device Descriptor Info Register 1 (DCDDI1)

Address: Debug Capability Base + 38h

Default Value: 0000 0000

Attribute: RW

Size: 32 bits

The Debug Capability Device Descriptor Register 1 identifies the Device Protocol

and Vendor ID values that shall be reported by DbC in its Device Descriptor

when it is enumerated by a Debug Host. Refer to section 9.6.1, Table 9-8 in the

USB3 spec.

This register shall be initialized before enabling the DbC (DCE = ‘1’).

Table 7-26: Offset 38h - Debug Capability Device Descriptor Info Field Definitions (DCDDI1)

Bits Description

7:0 DbC Protocol – RW. This field is presented by the Debug Device in the USB Interface Descriptor

bInterfaceProtocol field.

 Value Function

 0 Debug Target vendor defined.

 1 GNU Remote Debug Command Set supported.

 2-255 Reserved.

15:8 RsvdZ.

31:16 Vendor ID – RW. This field is presented by the Debug Device in the USB Device Descriptor
idVendor field.

7.6.8.9 Debug Capability Device Descriptor Info Register 2 (DCDDI2)

Address: Debug Capability Base + 3Ch

Default Value: 0000 0000

Attribute: RW

Size: 32 bits

The Debug Capability Device Descriptor Register 2 identifies the Device Revision

and Product ID values that shall be reported by DbC in its Device Descriptor

when it is enumerated by a Debug Host. Refer to section 9.6.1, Table 9-8 in the

USB3 spec.

This register shall be initialized before enabling the DbC (DCE = ‘1’).

536

Table 7-27: Offset 3Ch - Debug Capability Device Descriptor Info Field Definitions (DCDDI2)

Bits Description

15:0 Product ID – RW. This field is presented by the Debug Device in the USB Device Descriptor
idProduct field.

31:16 Device Revision – RW. This field is presented by the Debug Device in the USB Device Descriptor
bcdDevice field.

7.6.9 Data Structures

The Debug Capability Context Pointer Register (DCCP) references the Debug

Capability Context, which is a data structure that contains a Debug Capability

Info Context (DbC Info) data structure followed by 2 Endpoint Context data

structures. The Endpoint Context entry at offset 40h defines the Endpoint

Context for the OUT Transfer Ring, and the entry at offset 80h defines the

Endpoint Context for the IN Transfer Ring. The Transfer Rings referenced by the

Endpoint Contexts are Bulk endpoints as described in section Endpoint Contexts

and Transfer Rings.

Figure 7-10: Debug Capability Context Data Structure

DbC Info Context

OUT EP Context

IN EP Context

Offset

000h

0CFh

040h

080h

Note: Figure 7-10 illustrates the Debug Capability Context, which includes 64 byte DbC

Info and Endpoint Contexts. The Context Size (CSZ) field in the HCCPARAMS1

register does not apply to DbC related contexts. All DbC data structure consume

64 bytes. Refer to section 6.2.3 for more information on the Endpoint Context

data structure.

The Debug Capability Event Ring Registers work identically to the normal Event

Ring Registers described in section 4.9.4. i.e. the Debug Capability Event Ring

Segment Table Base Address Register references an Event Ring Segment Table

data structure as described in section 6.5.

Normally if the Debug Capability Enable (DCE) bit in the Debug Capability

Control Register (DCCTRL) is ‘1’, the xHC maintains ownership of the data

structures, except while an endpoint is in the Stopped state where the

ownership of the Transfer Ring is relinquished by the xHC, allowing software to

add, delete, or modify any TD on the ring.

 537

7.6.9.1 Debug Capability Info Context (DbCIC)

The 64 byte Debug Device Info Context data structure defines parameters that

are presented by the Debug Device when it is enumerated.

Note: Software sets the values in the DbCIC to reflect the specific debugging

environment that it supports, e.g. if software supported the GDB Remote Debug

protocol, then the Manufacturer String may = “Linux”, the Product String may =

“Remote GDB”. If a vendor does not have a USB-IF assigned Vendor ID, then they

could use the development reserved Vendor ID = FFFFh. The Device Revision

field would reflect the revision of remote debug protocol, etc.

Figure 7-11: Debug Capability Info Context Data Structure (DbCIC)

Manufacturer String Length String 0 LengthSerial Number String Length Product String Length

RsvdZ

RsvdZ

03-00H

07-04H

0B-08H

0F-0CH

14-10H

17-14H

Product String Descriptor Address Lo

Product String Descriptor Address Hi

Serial Number String Descriptor Address Lo

Rsvd

Z

Serial Number String Descriptor Address Hi

Rsvd

Z
1B-18H

1F-1CH

31 16 15 8 7 1 0

Manufacturer String Descriptor Address Lo

Manufacturer String Descriptor Address Hi

Rsvd

Z

String 0 Descriptor Address Lo

String 0 Descriptor Address Hi

Rsvd

Z

RsvdZ

23-20H

27-24H

3B-28H

3F-2CH

24 23

The String referenced by this field shall be returned when the Debug Device

receives a GET_DESCRIPTOR(STRING, 0) request.

Table 7-28: Offset 00h - Debug Capability Info Context Field Definitions (DbCIC)

Bits Description

0 RsvdZ.

63:1 String 0 Descriptor Address. This field represents the high order bits of the 64-bit pointer to a
USB String Descriptor that contains which specifies the Languages Supported by the DbC.

The String referenced by this field shall be returned when the Debug Device

receives a GET_DESCRIPTOR(STRING, 1) request.

538

Table 7-29: Offset 08h - Debug Capability Info Context Field Definitions (DbCIC)

Bits Description

0 RsvdZ.

63:1 Manufacturer String Descriptor Address. This field represents the high order bits of the 64-bit
pointer to a USB String Descriptor that contains which describes the manufacturer.

The String referenced by this field shall be returned when the Debug Device

receives a GET_DESCRIPTOR(STRING, 2) request.

Table 7-30: Offset 10h - Debug Capability Info Context Field Definitions (DbCIC)

Bits Description

0 RsvdZ.

63:1 Product String Descriptor Address. This field represents the high order bits of the 64-bit pointer
to a USB String Descriptor that contains which describes the product.

The String referenced by this field shall be returned when the Debug Device

receives a GET_DESCRIPTOR(STRING, 3) request.

Table 7-31: Offset 18h - Debug Capability Info Context Field Definitions (DbCIC)

Bits Description

0 RsvdZ.

63:1 Serial Number String Descriptor Address. This field represents the high order bits of the 64-bit
pointer to a USB String Descriptor that contains which describes the device’s serial number.

Note: If a string is not defined for a specific attribute (Manufacture, Product, or Serial

Number), software shall point the respective String Length to ‘0’ and the String

Descriptor Address field shall be ignored by the xHC.

 539

Table 7-32: Offset 20h - Debug Capability Info Context Field Definitions (DbCIC)

Bits Description

7:0 String 0 Length. The size of String 0 in bytes.

15:8 Manufacturer String Length. The size of Manufacturer String in bytes.

23:16 Product String Length. The size of Product String in bytes.

31:24 Serial Number String Length. The size of Serial Number String in bytes.

7.6.9.2 Debug Capability Endpoint Context

The Debug Device utilizes the Endpoint Context data structure defined in

section 6.2.3 with following exceptions:

• The DbC does not support Streams, so the MaxPStreams, LSA, and HID fields are

reserved and shall be set to ‘0’.

• The DbC endpoints are bulk, so the Interval, Mult, and Max ESIT Payload fields are

reserved and shall be set to ‘0’.

• Figure 6-3 illustrates a 32 byte Endpoint Context data structure. When used by the

DbC it is always a 64 byte data structure, where bytes (14-1Fh) are dedicated for

exclusive use by the DbC and shall be treated by system software as Reserved and

Opaque (RsvdO).

7.6.10 USB Descriptors for Debug Class Device

This section defines the USB descriptors that shall be returned by a USB Debug

Device when it receives GET_DESCRIPTOR requests.

The Debug Device is built using one interface which declares 2 Bulk endpoints,

an IN and an OUT. Refer to section 8 of the USB3 specification for more

information on the following descriptor types.

7.6.10.1 Device Descriptor

This section defines the USB Device Descriptor that shall be returned by a USB

Debug Device when it receives a GET_DESCRIPTOR(DEVICE) request.

540

Table 7-33: DbC Device Descriptor

Part
Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the
size of this descriptor in bytes.

12h

bDescriptorType 1 1 Device Descriptor Type (assigned
by USB)

01h

bcdUSB 2 2 USB 3.0 Specification 0300h

bDeviceClass 4 1 Class code (Defined in the Interface
descriptor).

00h122

bDeviceSubClass 5 1 Subclass code (Defined in the
Interface descriptor).

00h

bDeviceProtocol 6 1 Protocol code (Defined in the
Interface descriptor).

00h

bMaxPacketSize0 7 1 Maximum packet size for endpoint

zero.

09h

idVendor 8 2 Vendor ID (assigned by USB). DCDDI1
Vendor ID123

idProduct 10 2 Product ID. DCDDI2

Product ID124

bcdDevice 12 2 Device release number DCDDI2 Device

Revision124

iManufacturer 14 1 Index of String descriptor
describing manufacturer. xHCI

vendor defined.

01h

iProduct 15 1 Index of String descriptor
describing the product.

02h

122The DbC declares its Class Code, Subclass Code, and Protocol values in the Interface Descriptor to enable

implementation in a composite device refer to section 7.6.10.3.

123Refer to section 7.6.8.8, Table 7-26.

124Refer to section 7.6.8.9, Table 7-27.

 541

iSerialNumber 16 1 Index of String descriptor

describing the device’s serial
number. xHCI vendor defined.

03h

bNumConfigurations 17 1 Number of possible configurations. 01h

7.6.10.2 Configuration Descriptor

The USB Configuration Descriptor declared by a USB Debug Device.

Table 7-34: DbC Configuration Descriptor

Part Offset
(Byte)

Size
(Bytes)

Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

09h

bDescriptorType 1 1 Configuration Descriptor Type (assigned by

USB)

02h

wTotalLength 2 2 Total length of data returned for this

configuration. Includes the combined
length of all returned descriptors
(configuration, interface, and endpoint)

returned for this configuration.

002Ch

bNumInterfaces 4 1 Number of interfaces supported by this
configuration.

01h

bConfigurationValue 5 1 Value to use as an argument to Set
Configuration to select this configuration.

01h

iConfiguration 6 1 Index of string descriptor describing this
configuration. (None defined)

00h

bmAttributes 7 1 Configuration characteristics
 Bit Function

 7 Reserved (set to one)

 6 Self Powered

 5 Remote Wakeup

 4-0 Reserved (reset to 0)

C0h

542

bMaxPower 8 1 Maximum power consumption of USB

device from bus in this specific
configuration when the device is fully
operational.

xHCI

vendor
defined

7.6.10.3 Interface Descriptor

The USB Interface Descriptor declared by a USB Debug Device.

Table 7-35: DbC Interface Descriptor

Part Offset
(Byte)

Size
(Bytes)

Description Value

bLength 0 1 Numeric expression specifying the
size of this descriptor in bytes.

09h

bDescriptorType 1 1 Interface Descriptor Type (assigned
by USB)

04h

bInterfaceNumber 2 1 Number of interfaces. 00h

bAlternateSetting 3 1 Value used to select alternate
setting for the interface identified in
the prior field.

00h

bNumEndpoints 4 1 Number of endpoints used by this
interface (excluding endpoint zero).

02h

bInterfaceClass 5 1 Class code. DCh125

bInterfaceSubClass 6 1 Subclass code. 02h126

bInterfaceProtocol 7 1 Protocol code. DCDDI1 DbC
Protocol
field127

125“Diagnostic Device” class, assigned by USB-IF.

126“Debug Device” SubClass, assigned by USB-IF.

127Refer to section 7.6.8.8, Table 7-26.

 543

iInterface 8 1 Index of string descriptor describing

this interface.

00h

7.6.10.4 Endpoint Descriptor 1 (Bulk OUT)

The USB Endpoint Descriptor declared for the Bulk OUT endpoint by a USB

Debug Device.

Table 7-36: DbC Endpoint Descriptor 1 OUT

Part Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the size of this

descriptor in bytes.

07h

bDescriptorType 1 1 Endpoint Descriptor Type (assigned by USB) 05h

bEndpointAddress 2 1 The address of the endpoint on the USB device
described by this descriptor.

01h

bmAttributes 3 1 This field describes the endpoint’s attributes
when it is configured using the
bConfigurationValue. Transfer Type = Bulk,

Direction = OUT.

02h

wMaxPacketSize 4 2 Maximum packet size this endpoint is capable
of sending or receiving when this configuration
is selected. Size = 1KB.

0400h

bInterval 6 1 Interval for polling endpoint for data transfers 00h

7.6.10.5 SuperSpeed Endpoint Companion Descriptor 1 (Bulk OUT)

The USB SuperSpeed Endpoint Companion Descriptor declared for the Bulk

OUT endpoint by a USB Debug Device.

544

Table 7-37: DbC SuperSpeed Endpoint Companion Descriptor 1 OUT

Part
Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

06h

bDescriptorType 1 1 SuperSpeed Endpoint Companion
Descriptor Type (assigned by USB)

30h

bMaxBurst 2 1 The maximum number of packets the
endpoint can send or receive as part of a
burst. Valid values are from 0 to 15.

DCCTRL
Debug Max
Burst Size128

bmAttributes 3 1 This field describes the endpoint’s
SuperSpeed attributes when it is
configured using the bConfigurationValue.

Mult = 0, MaxStreams = 0.

0

wBytesPerInterval 4 2 The total number of bytes this endpoint

will transfer every service interval. This
field is only valid for periodic endpoints.

0000h

7.6.10.6 Endpoint Descriptor 2 (Bulk IN)

The USB Endpoint Descriptor declared for the Bulk IN endpoint by a USB Debug

Device.

Table 7-38: DbC Endpoint Descriptor 2 IN

Part Offset
(Byte)

Size
(Bytes)

Description Value

bLength 0 1 Numeric expression specifying the size of this
descriptor in bytes.

07h

bDescriptorType 1 1 Endpoint Descriptor Type (assigned by USB) 05h

128Refer to section 7.6.8.4, Table 7-22.

 545

bEndpointAddress 2 1 The address of the endpoint on the USB device

described by this descriptor.

81h

bmAttributes 3 1 This field describes the endpoint’s attributes
when it is configured using the

bConfigurationValue. Transfer Type = Bulk,
Direction = IN.

02h

wMaxPacketSize 4 2 Maximum packet size this endpoint is capable
of sending or receiving when this configuration

is selected. Size = 1KB.

0400h

bInterval 6 1 Interval for polling endpoint for data transfers 00h

7.6.10.7 SuperSpeed Endpoint Companion Descriptor 2 (Bulk IN)

The SuperSpeed Endpoint Companion Descriptor declared for the Bulk IN

endpoint by a USB Debug Device.

Table 7-39: DbC SuperSpeed Endpoint Companion Descriptor 2 IN

Part Offset
(Byte)

Size
(Bytes)

Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

06h

bDescriptorType 1 1 SuperSpeed Endpoint Companion
Descriptor Type (assigned by USB)

30h

bMaxBurst 2 1 The maximum number of packets the

endpoint can send or receive as part of a
burst. Valid values are from 0 to 15.

DCCTRL

Debug Max
Burst Size129

bmAttributes 3 1 This field describes the endpoint’s

SuperSpeed attributes when it is
configured using the bConfigurationValue.
Mult = 0, MaxStreams = 0.

0

129Refer to section 7.6.8.4, Table 7-22.

546

wBytesPerInterval 4 2 The total number of bytes this endpoint

will transfer every service interval. This
field is only valid for periodic endpoints.

0000h

7.6.10.8 Binary Object Store (BOS) Descriptor

This section defines the BOS descriptor and Device Capability Descriptors that

shall be returned by a USB Debug Device when it receives a

GET_DESCRIPTOR(BOS) request.

Table 7-40: BOS Descriptor

Part Offset
(Byte)

Size
(Bytes)

Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

5h

bDescriptorType 1 1 BOS Descriptor Type (assigned by USB) 0Fh

wTotalLength 2 2 Length of this descriptor and all of its sub

descriptors.

0Fh

bNumDeviceCaps 4 1 The number of separate device capability

descriptors in the BOS.

01h

Table 7-41: BOS SS Device Capability Descriptor

Part Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the

size of this descriptor in bytes.

0Ah

bDescriptorType 1 1 Device Capability Descriptor Type
(assigned by USB)

10h

bDeviceCapabilityType 2 1 Capability Type:
SUPERSPEED_USB.

03h

bmAttributes 3 1 Not LTM Capable. 00h

wSpeedsSupported 4 2 This device only supports
operation at 5 Gbs.

0008h

 547

bFunctionalitySupported 6 1 All functionality available only at

5Gbs.

03h

bU1DevExitLat 7 1 U1 Device Exit Latency. Worst case

latency to transition from U1 to U0.

xHC

Vendor
Defined

wU2DevExitLat 8 2 U2 Device Exit Latency. Worst case

latency to transition from U2 to U0.

xHC

Vendor
Defined

7.6.10.9 String Descriptors

Refer to the String Descriptor section (9.6.8) in the USB3 spec.

Note: Only a single LANGID definition is supported by the DbC in String 0.

7.7 xHCI I/O Virtualization (xHCI-IOV) Capability

The xHCI-IOV Extended Capability Structure defines required parameters for

managing xHC instances in a virtualized environment. The xHCI-IOV Extended

Capability Structure is an optional normative capability defined for the xHCI. The

registers defined by the xHCI-IOV capability complement those defined by the

PCIe SR-IOV Extended Capability Structure . Both capability structures shall be

defined if the xHC supports virtualization. Refer to section 8.2.1 for more

information on the PCIe SR-IOV Extended Capability.

The xHCI-IOV Extended Capability Structure consists of two arrays of registers:

the VF Interrupter Range and the VM Device Slot Assignment .

This capability is chained through the xHCI Extended Capabilities Pointer (xECP)

field and resides in MMIO space.

An xHC implementation shall provide one VF Interrupter Range Register for

each Virtual Function (VF) (as defined by the SR-IOV Extended Capabilities

structure TotalVFs field). Each VF Interrupter Range Register defines Interrupter

Base Offset and Interrupter Count fields. These fields allow the Virtual Machine

Manager (VMM) to assign a specific subset of the available Interrupters to a VF.

After hardware reset all VF Interrupter Range Registers = ‘0’, i.e. no Interrupters

are owned by VFs.

548

Figure 7-12: xHCI-IOV Capability Structure

RsvdP

VF Interrupter Range Register 1

Capability Header

...

VF Interrupter Range Register (NumVFs)

VF Device Slot Assignment Register 1

...

VF Device Slot Assignment Register 255

003-000h

007-004h

...

0FF-0FCh

107-104h

4FF-4FCh

...

103-100h

31 0

Note: No VF Interrupter Range Register 0 is defined. VM Interrupter Range Register 0

would logically reference Physical Function 0 (PF0), however PF0 provides the

pool from which all Interrupters are allocated.

Note: The xHCI limits the maximum number of VFs supported to 63, i.e. the SR-IOV

Extended Capabilities structure TotalVFs field shall be <= 63 for xHCI

implementations.

For example, Logically the PF0 Interrupter Base Offset and Interrupter Count are

initialized to ‘0’ and MaxIntrs, respectively. As Interrupters are allocated to VFs,

the number of Interrupters available to PF0 are reduced accordingly. At any

time, the number of Interrupters available to PF0 is equal to the MaxIntrs –

SUM(Interrupter Count 1-1024).

Interrupter 0 shall not be assigned to a VF.

An xHC implementation shall provide MaxSlots VF Device Slot Assignment

Registers. Each VF Device Slot Assignment Register defines a Slot Emulated and

Device Slot n VF field. The VM Device Slot Assignment Registers shall be used

by the VMM to assign a Device Slot to a VF. The Device Slot n VF field contains

the VF ID of the PF or VF that owns the Device Slot. After hardware reset all

Device Slots are assigned the Physical Function 0 (Device Slot n VF = 0). The Slot

Emulated field identifies whether a Device Slot is being emulated by the VMM

for a VM or direct-assigned to a VM. Refer to section 8.1.1 for more information

on device emulation.

 IMPLEMENTATION NOTE

Page Size Management

This version of the xHCI spec only allows an implementation to support a single page

size, as reported by the PAGESIZE register. The page size affects the following registers:

• The RTSOFF and DBOFF registers - If virtualization is enabled, then the PF and VF

Capability/Operational, Runtime, and Doorbell register sets are each required to

 549

reside on separate memory pages, so that the VF Capability/Operational register sets

may be trapped and emulated by a VMM. The boundaries between the register sets

shall depend on the page size and affect the size of the required PF/VF MMIO space.

If virtualization is not supported (i.e. no SR-IOV or xHCI-IOV Capabilities are defined),

the xHCI register sets may be packed on a single page.

• PCI Configuration Space BAR0 register - If virtualization is supported, the page size

affects the size of the MMIO space declared by the BAR0 register. Refer to section

6.2.5 of the PCI spec for information on the operation of the BAR0 register.

• SR-IOV Supported Page Size register - This register shall indicate support for single

page size, and its size shall be identical the page size defined in the Page Size

(PAGESIZE) register. Refer to section 3.3.12 in the SR-IOV spec.

• SR-IOV Page Size register - This register shall be written by software with a value

identical the page size defined in the Operational Page Size (PAGESIZE) register.

Refer to section 3.3.13 in the SR-IOV spec.

7.7.1 Capability Header

Offset: xECP + 00h

Default Value: Implementation Dependent

Attribute: RO

Size: 32 bits

This register is an xHCI Extended Capability register. It includes a specific

function section and a pointer to the next xHCI Extended Capability. This

register is used by a VMM to configure and manage the xHC virtual functions.

Figure 7-13: xHCI-IOV Capability Header

Next Capability Pointer Cap IDRsvdP

31 16 15 8 7 0

Table 7-42: xHCI_IOV Capability Header Field Definitions

Bits Description

7:0 Capability ID – RO. Refer to Table 7-2 for the value that identifies the capability as xHCI I/O

Virtualization.

15:8 Next Capability Pointer – RO. This field indicates the location of the next capability with respect

to the effective address of this capability. Refer to Table 7-1 for more information on this field.

550

31:16 RsvdP.

7.7.2 VF Interrupter Range Registers

Offset: xECP + (4 * VF ID)

 where: VF ID is 1, 2, 3, … TotalVFs

Default Value: 0000 0000h

Attribute: RW

Size: 32 bits

One VF Interrupter Range Register exists for each VF supported by the xHC. The

number of VFs supported by an xHC implementation is defined by the TotalVFs

field in the SR-IOV Extended Capability Structure. These registers are addressed

by the VF ID. They are used by a VMM to assign physical Interrupters to VFs.

After hardware reset, all Interrupters are assigned to PF0. The VMM shall use the

Interrupter Count and Interrupter Offset fields of this register to allocate the PF0

Interrupters to the associated VF.

Figure 7-14: VF Interrupter Range Register

RsvdP VFHVFR Interrupter OffsetInterrupter Count

31 22 21 20 19 10 9 0

For a particular VF:

The Interrupter Count field establishes the number of Interrupters that shall

be mapped to the VF. The value of the Interrupter Count field shall be

identical to the value of the MaxIntrs field in the emulated HCSPARAMS1

register presented by the VMM to a VM.

The Interrupter Offset field defines the physical to virtual Interrupter

mapping. The value of the Interrupter Offset field shall be used by the xHC

to map the set of PF0 Interrupter Registers from Interrupter Offset to

Interrupter Offset + Interrupter Count – 1, to VF Interrupters 0 to Interrupter

Count – 1.

The xHC uses these register values to translate and filter VM references to the

Interrupter Registers. For example, if the xHC supports 16 interrupters and 3

VFs. VF Interrupter Range registers 4-63 would be invalid. If the Interrupter

Count fields for VF Interrupter Range Registers 1-3 were set to 4 and the

Interrupter Offset fields were 4, 8, and 12, respectively. Then PF0 would own

Interrupters 0-3, VF 1 Interrupters 4-7, VF 2 Interrupters 8-11, and VF 3

 551

Interrupters 12-15. The VMM would be required to present MaxIntrs = 4 in the

HCSPARAMS1 registers that it emulates to each VM.

Software uses these registers to manage the state and Interrupter resources of a

VF. Software shall not modify the Interrupter Count and Interrupter Offset fields

if VFH = ‘0’.

Table 7-43: VM Interrupter Range Register Field Definitions

Bit Description

9:0 Interrupter Offset (IRROFF) – RW. Default = ‘0’. This field specifies the index of the starting PF0
Interrupter allocated to the VF. Valid values set by software are ‘0’ to MaxIntrs-1. Writing a value

of ‘0’ “unmaps” the Interrupters from a VF back to PF0.

19:10 Interrupter Count (IRRCNT) – RW. Default = ‘0’. This field identifies the number of PF0
Interrupters allocated to the VF. Valid values set by software are ‘1’ to MaxIntrs-1.

20 VF Run (VFR) – RW. Default = ‘0’. ‘1’ = Run. ‘0’ = Stop. When set to ‘1’, the Host Controller places
endpoints associated with this VF on its Pipe Schedule. When this bit is cleared to ‘0’, the xHC
completes the current and any actively pipelined transactions on the USB associated with this

VF, then removes all endpoints associated with this VF from its Pipe Schedule. The Host
Controller shall halt VF endpoints within 16 microframes after software clears the VFR bit. The
VF Halted bit indicates when the xHC has finished its pending pipelined transactions and has

entered the stopped state for this VF. Software shall not write a ‘1’ to this field unless the VF is
in the Halted state (i.e. VF Halted is a ‘1’). Doing so will yield undefined results.

21 VF Halted (VFH) – RO. Default = ‘1’. This bit is a ‘0’ whenever the VF Run bit is a ‘1’. The xHC sets

this bit to ‘1’ after it has stopped executing as a result of the VF Run bit being cleared to ‘0’,
either by software or by the xHC hardware (e.g. internal error).

31:22 RsvdP.

Note: Interrupter 0 is always owned by PF0.

7.7.3 VF Device Slot Assignment Registers

Offset: xECP + (04h + (4 * TotalVFs)) + (4 * Slot ID))

 where: Slot ID is 1, 2, 3, … MaxSlots

Default Value: 0000 0000h

Attribute: RW

Size: 32 bits

These registers are used by the VMM to assign a Doorbell Register (i.e. Device

Slot) to a VF. All device slots are assigned to the PF0 (0) after reset.

552

Figure 7-15: VF Device Slot Assignment Register

SERsvdP Device Slot 1 VF ID

31 6 057

22 21

Table 7-44: VF Device Slot Assignment Register Field Definitions

Bit Description

5:0 Device Slot VF ID (DSAVFID) – RW. Default = ‘0’ (all slots are assigned to PF0). This field specifies
the ID of VM that the respective Device Slot is allocated. Valid values set by software are ‘0’ to

NumVFs (defined in the SR-IOV Capability). A value of ‘0’ reassigns this Device Slot to PF0.

6 Slot Emulated (DSASE) – RW. Default = ‘0’. This field specifies if the Device Slot is emulated or
direct-assigned. A value of ‘1’ shall cause the host controller to generate a Doorbell Event to the
PF0 Primary Event Ring when the doorbell is rung. A value of ‘0’ shall cause the host controller to

process the DB Target code when the doorbell is rung.

31:7 RsvdP.

Note: The USB Device Address for the slot shall be cleared to ‘0’ by the xHC when this

register is written.

Note: The VMM shall issue a Slot Enable Command to obtain an emulated (DSASE =

‘1’) Device Slot to assign to a VF.

7.8 xHCI Local Memory Capability

An xHCI implementation may define this optional normative xHCI Extended

Capability to provide RAM for debug port execution prior to initializing system

memory.

Figure 7-16: xHCI Local Memory Capability

RsvdZ LME Next Capability Pointer Capability ID

31 16 15 8 7 017

Memory Dword 1

03-00H

07-04H

......

(Size*256)

+(0C-08)H
Memory Dword (Size*256)

Size

0C-08H

 553

Table 7-45: Offset 00h - xHCI Local Memory Capability Field Definitions

Bits Description

7:0 Capability ID – RO. Refer to Table 7-2 for the value that identifies the capability as Local
Memory Protocol.

15:8 Next Capability Pointer – RO. This field indicates the location of the next capability with respect

to the effective address of this capability. Refer to Table 7-1 for more information on this field.

16 Local Memory Enable (LME) - RW. Default = ‘0’. Setting this bit to a ‘1’ enables the Local

Memory Capability. Clearing this bit to a ‘0’ disables the Local Memory Capability.

31:17 RsvdZ.

Table 7-46: Offset 04h - xHCI Local Capability Field Definitions

Bits Description

31:0 Size – RO. This field identifies the size of the Local Memory space exposed by this capability in
1KB blocks.

Table 7-47: Offset 08h - xHCI Local Capability Field Definitions

Bits Description

(Size*256)
31:0

Local Memory – RW. This field is a byte addressable array of read/write memory
locations that is exposed by the xHCI Local Memory Capability.

Note: The xHCI Debug Capability requires that the data structures necessary to manage

it (Debug Capability Data Structure, Transfer Rings, Event Ring, etc.) are set up in

read/write memory. This is problematic if attempting to debug the code that

initializes the system memory controller, and system memory is not available.

This capability allows the xHC to temporarily map a portion of its internal SRAM

in to MMIO space for use by the debugger prior to system memory being

available.

554

 555

8 Virtualization

Virtualization allows multiple Operating System Instances (OSI) to concurrently

run within a platform. The default interface (i.e. virtualization is disabled)

presented by the xHC to the host system is a single Physical Function (PF or

PF0) or eXtensible Host Controller Interface (e.g. Figure 3-3). When the xHC

virtualization capabilities are turned on, multiple Virtual Functions (VF) are

enabled. To minimize hardware requirements, the physical interface presented

by an xHC VF is a subset of that presented by the PF and the virtualization

software shall emulate portions of the VF interface to fill the gaps.

Only the PF shall present xHC virtualization capabilities, i.e. SR-IOV and xHCI-

IOV Capability Structures. All VFs appear as non-virtualization capable xHC

instances.

Note that the xHC virtualization capabilities discussed in this document rely

heavily on the virtualization concepts and mechanisms defined in the PCIe

Single Root – I/O Virtualization (SR-IOV) specification.

This specification assumes three principal classes of software are supported

under the virtual machine architecture:

• Virtual Machine Manager (VMM): The VMM acts as a host and has full control of the

processor(s) and other platform hardware. The VMM presents guest software (refer

to the Virtual Machine (VM) description below) with an abstraction of a virtual

processor and allows it to execute directly on a logical processor. There is only one

instance of a VMM in a virtualized environment, and it is able to retain selective

control of platform resources: processor resources, physical memory, interrupt

management, I/O, etc. A VMM may own a physical resource and provide services to

share that resource across multiple VMs. Or it may Direct-Assign a physical resource

exclusively to a VM.

• Virtual Machine (VM): Each Virtual Machine (VM) is a guest software environment

that supports a stack consisting of operating system (OS) and application software.

Each VM operates independently of other VMs and uses the same interface to

processor(s), memory, storage, graphics, and I/O provided by a physical platform.

The VM software stack (or OSI) may act as if it were running on a platform with no

VMM. Software executing in a VM shall operate with reduced privilege so that the

VMM can retain control of platform resources.

• Hypervisor: The hypervisor is a transport mechanism, which provides a

communication path between VMs and the VMM. Features of the hypervisor allow it

to trap VM requests for platform resources and forward those requests to the VMM.

Some virtualization environments combine the VMM and Hypervisor

functionality into a single entity.

556

To reduce hardware requirements, the xHC architecture depends on the VMM to

emulate the PCI Configuration Space, the xHCI Capability and Operational

Registers, and several other features of a Virtual Function (VF).

To minimize the hardware requirements associated with a VF the xHCI

architecture partitions its registers in to “low touch” and “high touch”. Low touch

registers are referenced infrequently, i.e. only at initialization time or when a

USB device is enumerated. High touch registers are referenced regularly during

the normal operation of the xHC.

Low touch registers can be trapped and emulated by the VMM because the

performance impact of VMM intervention is minimal. The xHCI Capability

Registers and Operational Registers are considered to be Low Touch registers.

The Capability Registers are generally only referenced at initialization time, and

the Operational Registers are referenced infrequently during runtime, i.e. during

initialization or when a USB device is attached or detached.

The high touch registers are the Interrupt and Event Ring management registers,

and the Doorbell registers. The Interrupt and Event Ring registers reside in the

Runtime Register Space . The Runtime and Doorbell Registers are physically

presented by the xHC to each VF.

The xHCI is designed such that the interface presented by a combination of xHC

hardware and VMM hardware emulation to a VM may be indistinguishable fr om

the interface that the VM would see through the PF if it exclusively owned the

xHC. This is accomplished through VMM emulation of the Capability and

Operation registers, and xHC hardware support for filtering VF access to the

physical Doorbell and Runtime register sets. The result allows a VMM to handle

the emulation of the xHCI registers associated with device enumeration and

other non-time critical xHCI operations, and the xHC to present hardware

registers to a VM for the time critical USB device control and data transfer

management.

The xHCI defines independent base addresses in MMIO space for the Runtime

and Doorbell Registers so that they can be positioned on page boundaries to

allow easy mapping to a VM.

Additionally, the xHCI supports the ability for the VMM to emulate a USB device

to a VM. In cases were the resources of single USB device needs to be shared

across multiple VMs, the VMM may own the physical device and emulate the

operation of that device to multiple VMs. For example, the VMM would own the

Device Slot assigned to a USB keyboard, and create emulated versions of that

keyboard for each of the VM. The VMM will manage switching the keystroke

stream to the VM that currently has user focus. The USB device emulation

support of the xHCI also allows the VMM to emulate external USB hubs to VMs,

the importance of which will be discussed below.

 557

8.1 Operation

For the VMM to provide xHCI functionality to a VM, it shall present an xHC VF in

the VM’s address space. To enable the xHC virtualization capabilities the VMM

shall perform the following basic steps:

• Create the VFs by enabling and configuring the PCIe Single Root – IO Virtualization

(SR-IOV) capability.

• Assign xHC resources to a VF (Interrupters and Device Slots) by enabling and

configuring the xHCI – IO Virtualization (xHCI-IOV) capability.

• Allocate PCI Configuration Space and Memory Mapped I/O (MMIO) Space in the VMs

address space for the VF.

• Establish Hypervisor traps for VM references to the emulated VF registers.

These steps allow the combination of xHC hardware and VMM register-level

emulation to present a fully functional xHC to a VM, without requiring hardware

support for every feature of a VF. They also allow the VMM to act as an

intermediary, managing the shared xHC resources across many VMs.

8.1.1 Resource Assignment

To minimize VMM overhead, Device Slots and Interrupters may be “direct -

assigned” to Virtual Functions.

The VMM shall always own PF0. And only PF0 shall present the SR-IOV and

xHCI-IOV Extended Capabilities Structures.

8.1.1.1 MMIO Space

The PCI Configuration space BAR0 and BAR1 fields contain a 64 bit address that

points to the base of the xHC PF0 MMIO space. This pointer will be referred to

as PBAR0.

The SR-IOV VF Enable field shall be set to ‘1’ to enable xHC virtualization

support.

The SR-IOV TotalVFs field identifies the maximum number of VFs that can be

associated with the PF.

The SR-IOV NumVFs field identifies the number of VFs that shall be visible in the

MMIO space after both NumVFs is set to a valid value and VF Enable is set to ‘1’.

Valid values for NumVFs are 1 to TotalVFs, SR-IOV VF BAR0 and VF BAR1 fields

contain a 64 bit address that points to the base of the xHC VF MMIO space. This

pointer will be referred to as VFBAR0. These fields behave as normal PCI BARs,

as described in the PCI specification section 6.2.5. They can be sized by writing

all 1’s and reading back the contents of the BARs as described in the PCI

Specification, complying with the low order bits that define the BAR type fields.

558

The size decoded by VFBAR0 is referred to as VFBAR0.Size. The amount of

address space decoded by VFBAR0 shall be an integral multiple of SR-IOV

System Page Size field. VFBAR0 determines the alignment requirement and size

(VFBAR0.Size) for a single VF. The total MMIO space consumed by the xHC is

VFBAR0.Size * NumVFs. The MMIO space associated with each VF begins on a

page boundary as defined by the System Page Size field of the SR-IOV Extended

Capability structure.

i.e. if VFBAR0.size = 16KB and NumVFs = 4, then the MMIO space allocated to all

VFs is 64KB (16K * 4) bytes.

PF0 MMIO Register locations:

• Capability Registers reside at PBAR0.

• Operational Registers reside at PBAR0 + CAPLENGTH.

• Runtime Registers reside at PBAR0 + RTSOFF.

• Doorbell Register Array resides at PBAR0 + DBOFF.

VF n MMIO Register locations, where n = 1 to NumVFs:

• Capability Registers reside at VFBAR0 + (VFBAR0.Size * (n-1)).

• Operational Registers reside at VFBAR0 + (VFBAR0.Size * (n-1)) + CAPLENGTH.

• Runtime Registers reside at VFBAR0 + (VFBAR0.Size * (n-1)) + RTSOFF.

• Doorbell Register Array resides at VFBAR0 + (VFBAR0.Size * (n-1)) + DBOFF.

 559

Figure 8-1: VF MMIO Space

Doorbell

Array

Pad

Runtime

Registers

Pad

Operational

Registers

Capability

Registers

Doorbell

Array

Pad

Runtime

Registers

Pad

Operational

Registers

Capability

Registers

VFBAR0.Size

VFBAR0.Size

VF2

VF1

Standard

MMIO

Space

Doorbell

Array

Pad

Runtime

Registers

Pad

xHCI-IOV

Extended

Capability

Operational

Registers

Capability

Registers
BAR 0,1

xECP

RTSOFF

DBOFF

VFBAR0.Size x NumVFs

On Page

Boundaries

Emulated

Registers

Physical

Registers

Physical

Function

xHCI

Extended

Capability

Virtual

Function

VFBAR0

PF0

(Aperture 1)

(Aperture 2)

Figure 8-1 illustrates an xHC implementation that supports two VFs. Note that

the MMIO address space allocated for VFs is a contiguous array. Each

VFBAR0.Size space may also be referred to as an “aperture”.

Note: The SR-IOV VF MSE field shall be set to ‘1’ for the xHC to respond to VF MMIO

memory space accesses.

8.1.1.2 Device Slots

The VF Device Slot Assignment Registers allow the VMM to map specified

Doorbell Registers out of its (PF0) Doorbell Array and into a VFs Doorbell Array.

Virtualization is not enabled (default Doorbell Register addressing):

n = Slot ID, valid values = 1 to MaxSlots

Address of Doorbell n = PBAR0 + DBOFF + (n * 4)

If Virtualization is enabled:

x = VF Device Slot Assignment Register:Device Slot VF ID, valid values = 0 to NumVFs

560

n = VF Device Slot Assignment Register index, valid values = 1 to MaxSlots

If x = 0:

 Address of Doorbell n = PBAR0 + DBOFF + (n * 4)

If x > 0:

 Address of Doorbell n = VFBAR0 + (VFBAR0.Size * (x-1)) + DBOFF + (n * 4)

Note: All Doorbell addresses are physical addresses.

When a Device Slot n is remapped from PF0 MMIO space to a VF’s MMIO space,

the associated Doorbell Register shall be inaccessible by the VMM through the

PF0 Doorbell Array. Device Slot n shall be accessible to the VM through the

Doorbell Register n of the VF assigned to the VM.

8.1.1.3 Interrupters

The VF Interrupter Range Registers (section 7.7.2) allow the VMM to map

specified Interrupters out of its (PF0) Runtime Register space and into a VFs

Runtime Register space. The Primary Interrupter Register Set (0) is always

assigned to PF0. Only secondary Interrupter Register Sets (1 to MaxIntrs-1) may

be assigned to a VF. Assignment of an Interrupter Register Set to a VF is

exclusive.

Virtualization is not enabled (default Interrupter Register Set addressing):

n = Physical Interrupter Register Set ID (0 to MaxIntrs-1)

Interrupter Register Set n shall be located at physical address:

 PBAR0 + RTSOFF + (n * 32), where 32 is the size of the Interrupter Register Set.

If Virtualization is enabled:

IRROFF = VF Device Interrupter Range Register:Interrupter Offset, valid values = 1 to

MaxIntrs-1

IRRCNT = VF Device Interrupter Range Register:Interrupter Count, valid values = 1 to

MaxIntrs-1

IRRINDX = VF Device Interrupter Range Register index, valid values = 0 to TotalVFs

np = Physical Interrupter Register Set ID, valid values = 0 to MaxIntrs

nv = VM Interrupter Register Set ID, valid values = 0 to IRRCNT-1

Interrupter Register Set np + IRROFF shall be located at physical address:

 VFBAR0 + (VFBAR0.Size * (IRRINDX -1)) + RTSOFF + (nv * 32)

The sum of IRRCNT values for all VF Device Interrupter Range Registers shall not

exceed MaxIntrs -1.

Note: Interrupter Register Sets are mapped exclusively. i.e. If virtualization is enabled

and Interrupter Register Set np is remapped via a VF Interrupter Range Register,

 561

then Interrupter Register Set np is no longer accessible at PBAR0 + RTSOFF + (np

* 32).

Note: The Event Ring of physical Interrupter Register Set 0 shall receive all non-

Transfer Events generated by the xHC. And until reassigned by the VMM or a VM,

the Event Ring of physical Interrupter Register Set 0 shall also receive all Transfer

Events generated by the xHC.

Note: A minimum of one Interrupter Register Set shall be implemented per supported

VF. System software is responsible for mapping the Interrupter Register Sets to

VFs when VFs are enabled.

Note: Only secondary Interrupter Register Sets may be assigned to VFs, therefore only

Transfer Events may be redirected to an Interrupter owned by a VF, including its

Interrupter Register Set 0. All other Event types presented on the VFs’ (“Primary”)

Interrupter Register Set 0 Event Ring are generated by the VMM through Force

Event Commands.

Note: All Events generated by a Force Event Command are automatically directed to

Interrupter Register Set 0 Event Ring of the VF specified in the Force Event

Command. e.g. if the Interrupter Offset field for VF Interrupter Range Register 1 =

4, then the Event Ring of Interrupter 4 shall receive the Event TRBs pointed to by

all Force Event Commands targeted at VF 1.

If more than one Interrupter Register Set is available to a VF, a VM can direct the

Transfer Events of selected device slots to the alternate Interrupters (1-n), using

the Interrupter Target field in Transfer TRBs. The xHC shall translate the

Interrupter Target field of TRBs associated with Device Slots owned by a VF with

the following formula:

Physical Interrupter Register Set index = VF Interrupter Target + IRROFF

8.1.2 Device Enumeration and Handoff

The enumeration of a USB device in virtualized environment is a four step

process: The VMM, 1) enumerates a device when it detects an attach event, 2)

determines the VM that the device will be assigned to, 3) emulates an attach

event of the same device to the VM, and 4) the VM enumerates the device

following the steps described in section 4.3.

By default, all Device Slots are assigned to PF0, hence they are all owned by the

VMM. Since the VMM owns PF0, it also has access to the physical Root Hub ports

of the xHC. When a device is attached on a Root Hub Port, the VMM also follows

the steps described in section 4.3, up to the point of configuring the device. The

VMM only needs to retrieve enough information from a USB device to determine

how it should be managed. That is, whether the device is to be owed by the VMM

and emulated to VMs, direct-assigned to a VM, or simply owned and used by the

VMM itself.

562

In the latter case, the VMM will configure the device and manage it like any other

USB device in a non-virtualized environment.

In the direct-assigned case the VMM, which is emulating the PORTSC registers

and Command Ring of the VM, shall emulate an attach event for the device to

the VM, then map the Device Slot that it used to enumerate the device to the VF

owned by the VM.

If the device is to be emulated to VMs, then the VMM should load a “master”

driver that is capable of sharing the resources of the device across multiple VMs,

and for each VF that the device will be shared with, emulate an attach event for

the device to the VM, establish an emulated Device Slot, and map that slot to

the VF owned by the respective VM. Subsequent work items generated by VFs

will be processed by VMM’s master driver for the device and forwarded to the

physical USB device owned by the VMM.

Note: Undefined behavior may occur if the VMM does not ensure that no more than

one VM has a USB device in the Default state.

8.1.2.1 Root Hub Attach Emulation

The device enumeration process of non-virtualized environments is described in

section 4.3. Much of that process also applies in virtualized environments. The

VMM owns the physical Root Hub so when a device is attached; it is the entity

that receives the notification. When a device is attached the VMM should decide

which VM to allocate it to. The device allocation policies are outside the scope

of this specification, however the VMM will be required to retrieve the Device

Descriptor and possibly Configuration Descriptors from the device to determine

the target VM. The VMM hub driver will follow the steps described in section 4.3

up to but not including, configuring the device (step 8).

Once the target VM has been identified, the following steps should be

performed to pass the device to the VM:

1. The VMM generates a Port Status Change Event to the VM.

a. Issue a Force Event Command on its Command Ring. The Force Event

Command points to a Port Status Change Event TRB, and identifies the

VM whose Event Ring will receive the TRB.

2. Upon reception of the Port Status Change Event TRB, the VM will begin initiating

the steps described in section 4.3. The first step requires the VM to reset the

device.

a. Reset a USB2 device by setting the Port Reset (PR) bit to ‘1’ in the PORTSC

register that was indicated by the Port Status Change Event. Not

necessary for USB3 devices because they are implicitly reset.

3. The VMM traps the VM’s reference to its PORTSC register.

a. When the VMM detects the PR bit set in the VM reference to the

 563

emulated PORTSC register it will assert the PR bit in the physical PORTSC

register.

Note that the VMM may filter VM references to physical PORTSC

registers, e.g. in a case where the VM is attempting to reset a Root Hub

Port attached to a hub, as some of the devices attached to that hub are

owned by other VMs.

4. After the appropriate timeout the VM will obtain a Device Slot for the “newly”

attached device.

a. It does this by placing an Enable Slot Command on its Command Ring,

and writing the Host Controller (VM Device Slot 0) Doorbell register with

a DB Target code of Host Controller Command.

5. The VM reference to the Doorbell register generates a Doorbell Event to the

VMM.

a. The VMM parses the Doorbell Event and determines that the Command

Ring has been modified.

b. The VMM retrieves the Command TRB from the VM’s Command Ring,

updating the VM Command TRB Status field and advancing the Ring

Indices appropriately.

6. The VMM examines the retrieved Command TRB, decoding the Enable Slot

Command, and processes it for the VM.

a. The VMM uses the appropriate VM Slot Assignment Register to map the

Device Slot that it used to enumerate the device to the VF owned by the

VM.

b. Releases any data structures that it was using to manage the device.

c. Generates a Command Completion Event to the VM by issuing a Force

Event Command. The Force Event Command points to a Command

Completion Event TRB. The Command Response field of the Command

Completion TRB will include the ID of the Device Slot that the VMM had

assigned to the VM.

7. Upon reception of the Command Completion Event, the VM will proceed to

initialize its Device Context data structures, Device Context Base Address Array,

etc., finally issuing an Address Device Command to enable the control endpoint

of the device.

8. When the VMM examines VM’s Command Ring it finds the Address Device

Command and processes it for the VM. The Address Device Command informs

the xHC that the Device Context data structures associated with the Device Slot

have changed.

a. The VMM forwards the Address Device Command to the xHC by placing

the identical command on the PF0 Command Ring.

b. Then returns the PF0 Command Completion Event to the VM using a

564

Force Event Command.

9. After receiving the Command Completion Event, the VM will then issue several

requests directly to the device’s control endpoint, reading Device and

Configuration Descriptors to determine the configuration that it wants to select.

10. When a decision has been made, the VM shall issue a Configure Endpoint

Command to enable the endpoints defined by the target configuration.

11. Again, the VMM which is trapping VM Command Ring operations simply forwards

the Configure Endpoint Command to the xHC on the PF0 Command Ring and

returns the returned Command Completion Event to the VM using a Force Event

Command. This operation also informs the xHC that the Endpoint Context data

structures associated with the Device Slot have changed.

From this point on, unless the device is detached or the VM attempts to power

manage or reconfigure the device, the VMM is not involved. The direct-

assignment feature of the xHCI allows the VM to communicate directly with the

xHC hardware interface and the device.

8.1.2.2 External Hub Attach Emulation

All external hubs shall be owned and managed by the VMM, which enables the

VMM to manage the overall USB bus topology.

A VMM implementation may choose whether or not it exposes external hubs to a

VM. For instance, a VMM could present a “flat” topology to a VM, where a VM

never sees an attach event for a hub and the number of Root Hub Ports that the

VMM declares for the emulated xHC instance is equal to the Number of Device

Slots (i.e. MaxSlots = MaxPorts). In this case the VM will power manage a device

by manipulating the PORTSC registers. The VMM would have to translate the VM

PORTSC register references into Root Hub or external hub port registers. Note

that a VMM shall provide “flattened” devices with a means of asserting the

correct values for their Slot Context Route String, MTT, TT Port Number, and TT

Hub Slot ID fields (e.g. reflect the physical topology). This mechanism is

outside the scope of this specification. The advantage of this approach is that

Device Slots are not consumed by emulating external hubs to VMs.

If the VMM does present external hubs to a VM, then the physical hub shall be

assigned to the VMM and the VMM shall present an emulated instance of the

hub to VMs. As described above, when a device is attached the VMM shall

evaluate it and selectively assign it to a VM, however in this case the VMM will

emulate an attach event on the VM’s emulated external hub instance, rather

than generating a Port Status Change Event on the VMs Event Ring.

The VMM uses an additional feature of the xHCI to emulate external hubs to

VMs. An external hub is enumerated to a VM by the VMM the same way that any

other USB device is (as described above). To emulate a hub (or device) to a VM,

the VMM utilizes the Doorbell Event TRB . To enable Doorbell Events the VMM

shall set the Slot Emulated (SE) flag in the VM Slot Assignment Register when it

 565

assigned the Device Slot to the VM. If the Slot Emulated flag is ‘1’, the xHC shall

not process the DB Target field when the VM rings the doorbell associated with

an emulated slot, but shall generate a Doorbell Event to Event Ring 0, which is

owned by the VMM. The Slot ID, VM ID, and DB Reason fields of the Doorbell

Event TRB will indicate the source VM and value of the DB Target written to the

Doorbell register.

The VMM shall manage all Transfer Rings associated with an emulated device,

retrieving information from them when the doorbell is rung, and emulating their

operation. The VMM shall use the Force Event Command to generate Transfer

Events to the VM. The device interface presented to a VM by the xHC/VMM

emulation shall be indistinguishable from the interface presented by the xHC for

the equivalent direct-assigned device.

Note, that to eliminate VMM involvement for direct-assigned devices, all Event

Rings are managed by xHC hardware. Transfer Events for direct-assigned and

emulated Device Slots are placed on an Event Ring. To ensure Event Ring

consistency, the xHCI provides the Force Event Command for a VMM to insert a

Transfer Event generated for an emulated slot on the same Event Ring that is

used by the xHC hardware for Transfer Events generated by direct-assigned

slots.

The VMM is also responsible for hiding a USB device assigned to one VM from

another. Consider a case where Device A is attached to Port 1 of a physical hub

and Device B is attached to Port 2 of the same hub, however the devices are

assigned to VMs A and B, respectively. Figure 8-1 illustrates the views of the

USB topology seen by the VMM and each of the VMs. Each VM sees an emulated

instance of the physical hub. But the VMM will have generated an attach e vent

for Device A on Port 1 to VM A, and an attach event for Device B on Port 2 to VM

B. As far as VM A is concerned, Port 2 of its emulated hub has no device

attached, and VM B thinks that Port 1 has no device attached. The Devices

themselves are direct-assigned to the respective VMs.

Figure 8-2: Emulated Hub Device Attachment Example

Device A

Physical

Hub

Device B

P1 P2

VMM

Device A

Emulated

Hub

P1 P2

VM A

Emulated

Hub

Device B

P1 P2

VM B

If VM B decides to place the Device B into suspend mode, it will generate the

appropriate requests to its emulated hub. Since as far as VM B is concerned

566

there are no other devices attached to the hub, it will attempt to propagate the

power state up the topology by placing the hub in suspend mode as well. The

VMM shall filter these requests to ensure that Device A remains operational for

VM A. Since the VMM owns the physical external hub, it determines whether the

hub will be placed in the suspend state or not. The VMM can fake a response

back to VM B for the emulated hub, allowing the VM to think that it has placed

the emulated hub in the suspend state.

8.2 SR-IOV Extended Capability

This section defines how the PCIe Single Root-I/O Virtualization (SR-IOV)

capability is interpreted in an xHC implementation.

The SR-IOV capability structure is used to discover and configure a Physical

Function’s (PF) virtualization capabilities. These virtualization capabilities

include the number of Virtual Functions (VF) the PCIe Device will associate with

a PF and the type of BAR mechanism supported by those VFs.

When VFs are enabled, the PF MMIO space pointed to by a BAR is replicated for

each VF. The replication of the PF MMIO space is in the form of an array of

MMIO Apertures. The base of the VF Aperture array is pointed to by a VF BAR in

the SR-IOV capability. The size of an MMIO Aperture is defined by the standard

BAR sizing mechanism. The number of MMIO Apertures is defined by the

NumVFs field in the SR-IOV capability structure. The Aperture ID is the index of

a specific MMIO Aperture in the array. Valid Aperture ID values are 1 to NumVFs.

The VMM emulates a PF-like Configuration Space to each VM. The SR-IOV

specification defines the mapping between the PCI defined Configuration Space

Header and the SR-IOV defined PF/VF Configuration Space Headers (SR-IOV

spec, section 3.4). The SR-IOV specification requires that a subset of the fields in

the PFs Configuration Space Header be replicated in the VF Configuration Space

Headers by xHC hardware. The xHCI VF Configuration Space is used by the VMM

to manage VFs and not accessed by VMs. Refer to the SR-IOV specification for

details.

 567

Figure 8-3: xHCI BAR Space Example

Doorbell

Array

Pad

Runtime

Registers
Pad

xHCI-IOV

Ext Cap

PCI Class

Code, etc.

Base Address

Registers

PCI Power

Management

Capability

SR-IOV

Extended

Capability

xHCI

Extended

Capability

Operational

Registers

Capability

Registers

Memory Address SpacePCI Config Space

MMIO Space Host DRAM Memory

VF BAR0

PF0

VF1

VFn

...

VF n

BAR0

MMIO

Aperture

VF 1

BAR0

MMIO

Aperture

Other Extended

Capabilities

Transfer

Ring

Trans

fer

Ring

Transfer

Ring

Transfer

Ring

Event

Ring

Cmd

Ring

Dev

Context

Base

Address

Array

Event Ring

Segment

Table Device

Contexts

Figure 8-3 illustrates the VF MMIO Aperture configuration for the xHC. To

minimize the hardware requirements for virtualization, many of the xHC MMIO

registers are emulated by the VMM. The SR-IOV and xHCI-IOV Extended

Capability structures (blue bordered) exists only for PF0. The SR-IOV capability

defines the starting memory space address of VF1 MMIO Aperture. The xHCI-IOV

Extended Capability defines the xHC registers needed to manage the individual

Virtual Functions. The (orange bordered) xHCI Capability Registers, Operational

Registers, and Extended Capabilities presented by a VF are emulated by the

VMM. The (green bordered) xHCI Extended Runtime Registers and Doorbell

arrays are physical registers presented by a VF. The (orange bordered) PCI

Configuration Space as seen by the VMs is emulated by the VMM.

The physical VF register spaces (Operational, Runtime, etc.) reside on System

Page Size boundaries. The details of their mapping are described below.

568

8.2.1 SR-IOV Extended Capability Structure

The xHC PF and each VF requires a unique Requester Identifier (RID) to

distinguish its respective DMA activity. The First VF Offset and VF Stride fields

in the SR-IOV Capability Structure shall define the xHC RID to PF0/VFn

assignment. Refer to the SR-IOV spec for the definition and use of RIDs and all

other SR-IOV Capability Structure fields.

xHCI support for VF Migration is outside the scope of this specification, and left

to definition by specific implementations.

Note: The PCI Express Capability Structure is required by the SR-IOV capability.

8.2.2 xHCI-IOV Extended Capability Structure

The xHCI-IOV Extended Capability Structure defines required parameters for

managing xHC instances in a virtualized environment. The xHCI-IOV Extended

Capability Structure is an optional normative capability defined for the xHCI.

Refer to section 7.7 for detailed information on the xHCI-IOV Extended

Capability Structure.

8.3 Doorbell Registers and Virtualization

This section describes how an xHC implementation shall interpret Doorbell

Register References when virtualization is enabled. The VM Device Slot

Assignment Register Device Slot VF ID field allows a Device Slot to be assigned

to a VF. If a Device Slot is assigned to a VF, then the Slot Emulated flag

determines whether the xHC interprets references to a Device Slot’s Doorbell

Register as direct-assigned or emulated.

A Valid VF Doorbell Register Reference is defined as a Doorbell Register

reference through an MMIO Aperture, where the Aperture ID is equal to the value

of the Device Slot VF ID field for the referenced Device Slot (n).

The xHC shall respond to Valid VF Doorbell Register References through MMIO

Apertures.

The xHC shall not respond to Doorbell Register references through MMIO

Apertures, if the value of a VM Device Slot Assignment Register Device Slot VF ID

field is equal to ‘0’ or if the value is greater than NumVFs.

The Doorbell Register of any Device Slot not assigned to a VF by the VM Device

Slot Assignment Register Device Slot VF ID field, shall be accessible by through

the PF0 Doorbell Array.

 569

8.3.1 Direct-Assigned Device Slot

System software rings the Doorbell Register of a Device Slot to indicate to the

xHC that it has changed the slot’s Device Context or the added work items to a

Transfer Ring.

If for a Valid VF Doorbell Register Reference the Slot Emulated flag equals ‘0’,

then the xHC shall process the Doorbell Register reference normally. i.e. process

the Doorbell Register DB Target field.

8.3.2 Emulated Device Slot

If for a Valid VF Doorbell Register Reference the Slot Emulated flag equals ‘1’,

then the xHC shall not process the Doorbell Register DB Target field, but

capture the value of the field and pass it to the VMM through Event Ring 0 in the

DB Reason field of a Doorbell Event.

8.4 Interrupter Mapping

If virtualization is supported, then the following requirements shall be met:

• The Max Interrupters (MaxIntrs) field shall be equal to or greater than TotalVFs + 1.

• The VM Interrupter Range Registers shall be implemented.

A minimum of one Interrupter shall be assigned to each VF. The VMM may

allocate remaining Interrupters to VFs as desired by presenting the appropriate

values in the Interrupter Range Registers, and the emulated Structural

Parameters 2 (HCSPARAMS2) register MaxIntrs field.

If Interrupter Mapping is provided to a VF, the VMM shall emulate the

Interrupter Mapping Enable bit in the Configure (CONFIG) register (section

5.4.7) to enable or disable it. If Interrupter Mapping is disabled for VF, the VMM

shall set the Interrupter Count field to ‘1’. If the Interrupter Count field is set to

‘1’, the xHC shall ignore the Transfer TRB Interrupter Target field and all

Transfer Events for the VF are targeted at the Interrupter identified by the

Interrupter Offset field.Refer to section 6.4.1 for more information on the

Interrupter Target field.

Interrupter Mapping may be used to facilitate distribution of interrupts across

cores in a multi-core platform.

8.5 Register Space Emulation

The VMM traps and emulates all xHCI Capability and Operational registers for all

VFs.

The VF Run (VFR) and VF Halted (VFH) bits in the VM Interrupter Range Register

provide the VMM with ability to manage the state of each VF. These bits provide

570

for a VF, what the Run/Stop (R/S) and HCHalted (HCH) bits provide for the xHC as

a whole. When the VMM detects a VM manipulating the Run/Stop (R/S) bit in

their emulated USBCMD register, it shall reflect that state in the VFR bit for the

respective VF.

The VMM shall monitor the associated VFH bit and reflect its status in HCHalted

(HCH) bit of the emulated USBSTS register.

 571

Appendix A xHCI PCI Power Management

Interface

An advanced power management capabilities interface compliant with PCI Bus

Power Management Interface Specification (PCI PM) is incorporated into the

xHCI. This interface allows the xHCI to be placed in various power management

states offering a variety of power savings for a host system.

Table A-1 highlights the xHCI support for power management states and

features supported for each of the power management states. An xHC

implementation may internally gate-off USB clocks and suspend the USB

transceivers (low power consumption mode) to provide these power savings.

The methods utilized by each xHC vendor to achieve the required behavior, is

implementation specific. The xHC will assert PME# and retain chip context in

accordance with the rules defined in the PCI PM Specification and this

specification.

The controller software driver shall place all enabled downstream USB ports of

the xHC in the USB suspended state before exiting the D0 state. This is to ensure

all downstream devices are in an inactive, low-power mode.

Table A-1: xHCI Support for Power Management States

PCI Power
Management

State

State
Required/

Optional by
Spec

Comments

D0 Required Fully awake backwards compatible state. All logic in full power
mode.

D1 Optional USB Sleep state with xHC bus master capabilities disabled. All

USB ports in suspended state. All logic in low latency power
savings mode because of low latency returning to D0 state.

D2 Optional USB Sleep state with xHC bus master capabilities disabled. All

USB ports in suspended state.

D3hot Required Deep USB Sleep state with xHC bus master capabilities
disabled. All USB ports in suspended state.

D3cold Required Fully asleep backwards compatible state. All downstream
devices are either suspended or disconnected based on the

implementation’s capability to supply downstream port power
within the power budget.

572

A.1 PCI Power Management Register Interface
xHC implementations follow the PCI Power Management register interface

specified in the PCI PM Specification. Specific requirements and clarifications for

xHCI implementations are:

• The host controller should be capable of asserting PME# when in any supported

device state. However, if the host controller supports systems in which the PME#

assertion from D3cold is not possible (i.e. insufficient or non-existent Aux Power),

then the “PME_Support” bit for D3cold (bit 15 of the PCI PM PMC Register) shall be

modifiable. Motherboard-down devices may use a software (BIOS) scheme for

modifying the value reported in this read-only bit, while other devices may use a pin-

strapping to determine the value that is reported.

• The PCI PM PMC.Aux_Current field or Data register value reported by the xHC should

represent the maximum current that the host controller device will consume. It shall

not include power consumed by devices connected to the downstream USB ports.

Note that if the host controller has been configured to not generate PME# from

D3cold, then the PMC.Aux_Current field or Data register (D3 Power Consumed, D3

Power Dissipated) shall report “000”.

All other registers and field should follow the PCI PM specification.

A.1.1 Power State Transitions

The xHC enters the D0 power state from the D3cold power state when Vcc is

applied and a hardware or software reset occurs. A software reset shall not

affect the PCI power management registers. The hardware reset may be either a

PCI reset input or an optional power-on reset input.

Power management software transitions the xHC through D0, D1, D2, and D3hot

power states via xHC-owned PCI Power Management register accesses.

Additional power management policy may be implemented to switch or

continuously apply an Aux Power well voltage supply (e.g. PCIe 3.3Vaux power),

to the xHC when Vcc (i.e. the Core Power well voltage supply) is removed. While

in this power state, referred to as D3cold, the xHC exhibits identical behavior as

the D3hot power state (except that configuration space accesses are not

supported) and no additional xHC hardware is required to distinguish between

the D3hot and D3cold states.

Per the PCI PM specification, the xHC function asserts an internal reset during

the D3hot to D0 transition. The host controller shall retain all relevant wake

context when transitioning from D3hot to D0 in order for system software to

process a wake request. In PCI configuration space, this means that the

PMCSR.PME_Status and PMCSR.PME_En bits shall be maintained. Additionally,

the PMC.PME_Support(D3cold) bit shall be maintained.

 573

Additionally, the xHC shall retain function-specific context that meets any of the

following criteria:

1. BIOS-configured registers that are programmed during system

initialization

2. Context needed to avoid USB re-enumeration

3. Context needed for properly generating wake events

4. Status bits for software to determine the source of a wake event

Specifically, the following xHC registers shall not be reset during the D3hot to

D0 transition and shall be maintained in the Aux Power well (refer to section

Power State Definitions):

• USB Legacy Support Registers

• Port Status and Control Registers

Note that all of the registers described above are only reset upon initial Aux

Power-up or software reset. Software should specifically clear any of these bits

during subsequent initialization sequences, if desired. The memory-space bits

may also be cleared using the Host Controller Reset (HCRST) mechanism in the

USB Command Register.

A.1.2 Power State Definitions

This section defines the xHC behavior per power state when programmed using

PMCSR.PowerState. Power management software may use alternate register

mechanisms to place the xHC in similar states. The xHC shall support the D0,

D3hot, and D3cold power states and is recommended that the D1, D2 power

states are also supported.

Any wakeup events as specified in Table A-2 will set PMCSR.PME_Status when

the xHC is programmed with PMCSR.PowerState set to D0, and a PCI PME#

wake-up shall be signaled if enabled via PMCSR.PME_En. It is possible for one

interrupt event, which is also a wakeup event to cause the xHC, to signal both a

PCI interrupt and a PME# to the host. Power management software shall either

be designed to handle this condition or to mask the PME# signal when the xHC

is in D0.

Software shall place each downstream USB port with power enabled into the

Suspend or Disabled state before it attempts to move the xHC out of the D0

power state.

All xHC contexts are retained in all power states except D3cold. For D3cold, the

same context that is described in the previous section relative to the D3hot-to-

D0 internal reset shall be retained.

574

The functional and wake-up characteristics for the xHC power states are

summarized in Table A-2.

Table A-2: xHCI Power State Summary

Power
State Functional Characteristics

Wake-up Characteristics
(Associated Enables shall be Set)

D0 Fully functional xHC device state.

Unmasked interrupts are fully functional.

Resume Detected on suspended
port.

Connect or Disconnect detected on
port.

Over Current detected on port.

D1 xHC shall preserve PCI configuration.

xHC shall preserve USB configuration.

Hardware masks functional interrupts.

All ports are disabled or suspended.

Resume Detected on suspended

port.

Connect or Disconnect detected on
port.

Over Current detected on port.

D2 xHC shall preserve PCI configuration.

xHC shall preserve USB configuration.

Hardware masks functional interrupts.

All ports are disabled or suspended.

Resume Detected on suspended

port.

Connect or Disconnect detected on
port.

Over Current detected on port.

D3hot xHC shall preserve PCI configuration.

xHC shall preserve USB configuration.

Hardware masks functional interrupts.

All ports are disabled or suspended.

Resume Detected on suspended
port.

Connect or Disconnect detected on

port.

Over Current detected on port.

D3cold PME Context in PCI Configuration space is
preserved.

Wake Context in xHC Memory Space is

preserved.

All ports are disabled or suspended.

Resume Detected on suspended
port.

Connect or Disconnect detected on

port.

Over Current detected on port.

Note: Software is responsible for placing root hub ports associated with devices that

have been enabled for Remote Wakeup into the suspend before transitioning to

a non-D0 state.

A.2 PCI PME# Signal
The PCI PME# signal shall be implemented as an open drain, active low signal

that is driven low by the xHC to request a change in its current power

management state. PME# has additional electrical requirements over and above

 575

standard open drain signals that allow it to be shared between devices that are

powered off and those which are powered on. Refer to the PCI PM specification

for more details.

576

Appendix B High Bandwidth Isochronous

Rules

B.1 High-speed
High-speed High Bandwidth isochronous streams utilize addition PIDs in the

USB2 protocol. The tables in this appendix completely enumerate all of the

required responses an xHC shall make in the execution of a high-bandwidth

isochronous data stream.

Each table is organized with the following fields:

• Inputs: lists the inputs or initial conditions for the behavioral data point. The input

values are:

• Burst: this is the value of the Max Burst Size field in an instantiation of an

Endpoint Context. This is a constant value for the lifetime of the Endpoint

Context. It serves as the initial value for Cnt (see below). This field is set based on

USB framework parameters provided by the device. It is not set relative to buffer

size, etc.

• Cnt: this is the transaction iterator. It is the current value of an internal

transaction counter that for an OUT, is initially loaded with the contents of Burst.

For an IN, Cnt is initially set from the first bus transaction’s PID response (see

below).

• Remaining Buffer: the amount of buffer remaining is indicated by the current

value of the Transaction X Length field in the current transaction record. The

initial value of this field is set by software to indicate the amount of buffering

available for this transaction record. It is adjusted by the xHC as transactions are

executed and data is moved.

• Response: lists the response from the device (PID code and data size) and the effects

on the Transfer Event Completion Code field and transaction iterator (Cnt).

• PID/(data size): indicates the host stimulus, data PID or other response from the

device.

• Maxpacket = value of Endpoint Context Max Packet Size field.

• Result: list the effects of the response on the bits in the Status field and the iterator.

• Advance = Advance Dequeue Pointer to the next TD. Refer to section 4.10.1 for

more information on advancement rules.

• Babble = The assertion of a Babble Detected Error. Refer to section 4.10.2.4.

• BufErr = The assertion of a Data Buffer Error. Refer to section 4.10.2.5.

 577

• XactEr = The assertion of a USB Transaction Error for the TRB associated with

the error. Refer to section 4.10.2.3.

Each row in each table illustrates the required xHC behavior for al l of the

inputs/response combinations for a HS high-bandwidth isochronous transaction.

There are two tables in this appendix. The first enumerates the required

behavior for OUT transactions and the second enumerates the required

behavior for IN transactions.

 Table B-1: HS High-Bandwidth Behavior for OUT Transactions

Inputs Response

Results Explanation

Burst Cnt Remaining
Buffer PID (data size)

1

2

3

1 ≥

Maxpacket

PID →

DATA0(Maxpacket)

PID →
DATA1(Maxpacket)

PID →
DATA2(Maxpacket)

Advance Normal completion (for micro-

frame) of 1, 2 or 3 high bandwidth
transaction; send Maxpacket
bytes.130

1

2

3

1 <
Maxpacket

PID → DATA0(Xfer
Length)

PID → DATA1(Xfer
Length)

PID → DATA2(Xfer

Length)

Advance Normal completion (for frame) of
1, 2, or 3 high-bandwidth

transaction; send as many bytes
as are available in the buffer.

2,3 2 >

Maxpacket

PID →

MDATA(Maxpacket)

No

Advance

Intermediate transaction in high-

bandwidth sequence; send
Maxpacket bytes with an MDATA
PID.

2

3

2 ≤

Maxpacket

PID → DATA0(Xfer

Length)

PID → DATA1(Xfer
Length)

Advance Software did not have

Burst*Maxpacket bytes to send
for this transaction (microframe).

3 3 >
Maxpacket

PID →
MDATA(Maxpacket)

No
Advance

Intermediate transaction in high-
bandwidth sequence; send

Maxpacket bytes with an MDATA
PID.

130Note that the ≥ Maxpacket where the > applies is just to account for the case where software has incorrectly

programmed Burst or Max Packet Size.

578

3 3 ≤

Maxpacket

PID → DATA0(Xfer

Length)

Advance Software did not have

Burst*Maxpacket bytes to send
for this transaction (microframe).

3,2,1 >1 ≥
Maxpacket

PID → MDATA(buffer
error)

Advance

BufErr

xHC experienced a buffer error
before being able to deliver all of

the data. It shall not execute any
further requests on this endpoint.

Any time there is a buffer error (in this case a buffer under-run), the host

controller will abandon the remaining portions of a high-bandwidth transaction.

For example, if the current PID was an MDATA, and there was a buffer error on

getting the data from main memory to the HC in a timely fashion, then the host

controller will set the Buffer Error status bit to a ‘1’ and immediately clear the

Active status bit to ‘0’. This will cause the host controller to effectively skip the

remaining bus transactions (if there was any pending, based on the value of Cnt).

The xHC’s requirements for managing a high-bandwidth IN bus transaction

sequence are described using a state machine model. The model is summarized

in the state-transition table Table B-2. This is only an example state machine

whose intent is to define the operational requirements of the host controller.

The intent of this section is to clearly define the appropriate data PID sequences

for a high bandwidth isochronous data stream and set a priority on detection

and reporting of errors that are detectable during a high-bandwidth transaction

sequence.

The premise of the high-bandwidth PID tracking state machine is that the

sequence of DATA PIDs for the current microframe is determined by the device’s

response to the first IN of the microframe. Based on PID response, the host

controller sets an internal count variable (Cnt) that is used to drive the state

machine through the remaining phases (states) of the high-bandwidth

transaction sequence.

Each microframe, the machine is initialized to the Start state. In this state, the

value of the internal counter is a don’t care (X). The host controller issues the

initial IN, and then sets the internal counter (Cnt) to the value number (Y) of the

data PID received. For example, if the PID response is DATA2, then Cnt is loaded

with the value ‘2’. When the PID is a DATA1 or DATA2, then two additional

checks are performed. If neither of these checks fail, then the host controller

transitions to the Next state.

1. The size of the data payload shall be equal to maximum packet length

(Maxpacket), and

 579

2. The host controller shall check that the starting PID response is in the

range configured for this endpoint, as specified in Mult. If the PID value

number (Y) is less than the value of Burst, then the received data PID is in

the appropriate range. For example, if Burst is 2 and the device returns a

DATA1, then Y=1 is less than Burst so the received PID is acceptable.

When the PID received in the Start state is DATA0, then the high-bandwidth

transaction is complete for this microframe and the host controller shall set the

Active to Inactive. A valid DATA0 PID is allowed to have a data payload size less

than or equal to Maxpacket. If a babble error is detected, then the host

controller will additionally set the Babble bit to a ‘1’.

 Table B-2: HS High-Bandwidth Behavior for IN Transactions

Current
State Endpoint Response

Results
Next
State Explanation

Cnt PID[Y]

Start X PID←
DATA[2,1]

Y <
Burst

=
Maxpacket

 Cnt =
[2,1]

Acceptable PID response.
If no babble error, then go
to Next state.

<

Maxpacket

Advance,

XactErr

Done Data payload shall be

equal to maximum packet
size.

>
Maxpacket

Advance,
Babble

Done Data payloads larger than
maximum packet size are

a babble condition.

Y ≥
Burst

Don’t care Advance,
XactErr

Done Starting DATA PID is
larger than allowed for
this

endpoint.

PID← DATA0 ≤
Maxpacket

Advance Done Acceptable PID response.
If no babble error, then go
to Next state.

>

Maxpacket

Advance,

Babble

Done Data payloads larger than

maximum packet size are
a babble condition.

Next 2 PID← DATA2 Don’t care Advance,

XactEr

Done Endpoint responded

twice with DATA2 PID.

580

PID← DATA1 =

Maxpacket

 Cnt =

1

Acceptable PID response.

If no babble error, then go
to Next state.

<
Maxpacket

Advance,
XactErr

Done Data payload shall be
equal to maximum packet

size.

>
Maxpacket

Advance,
Babble

Done Data payloads larger than
maximum packet size are
a babble condition.

PID← DATA0 Don’t care Advance,

XactErr

Done Device went from DATA2

to DATA0; invalid
transition.

1 PID← DATA[2,1] Don’t care Advance,
XactErr

Done Endpoint repeated a
DATA2 or DATA1 PID.

PID← DATA0 ≤
Maxpacket

Advance Done Acceptable PID response.
If no babble error,
transaction sequence

completed normally.

>
Maxpacket

Advance,
Babble

Done Data payloads larger than
maximum packet size are
a babble condition.

In the Next state, the xHC issues an IN token and checks the value number (Y) of

the PID response against the value of the internal counter (Cnt). If the value

number (Y) is equal to (Cnt – 1), then the PID response is correct and the host

controller sets the internal counter (Cnt) to the value number of the data PID

received.

When the received PID response is acceptable and is a DATA1, then the xHC

shall also check that the size of the data payload is equal to the configured

maximum packet length (Maxpacket). If the length check passes, the PID check

has passed and the xHC does a final babble check. If no babble error, the xHC

remains in the Next state and executes another bus transaction. If there was an

error, the xHC flags the error and advances to the next TD. If the length check

fails, the xHC generates a Transaction Error (XactErr) for the TD. If the babble

check fails, the xHC shall generate a Babble Error (Babble) for the TD.

When the received PID response is acceptable and is a DATA0, then the high-

bandwidth transaction is complete for this microframe and the xHC shall

advance to the next TD and wait for the next Interval. The data payload is

allowed to be less than or equal to the configured maximum packet size. If a

 581

babble error is detected, then the xHC shall generate a Babble Error (Babble) for

the TD.

Any time the individual transaction completes in a Timeout, the xHC shall

Advance to the next TD and generate a Transaction Error (XactErr) for the TD.

Note that this state machine is for illustrative purposes . Implementations may

optimize appropriately to avoid arithmetic operations where possible, as long as

the resultant behavior is correct.

582

Appendix C Stream Usage Models

The Stream Protocol may be used by USB disk drives to provide Command

Queuing and First-party DMA (FPDMA) support through the xHCI. By tying a disk

command with a particular Stream ID, the data associated with the command

may be directed by the device to specific buffers in host memory.

Figure C-1: Mass Storage Stream Usage Model

Bulk

Endpoints
Cmd

Data

IN
(Streams)

Data

OUT
(Streams)

Status

(Streams)

Mass Storage Device

Host

Buf

Stream

Array

Stream

ArrayTRTRTR
Buf

TRTRTR
Buf Stream

Array TRTRTR
Buf

USB Mass Storage devices utilize a three phase command execution sequence;

Command, Data, And Status. Figure C-1 illustrates an example where 4 USB

pipes are employed to support read and write commands to the disk; a

Command OUT (Cmd) pipe, Data IN and OUT pipes, and a Status IN pipe. All are

Bulk pipes, however the Data pipes also support Streams.

Consider a disk read: Before posting a disk command to the Cmd pipe, system

software would first post a buffer to the Status pipe to receive the completion

status for the command, and set up a Stream to receive the data associated with

the command. Once both the Data and Status were set up for the command,

software would post the Command to the Cmd pipe.

To post the Status buffer, software simply adds a TD to the Status IN Transfer

Ring.

To set up the Stream associated with the Read Data transfer, software would

select an available Stream ID, initialize a Transfer Ring to point to the host

memory that will receive the read data, load a pointer to the Transfer Ring into

the TR Dequeue Pointer field of the Stream Context in the Stream Array

associated with the selected Stream ID, and ring the doorbell for the Data IN

Endpoint. Note that the selected Stream ID is written to the Doorbell register

 583

when software rings the Data IN doorbell, however it is not necessary f or basic

Stream Protocol operation.

To post the Command, software adds a TD to the Cmd OUT Transfer Ring. The

data portion of the Command packet will include the Stream ID allocated for the

Command.

When the Device returns the Read Data for the Command, it uses the Stream ID

provided by the Command to set the Current Stream in the xHC for the pipe,

then moves the Read Data. The xHC uses the Current Stream to select a Stream

Context in the Stream Array. The Transfer Ring referenced by the Stream

Context will be used to move the Read Data into host memory.

When the Data transfer is complete, the Device sends the completion Status up

the waiting Status pipe. After software receives the completion Status for the

command it can free the associated Stream ID for reuse by another disk

command.

Disk Command Queuing allows software to queue multiple Commands to a

drive and the drive to decide on their order of execution. Due to the physical

geometry of the disk or other internal parameters, the disk reorders Commands

to minimize latency and maximize throughput. The ability for the drive to

complete commands out of order is critical for Command Queuing to work.

Because the disk can control Stream selection in the xHC and a different Stream

ID is associated with each Command, the disk may set the Current Stream in xHC

as function of the Command that it is currently completing.

FPDMA is enabled by the fact that separate data buffers may be assigned to

each Stream. This allows the disk, as the “First Party”, to direct the data

associated with a particular Command to specific buffers in host memory as a

function of the Stream ID.

Streams may also be used for Core Targeting. Core Targeting is the ability to

direct the interrupt associated with a transfer (or Command) to a spec ific core in

a multi-core system. The fact that separate Transfer Rings may be specific for

each Stream and that the Transfer Event for a TRB in a Transfer Ring can be

directed at any Interrupter via the Interrupter Target field allows the device to

direct completions at specific cores as function of the Current Stream that it

selects.

584

Appendix D Port to Connector Mapping

This section describes an ACPI method that allows a platform to communicate to

the operating system, certain USB host controller capabilities that are not

provided for through the xHCI specification (e.g. If implemented, software may

examine these characteristics at boot time in order to gain knowledge about the

platform USB topology, mapping of xHC root hub ports to platform connectors,

etc. This method is also applicable to topologies that include USB hubs that are

integrated with the xHC silicon or implemented as discrete components on the

motherboard.

This method utilizes the ACPI USB Port Capabilities (_UPC, refer to section 9.14

in the ACPI spec) and Physical Device Location (_PLD, refer to section 6.1.6 in

the ACPI spec) objects.

Note: The _UPC declarations for LS/FS/HS and Enhanced SS ports that are grouped to

form a USB3 compatible connector. A “group” is defined by two or more ports

that declare _PLDs with identical Panel, Vertical Position, Horizontal Position,

Shape, Group Orientation, Group Position and Group Token parameter values.

D.1 Example
The following is an example of the ACPI objects defined for an xHC that

implements a High-speed and SuperSpeed Bus Instance, that are associated

with USB2 and USB3 Protocol Root Hub Ports, respectively. The xHC also

supports an integrated High-speed hub to provide Low- and Full-speed

functionality. The External Ports defined by the xHC implementation prov ide

either a USB2 data bus (i.e. a D+/D- signal pair) or an Enhanced SuperSpeed data

bus (e.g. SSRx+/SSRx- and SSTx+/SSTx- signal pairs).

Where:

• The motherboard presents 5 user visible connectors C1 – C5.

• Motherboard connectors C1 and C2 support USB2 (LS/FS/HS) devices.

• Motherboard connectors C3, C4 and C5 support USB3 (LS/FS/HS/SS) devices.

• The xHC implements a High-speed Bus Instance associated with USB2 Protocol Root

Hub ports, e.g. HCP1 and HCP2 are High-speed only, i.e. they provide no Low- or Full-

speed support.

• The xHC presents 7 External Ports (P1 – P7).

• External Port 1 (P1) is HS only and is not visible or connectable.

• External Ports 2 – 5 (P2 – P5) support LS/FS/HS devices.

• P2 is attached to motherboard USB2 connector C1.

• P3 is attached to motherboard USB2 connector C2.

• P4 is attached to the USB 2.0 logical hub of the Embedded USB3 Hub on the

 585

motherboard. The USB 2.0 logical hub supports the LS/FS/HS connections

for 2 ports (EP1 – EP2).

• The USB 2.0 connections of motherboard hub ports EP1 and EP2 are

attached to motherboard connectors C3 and C4 respectively, providing

the LS/FS/HS support for the USB3 connectors.

• P5 is attached to motherboard connector C5, providing the LS/FS/HS

support to the motherboard USB3 connector C5.

• External Port 6 (P6) is attached to the SuperSpeed logical hub of the

Embedded USB3 Hub on the motherboard. The SuperSpeed logical hub

supports the SS connections of 2 ports (EP1 – EP2).

• The SuperSpeed connections of motherboard hub ports EP1 and EP2

are attached to motherboard connectors C3 and C4 respectively,

providing the SS support for the USB3 connectors.

• External Port 7 (P7) is attached to motherboard connectors C5, providing the SS

support for the USB3 connector.

• The xHC implements 4 internal HS Root Hub ports (HCP1 – HCP4), 2 High-speed and

2 SuperSpeed.

• Internal Port 1 (HCP1) maps directly to External Port 1 (P1).

• Internal Port 2 (HCP2) is attached to a HS Integrated Hub. The Integrated Hub

supports 4 ports (IP1 – IP4).

• Ports 1 to 4 (IP1-IP4) of the Integrated Hub attach to External Ports 2 to 5

(P2-P5), respectively.

• Internal Ports 3 and 4 (HCP3, HCP4) attach to External Ports 6 and 7 (P6, P7),

respectively.

• All connectors are located on the back panel and assigned to the same Group.

• Connectors C1 and C2 are USB2 compatible and their color is not specified.

Connectors C3 to C5 are USB3 compatible and their color is specified.

• External Ports P1 - P5 present a USB2 data bus (i.e. a D+/D- signal pair). External

Ports P6 and P7 present a SuperSpeed data bus (i.e. SSRx+/SSRx- and SSTx+/SSTx-

signal pairs).

586

Figure D-1: Root Hub Port to USB Connector Mapping Example

P4

xHC

Root Hub

Motherboard

C1 C2 C4

EP1 EP2

Embedded

USB3 Hub

HCP2HCP1

USB2 Protocol USB3 Protocol

HCP3

P1 P2 P3 P5 P6

IP1 IP2

Integrated Hub

C5

P7

HCP4

IP3

Root Hub

Ports

Physical USB

Motherboard

Connectors

USB Cables

Integrated

Hub Ports

USB3 compatible

connectors
USB2 compatible

connectors

External

Ports

Motherboard

Hub Ports

IP4

C3

D.1.1 ACPI Code Example

Note: In the Intel ASL (iASL) compiler an ACPI Buffer takes a list of bytes (not Dwords).

In the following example Dwords were used to permit a more compact

description, where the general notation is 0xmmxxxxll, mm = the Most significant

byte and ll = the least significant byte of the Dword.

Scope(_SB) {

…

Device(PCI0) {

…

// Host controller (xHCI)

Device(USB0) {

 587

// PCI device#/Function# for this HC. Encoded as specified in the ACPI

// specification

Name(_ADR, 0xyyyyzzzz)

// Root hub device for this HC #1.

Device(RHUB) {

Name(_ADR, 0x00000000) // must be zero for USB root hub

// Root Hub port 1 (HCP1)

Device(HCP1) { // USB0.RHUB.HCP1

Name(_ADR, 0x00000001)

// USB port configuration object. This object returns the system

// specific USB port configuration information for port number 1

Name(_UPC, Package() {

0x01, // Port is connectable but not visible

0xFF, // Connector type (N/A for non-visible ports)

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

} // Device(HCP1)

// Root Hub port 2 (HCP2)

Device(HCP2) { // USB0.RHUB.HCP2

Name(_ADR, 0x00000002)

Name(_UPC, Package() {

0xFF, // Port is connectable

0x00, // Connector type – (N/A for non-visible ports)

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

// provide internal connection point info

Name(_PLD, Buffer(0x10) {

0x00000081, // Revision 1, Ignore color

// Color (ignored), width and height not

0x00000000, // required as this is not a user visble

// connector

0x00808000, // Not user visible, Group Token = 1,

// Group Position 1 (This is the group for all

// internal connections. Each connection should

// have a unique position in this group)

0x00000000}) // Ignored for not visible connectors

// Integrated hub port 1 (IP1)

Device(IP1) { // USB0.RHUB.HCP2.IP1

// Address object for the port. Because the port is

// implemented on integrated hub port #1, this value must be 1

Name(_ADR, 0x00000001)

Name(_UPC, Package() {

0xFF, // Port is connectable

0x00, // Connector type – Type ‘A’

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x00000081, // Revision 1, Ignore color

 // Color (ignored), width and height not

0x00000000, // required as this is a standard USB ‘A’ type

 // connector

588

0x00800c69,// User visible, Back panel, Center, left,

 // shape = vert. rect, Group Token = 0,

 // Group Position 1 (i.e. Connector C1)

0x00000003})// ejectable, requires OPSM eject assistance

} // Device(IP1)

// Integrated Hub port 2 (IP2)

Device(IP2) {// USB0.RHUB.HCP2.IP2

// Address object for the port. Because the port is

// implemented on integrated hub port #2, this value must be 2

Name(_ADR, 0x00000002)

Name(_UPC, Package() {

0xFF, // Port is connectable

0x00, // Connector type – Type ‘A’

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x00000081, // Revision 1, Ignore color

 // Color (ignored), width and height not

0x00000000, // required as this is a standard USB ‘A’ type

 // connector

0x01000c69, // User visible, Back panel, Center, Left,

 // Shape = vert. rect, Group Token = 0,

 // Group Position 2 (i.e. Connector C2)

0x00000003}) // ejectable, requires OPSM eject assistance

} // Device(IP2)

// Integrated Hub port 3 (IP3)

Device(IP3) {// USB0.RHUB.HCP2.IP3

// Address object for the port. Because the port is implemented

// on integrated hub port #3, this value must be 3

Name(_ADR, 0x00000003)// Must match the _UPC declaration for

 // USB0.RHUB.HCP3 as this port shares

 // the same connection point.

Name(_UPC, Package() {

0xFF, // Port is connectable

0x00, // Connector type – (N/A for non-visible ports)

0x00000000, // Reserved 0 – must be zero

0x00000000})// Reserved 1 – must be zero

// provide internal connection point info

Name(_PLD, Buffer(0x10) {

0x00000081, // Revision 1, Ignore color

 // Color (ignored), width and height not

0x00000000, // required as this is not a user visble

 // connector

0x01008000, // Not user visible, Group Token = 1,

 // Group Position 2

0x00000000})// Ignored for not visible connectors

// Motherboard Embedded Hub 2.0 Logical Hub port 1 (EP1)

Device(EP1) { // USB0.RHUB.HCP2.IP3.EP1

Name(_ADR, 0x00000001)

// Must match the _UPC declaration for

// USB0.RHUB.HCP3.EP1 as this port provides

 589

// the LS/FS/HS connection for C3

Name(_UPC, Package() {

0xFF, // Port is connectable

0x03, // Connector type – USB 3 Type ‘A’

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601, // Revision 1, Color valid

 // Color (0072C6h), width and height

0x00000000, // not required as this is a standard

 // USB ‘A’ type connector

0x01800c69, // User visible, Back panel, Center,

 // Left, shape = vert.

 // rect, Group Token = 0,

 // Group Position 3

 //(i.e. Connector C3)

0x00000003}) // ejectable, requires OPSM eject

 // assistance

} // Device(EP1)

// Motherboard Embedded Hub 2.0 Logical Hub port 2 (EP2)

Device(EP2) { //USB0.RHUB.HCP2.IP3.EP2

Name(_ADR, 0x00000002)

// Must match the _UPC declaration for

// USB0.RHUB.HCP3.EP2 as this port provides

// the LS/FS/HS connection for C4

Name(_UPC, Package() {

0xFF, // Port is connectable

0x03, // Connector type – USB 3 Type ‘A’

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601, // Revision 1, Color valid

 // Color (0072C6h), width and height

0x00000000, // not required as this is a standard

 // USB ‘A’ type connector

0x02000c69, // User visible, Back panel, Center,

 // Left, Shape = vert.

 // rect, Group Token = 0,

 // Group Position 4 (i.e. Connector C4)

0x00000003}) // ejectable, requires OPSM eject

 // assistance

} // Device(EP2)

} // Device(IP3)

// Integrated hub port 4 (IP4)

Device(IP4) { // USB0.RHUB.HCP2.IP4

Name(_ADR, 0x00000004)

// Must match the _UPC declaration for USB0.RHUB.HCP4 as

// this port provides the LS/FS/HS connection for C5

Name(_UPC, Package() {

590

0xFF, // Port is connectable

0x03, // Connector type – USB 3 Type ‘A’

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601, // Revision 1, Color valid

 // Color (0072C6h), width and height not

0x00000000, // required as this is a standard USB

 // ‘A’ type connector

0x02800c69, // User visible, Back panel, Center, Left,

 // Shape = vert. rectangle, Group Token = 0,

 // Group Position 5 (i.e. Connector C5)

0x00000003})// ejectable, requires OPSM eject

 // assistance

} // Device(IP4)

} // Device(HCP2)

// Root Hub port 3 (HCP3)

Device(HCP3) {

Name(_ADR, 0x00000003)

// Must match the _UPC declaration for USB0.RHUB.HPC2.IP3 as

// this port shares the connection point

Name(_UPC, Package() {

0xFF, // Port is connectable

0x00, // Connector type – (N/A for non-visible ports)

0x00000000, // Reserved 0 – must be zero

0x00000000})// Reserved 1 – must be zero

// Internal connection points require a _PLD that identifies

// the shared connection point info

Name(_PLD, Buffer(0x10) {

0x00000081, // Revision 1, Ignore color

 // Color (ignored), width and height not

0x00000000, // required as this is not a user visible

 // connector

0x01008000, // Not user visible, Group Token = 1,

 // Group Position 2

0x00000000})// Ignored for not visible connectors

// Motherboard Embedded Hub SS Logical Hub port 1 (EP1)

Device(EP1) {// USB0.RHUB.HCP3.EP1

Name(_ADR, 0x00000001)

// Must match the _UPC declaration for

// USB0.RHUB.HCP2.IHUB.IP3.EHUB.EP1 as this port

// provides the SS connection for C3

Name(_UPC, Package() {

0xFF, // Port is connectable

0x03, // Connector type – USB 3 Type ‘A’

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601, // Revision 1, Color valid

 591

 // Color (0072C6h), width and height

0x00000000, // not required as this is a standard

 // USB ‘A’ type connector

0x01800c69, // User visible, Back panel, Center,

 // Left, shape = vert.

 // rect, Group Token = 0,

 // Group Position 3

 //(i.e. Connector C3)

0x00000003}) // ejectable, requires OPSM eject

 // assistance

} // Device(EP1)

// Motherboard Embedded Hub SS Logical Hub port 2 (EP2)

Device(EP2) {// USB0.RHUB.HCP3.EP2

Name(_ADR, 0x00000002)

// Must match the _UPC declaration for

// USB0.RHUB.HCP2.IHUB.IP3.EP2 as this port

// provides the SS connection for C4

Name(_UPC, Package() {

0xFF, // Port is connectable

0x03, // Connector type – USB 3 Type ‘A’

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601, // Revision 1, Color valid

 // Color (0072C6h), width and height

0x00000000, // not required as this is a standard

 // USB ‘A’ type connector

0x02000c69, // User visible, Back panel, Center,

 // Left, Shape = vert.

 // rect, Group Token = 0,

 // Group Position 4 (i.e. Connector C4)

0x00000003}) // ejectable, requires OPSM eject

 // assistance

} // Device(EP2)

} // Device(HCP3)

// Root Hub port 4 (HCP4)

Device(HCP4) { // USB0.RHUB.HCP4

Name(_ADR, 0x00000004)

// Must match the _UPC declaration for USB0.RHUB.HCP2.IP4

// as this port provides the SS connection for C5

Name(_UPC, Package() {

0xFF, // Port is connectable

0x03, // Connector type – USB 3 Type ‘A’

0x00000000, // Reserved 0 – must be zero

0x00000000}) // Reserved 1 – must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601, // Revision 1, Color valid

 // Color (0072C6h), width and height

0x00000000, // not required as this is a standard

 // USB ‘A’ type connector

592

0x02800c69, // User visible, Back panel, Center,

 // Left,

 // Shape = vert. rect, Group Token = 0,

 // Group Position 5 (i.e. Connector C5)

0x00000003}) // ejectable, requires OPSM eject

 // assistance

} // Device(HCP4)

} // Device(RHUB)

…

} // Device(USB0)

//

// Define other control methods, etc

…

} // Device(PCIO)

…

} // Scope(_SB)

Note: The USB spec recommends that USB 3.0 specific connectors are identified with

a standardized blue color (Pantone 300C). In this example Pantone 300C is

mapped to the RGB value of 0(R), 114(G), 198(B) (0072C6h).

 593

Appendix E State Machine Notation

State diagrams should not be taken as a required implementation, but to specify

the required behavior.

Figure 8-25 shows the legend for the state machine diagrams. A circle with a

three line border indicates a reference to another (hierarchical) state machine. A

circle with a two line border indicates an initial state. A circle with a single line

border is a simple state.

The Entry and Exit symbols are used by lower lever state machines to indicate

an entry from, or an exit to, a higher level state machine.

A diamond (joint) is used to join several transitions to a common point. A joint

allows a single input transition with multiple output transitions or multiple input

transitions and a single output transition. All conditions on the transitions of a

path involving a joint must be true for the path to be taken. A path is simply a

sequence of transitions involving one or more joints.

A transition is labeled with a block with a line in the middle separating the

(upper) Conditions and the (lower) Actions. If no line is displayed the transition

label is a Condition. The Condition is required to be true to take the transition.

The Actions are performed if the transition is taken. The syntax for actions and

conditions is VHDL. A circle includes a state name in bold and optionally

additional state information, e.g. one or more actions that are performed upon

entry to the state, signal states, etc.

594

Figure E-1: Legend for State Machines

- Contains other state machines
State

Hierarchy

State

&

Conditions

Actions

- Initial state of state machine

- State in a state machine

- Entry and exit of state machine

- Joint used to connect transitions

- Transition: Take when condition is true

 and performs actions

Initial

State

Note: The xHCI state machines describe the exit conditions from a state, and entry

conditions to a state. Only conditions specifically described as an entry or exit

condition shall result in a state transition.

 595

Appendix F SS Bus Access Constraints

The following tables calculate the transaction limits for transfers on a

downstream link, with the assumption that the upstream link is idle.

Refer to 7.2.1.2.3 in the USB3 spec for the overhead (32 symbols) associated

with a SS DP (DPH + DPP).

Refer to 7.2.2.1 in the USB3 spec for the symbol overhead associated with a SS

Link Command. Two Link Commands (an GOOD_n and an L_CRD) are

transmitted on the downstream link for every header (TP or DPH) received on

the upstream link.

Refer to 7.2.1.1.1 in the USB3 spec for the overhead (20 bytes) associated with

each SS TP (Header Packet).

Table Labels

Protocol Overhead

The downstream link overhead in bytes. The components of overhead are

described by the cell to the right.

TD Transfer Size

TD Transfer Size in bytes.

Max Bandwidth

The maximum achievable bandwidth given the TD Transfer Size in

KBytes/second.

% Microframe Bandwidth per TD

The percentage of microframe bandwidth consumed by a single TD.

Max TDs

The maximum number of TD Transfer Size TDs than may be scheduled per

microframe.

Bytes Remaining

The remaining byte times in a microframe after transferring one TD.

Bytes/Microframe Useful Data

TD Transfer Size * Max TDs

596

F.1 Bulk Transfer Bus Access Constraints
Refer to section 5.8.4 of the USB2 spec for a general overview of USB bulk

transfer access constraints, and for the Full-speed and High-speed Transaction

Limits.

The bus frequency and microframe timing limit the maximum number of

SuperSpeed bulk DPs within a microframe for any USB3 system to less than 905

one-byte data payloads. Table F-1 lists information about different-sized

SuperSpeed bulk transactions and the maximum number of transactions

possible in a microframe, for the downstream link of a bulk OUT pipe while the

upstream link is saturated with bulk IN traffic.

The Protocol Overhead is calculated for the downstream link as follows: For

each DP moved for a TD in the OUT direction (32B), there is one ACK TP for the

DP in the IN direction, which requires 1 LGOOD_n and 1 L_CRD Link Command

(8B each) to be transmitted in the OUT direction for a total of 48 bytes.

 Table F-1: SuperSpeed Bulk OUT Transaction Limits

Protocol Overhead (48B) 1 DP, 2 Link Commands

TD
Transfer

Size

Max Bandwidth
(KBytes/second)

% Microframe
Bandwidth per

TD

Max
TDs

Bytes
Remaining

Bytes/Microframe
Useful Data

1 10200 1 1275 25 1275

2 20000 1 1250 0 2500

4 38432 1 1201 48 4804

8 71424 1 1116 4 8928

16 124928 1 976 36 15616

32 199936 1 781 20 24992

64 285696 1 558 4 35712

128 363520 1 355 20 45440

256 419840 1 205 180 52480

512 454656 1 111 340 56832

 597

1024 475136 2 58 324 59392

2048 475136 4 29 324 59392

4096 458752 7 14 2468 57344

8192 458752 14 7 2468 57344

16384 393216 28 3 11044 49152

32768 262144 55 1 28196 32768

59392 475136 100 1 324 59392

xHC implementations are free to determine how the individual bus transactions for specific bulk

transfers are moved over the bus within and across microframes. An endpoint could see all bus

transactions for a bulk transfer within the same microframe or spread across several

microframes. An xHC, for various implementation reasons, may not be able to provide the above

maximum number of transactions per (micro)frame.

Note: For a given TD Transfer Size, simultaneous bulk IN and OUT transfers would incur

an additional 36 bytes of Protocol Overhead per OUT TD, i.e. 1 for the IN DP’s

ACK TP (20B) and 2 Link Commands for the IN DP (8B each).

F.2 Interrupt Transfer Bus Access Constraints
SuperSpeed endpoints can be allocated at most 90% of a microframe for

periodic transfers. The bus frequency and microframe timing limit the maximum

number of SuperSpeed interrupt DPs within a microframe for any USB3 system

to less than 1025 one-byte data payloads. Table F-2 lists information about

different-sized SuperSpeed interrupt transactions and the maximum number of

transactions possible in a microframe.

The Protocol Overhead is calculated identically to bulk transfers.

No more than 3 Max Packet Size DPs (3KB or 3072B) may be scheduled for a

single interrupt endpoint within a single microframe, i.e. the minimum ESIT.

Interrupt TDs that exceed 3KB shall transfer over multiple ESITs at up to 3KB

per ESIT.

598

 Table F-2: SuperSpeed Interrupt Transaction Limits

Protocol Overhead (48B) 1 DP, 2 Link Commands

TD
Transfer

Size

Max Bandwidth
(KBytes/second)

% Microframe
Bandwidth per

TD

Max
TDs

Bytes
Remaining

Bytes/Microframe
Useful Data

1 10200 1 1275 25 1275

2 20000 1 1250 0 2500

4 38432 1 1201 48 4804

8 71424 1 1116 4 8928

16 124928 1 976 36 15616

32 199936 1 781 20 24992

64 285696 1 558 4 35712

128 363520 1 355 20 45440

256 419840 1 205 180 52480

512 454656 1 111 340 56832

1024 475136 2 58 324 59392

2048 475136 4 29 324 59392

3072 466944 6 19 1396 58368

Note: For a given TD Transfer Size, simultaneous interrupt IN and OUT transfers would

incur an additional 36 bytes of Protocol Overhead on the downstream link per

OUT TD, i.e. 1 for the IN DP’s ACK TP (20B) and 2 Link Commands for the IN DP

(8B each).

F.3 Isochronous Transfer Bus Access Constraints
SuperSpeed endpoints can be allocated at most 90% of a microframe for

periodic transfers. The bus frequency and microframe timing limit the maximum

number of SuperSpeed Isoch DPs within a microframe for any USB3 system to

less than 1025 one-byte data payloads. Table F-3 lists information about

 599

different-sized SuperSpeed isochronous transactions and the maximum number

of transactions possible in a microframe.

For only Isoch OUT transfers the downstream Protocol Overhead is that

associated with the transmission of a single DP (32B).

No more that 48 Max Packet Size DPs (48KB or 49152B) may be scheduled for a

single Isoch endpoint within a single microframe, i.e. the minimum ESIT. If an

Isoch TD Transfer Size exceeds the Max ESIT Payload or the Maximum Allowed

ESIT Payload (48KB), then a Bandwidth Overrun Error shall be generated.

 Table F-3: SuperSpeed Isoch Transaction Limits

Protocol Overhead (32B) 1 DP, 1 Link Command

TD
Transfer

Size

Max Bandwidth
(KBytes/second)

% Microframe
Bandwidth per TD

Max
TDs

Bytes
Remaining

Bytes/ Microframe
Useful Data

1 15144 1 1893 31 1893

2 29408 1 1838 8 3676

4 55552 1 1736 4 6944

8 99968 1 1562 20 12496

16 166656 1 1302 4 20832

32 249856 1 976 36 31232

64 333312 1 651 4 41664

128 399360 1 390 100 49920

256 444416 1 217 4 55552

512 466944 1 114 484 58368

1024 483328 2 59 196 60416

2048 475136 4 29 1252 59392

4096 458752 7 14 3364 57344

8192 458752 14 7 3364 57344

16384 393216 28 3 11812 49152

600

32768 262144 55 1 28708 32768

49152 393216 82 1 11812 49152

Note: For a given TD Transfer Size, simultaneous isoch IN and OUT transfers would

incur an additional 16 bytes of Protocol Overhead on the downstream link per

OUT TD, i.e. 2 Link Commands for the IN DP (8B each).

 601

Appendix G 0.96 Exceptions

This appendix defines the significant differences between 0.96 and 1.0

implementations. See following exceptions:

G.1 Skip Link TRB IOC flag
Section 4.10.1.1 of the 0.96 release was silent on the handling Link TRBs while

advancing to the next TD after the detection of a Short Packet. Some 0.96

implementations may not generate an event if it encounters a Link TRB with its

IOC flag set while advancing to the next TD.

G.2 Force Stopped Event Optional
Forced Stopped Event support was optional for 0.96 implementations, but is

required in 1.0. Refer to section 4.6.9. In 0.96 implementations bit 8 of the

HCCPARAMS1 register was defined as follows:

 Table G-1: Forced Stopped Event (FSE) Option Flag

Bit Description

8 Force Stopped Event (FSE). This flag indicates whether the host controller implementation

generates a Stopped Transfer Event when a Transfer Ring stops between TDs. A ‘1’ in this bit
indicates that Forced Stopped Events are supported. A ‘0’ in this bit indicates that Forced Stopped
Events are not supported. Refer to Section 4.6.9 for more information on the use of this flag.

G.3 Secondary Bandwidth Domain Reporting Optional
Secondary Bandwidth Domain Reporting support was optional for 0.96

implementations, but is required in 1.0. Refer to section 4.16.2. In 0.96

implementations bit 9 of the HCCPARAMS1 register was defined as follows:

602

 Table G-2: Secondary Bandwidth Domain Reporting (SBD) Option Flag

Bits Description

9 Secondary Bandwidth Domain Reporting (SBD). This flag indicates whether the host controller
implementation is capable of reporting Secondary Bandwidth Domain information. A ‘1’ in this bit

indicates that Secondary Bandwidth Domain reporting is supported. A ‘0’ in this bit indicates that
Secondary Bandwidth Domain reporting is not supported. Refer to Section 4.16.2 for more
information on the use of this flag.

G.4 USB2 L1 Capability Optional
L1 Capability support was optional for 0.96 implementations. Refer to section

4.23.5.1.1. In 0.96 implementations bit 16 at Dword offset 08h of the xHCI

Supported Protocol Capability was defined as follows:

 Table G-3: L1 Capability (L1C) Option Flag

Bits Description

16 L1 Capability (L1C) - RO. Default = Implementation dependent. If this bit is set to ‘1’ the xHC
supports the USB2 Link Power Management L1 (Sleep) state and the associated USB2 protocol
fields as defined in the PORTSC and USB2 PORTPMSC registers are valid, specifically USB2

protocol functionality of the PLS and PLC fields in the PORTSC register, and the fields of the
USB2 PORTPMSC register.

Note that software is prohibited from using the PLS field initiate a transition to an L1 state or

using the USB2 PORTPMSC fields unless this bit is set to ‘1’.

 603

Appendix H Release 1.1 Notes

H.1 Required 1.0 Capabilities/Features
The following capabilities/features that were optional for xHCI 1.0

implementations are now required in xHCI 1.1 implementations.

H.1.1 Hardware LMP Capability

The Hardware LMP Capability (HLE = ‘1’) and BESL LMP Capability (BLC = ‘1’),

refer to section 4.23.5.1.1.

H.1.2 Contiguous Frame ID Capability

The Contiguous Frame ID Capability (CFC = ‘1’), refer to section 4.11.2.5.

H.1.3 Stopped EDTLA Capability

The Stopped EDTLA Capability (SEC = '1'), refer to section 4.12.

H.1.4 U3 Entry Capability

The U3 Entry Capability (U3C = '1') refer to section 4.15.1.

H.1.5 Stopped - Short Packet Capability

The Stopped - Short Packet Capability (SPC = '1'), refer to section 4.6.9.

H.1.6 Force Save Context Capability

The Force Save Context Capability (FSC = '1'), refer to section 5.3.9.

H.1.7 Compliance Transition Capability

The Compliance Transition Capability (CTC = '1'), refer to section 4.19.1.2.4.1.

H.1.8 Configuration Information Capability

The Configuration Information Capability (CIC = '1'), refer to section 6.2.5.1. xHC

1.1 compliant drivers shall always set CIE = ‘1’ and provide extended

Configuration Information.

604

H.2 New 1.1 Features
The following capabilities/features are new features required in xHCI 1.1

implementations.

H.2.1 Ring Underrun/Overrun Transfer Event Handling

Ring Underrun and Ring Overrun Transfer Events shall set the TRB Pointer field

to the address of the invalid TRB, refer to section 4.11.3.1.

§ §

	1 Preface
	1.1 Objective of Specification
	1.2 Scope of Document
	1.3 Document Organization
	1.4 References
	1.5 Index
	1.6 Terms and Abbreviations
	1.7 Compliance
	1.8 Documentation Conventions
	1.8.1 Capitalization
	1.8.2 Bold Text
	1.8.3 Italic Text
	1.8.4 Numbers and Number Bases
	1.8.5 Implementation Notes
	1.8.6 Word Usage
	1.8.7 Pseudo Code
	1.8.8 Other Notation

	2 Introduction
	2.1 Motivation
	2.2 Goals
	2.3 Key features
	2.4 xHCI Product Compliance

	3 Architectural Overview
	3.1 Interface Architecture
	3.2 xHCI Data Structures
	3.2.1 Device Context Base Address Array
	3.2.2 Device Context
	3.2.3 Slot Context
	3.2.4 Endpoint Context
	3.2.4.1 Stream Context Array
	3.2.4.1.1 Stream Context

	3.2.5 Input Context
	3.2.5.1 Input Control Context

	3.2.6 Rings
	3.2.6.1 Transfer Ring Example

	3.2.7 Transfer Request Block
	3.2.7.1 Operation
	3.2.7.2 Other Rings

	3.2.8 Scatter/Gather Transfers
	3.2.9 Control Transfers
	3.2.10 Bulk and Interrupt Transfers
	3.2.11 Isoch Transfers

	3.3 Command Interface
	3.3.1 No Op
	3.3.2 Enable Slot
	3.3.3 Disable Slot
	3.3.4 Address Device
	3.3.5 Configure Endpoint
	3.3.6 Evaluate Context
	3.3.7 Reset Endpoint
	3.3.8 Stop Endpoint
	3.3.9 Set TR Dequeue Pointer
	3.3.10 Reset Device
	3.3.11 Force Event
	3.3.12 Negotiate Bandwidth
	3.3.13 Set Latency Tolerance Value
	3.3.14 Get Port Bandwidth
	3.3.15 Force Header

	3.4 General Information
	3.5 Root Hub Management
	3.6 xHCI Device Enumeration

	4 Operational Model
	4.1 Command Operation
	4.2 Host Controller Initialization
	4.3 USB Device Initialization
	4.3.1 Resetting a Root Hub Port
	4.3.2 Device Slot Assignment
	4.3.3 Device Slot Initialization
	4.3.4 Address Assignment
	4.3.5 Device Configuration
	4.3.6 Setting Alternate Interfaces
	4.3.7 Low-Speed/Full-Speed Device Support
	4.3.8 Bandwidth Management

	4.4 Device Detach
	4.5 Device Slot Management
	4.5.1 Device Context Index
	4.5.2 Slot Context Initialization
	4.5.3 Slot States
	4.5.3.1 Device Slot State Codes
	4.5.3.2 Disabled
	4.5.3.3 Enabled
	4.5.3.4 Default
	4.5.3.5 Addressed
	4.5.3.6 Configured

	4.5.4 USB Standard Device Request to xHCI Command Mapping
	4.5.4.1 SET_ADDRESS Request
	4.5.4.2 SET_CONFIGURATION Request
	4.5.4.3 SET_INTERFACE Request

	4.6 Command Interface
	4.6.1 Command Ring Operation
	4.6.1.1 Stopping the Command Ring
	4.6.1.2 Aborting a Command

	4.6.2 No Op
	4.6.3 Enable Slot
	4.6.4 Disable Slot
	4.6.5 Address Device
	4.6.6 Configure Endpoint
	4.6.6.1 Exit Latency Delta (ELD)

	4.6.7 Evaluate Context
	4.6.8 Reset Endpoint
	4.6.8.1 Soft Retry

	4.6.9 Stop Endpoint
	4.6.10 Set TR Dequeue Pointer
	4.6.11 Reset Device
	4.6.12 Force Event (Optional Normative)
	4.6.13 Negotiate Bandwidth (Optional Normative)
	4.6.14 Set Latency Tolerance Value (LTV) (Optional Normative)
	4.6.15 Get Port Bandwidth
	4.6.16 Force Header

	4.7 Doorbells
	4.8 Endpoint
	4.8.1 Endpoint Addressing
	4.8.2 Endpoint Context Initialization
	4.8.2.1 Default Control Endpoint 0
	4.8.2.2 Control Endpoints
	4.8.2.3 Bulk Endpoints
	4.8.2.4 Isoch or Interrupt Endpoints

	4.8.3 Endpoint Context State

	4.9 TRB Ring
	4.9.1 Transfer Descriptors
	4.9.2 Transfer Ring Management
	4.9.2.1 Segmented Rings
	4.9.2.2 Pointer Advancement
	4.9.2.3 Enlarging a Transfer Ring
	4.9.2.4 Shrinking a Transfer Ring

	4.9.3 Command Ring Management
	4.9.4 Event Ring Management
	4.9.4.1 Changing the size of an Event Ring
	4.9.4.2 Shrinking an Event Ring
	4.9.4.3 Primary and Secondary Event Rings

	4.10 Host Controller TRB Handling
	4.10.1 Transfer TRBs
	4.10.1.1 Short Transfers
	4.10.1.1.1 Short Transfers when using Event Data TRBs
	4.10.1.1.2 Short Transfers when not using Event Data TRBs

	4.10.2 Errors
	4.10.2.1 Stall Error
	4.10.2.1.1 Non-Control Endpoints
	4.10.2.1.2 Control Endpoints

	4.10.2.2 TRB Error
	4.10.2.3 USB Transaction Error
	4.10.2.4 Babble Detected Error
	4.10.2.4.1 USB2 Protocol
	4.10.2.4.2 USB3 Protocol

	4.10.2.5 Data Buffer Error
	4.10.2.6 Host System Errors
	4.10.2.7 Bus Error Counter
	4.10.2.8 Isoch Endpoint Error Handling

	4.10.3 Events
	4.10.3.1 Ring Overrun and Underrun
	4.10.3.2 Missed Service Error
	4.10.3.3 Split Transaction Error
	4.10.3.4 Short Packet

	4.10.4 IOC Flag

	4.11 TRBs
	4.11.1 TRB Template
	4.11.1.1 Command and Transfer TRB Components
	4.11.1.2 Event TRB Components

	4.11.2 Transfer TRBs
	4.11.2.1 Normal TRB
	4.11.2.2 Setup Stage, Data Stage, and Status Stage TRBs
	4.11.2.3 Isoch TRB
	4.11.2.4 TD Size
	4.11.2.5 Frame ID
	4.11.2.5.1 Frame ID ESIT Rules
	4.11.2.5.2 Resynchronization

	4.11.3 Event TRBs
	4.11.3.1 Transfer Event TRB

	4.11.4 Command TRBs
	4.11.4.1 No Op Command TRB
	4.11.4.2 Enable Slot Command TRB
	4.11.4.3 Disable Slot Command TRB
	4.11.4.4 Address Device Command TRB
	4.11.4.5 Configure Endpoint Command TRB
	4.11.4.6 Evaluate Context Command TRB
	4.11.4.7 Reset Endpoint Command TRB
	4.11.4.8 Stop Endpoint Command TRB
	4.11.4.9 Set TR Dequeue Pointer Command TRB
	4.11.4.10 Reset Device Command TRB
	4.11.4.11 Force Event Command TRB (Optional Normative)
	4.11.4.12 Negotiate Bandwidth Command TRB (Optional Normative)
	4.11.4.13 Set Latency Tolerance Value Command TRB (Optional Normative)
	4.11.4.14 Get Port Bandwidth Command TRB
	4.11.4.15 Force Header Command TRB

	4.11.5 Other TRBs
	4.11.5.1 Link TRB
	4.11.5.2 Event Data TRB

	4.11.6 Vendor Defined TRB Types
	4.11.7 TD Usage Rules
	4.11.7.1 TD Fragments

	4.12 Streams
	4.12.1 xHCI Stream Protocol
	4.12.1.1 Host Initiated Data Move

	4.12.2 Stream ID Management
	4.12.2.1 Stream Array Bounds Checking

	4.12.3 Evaluate Next TRB (ENT)

	4.13 Device Notifications
	4.13.1 Latency Tolerance Message Handling
	4.13.2 Function Wake

	4.14 Managing Transfer Rings
	4.14.1 General Scheduling Model
	4.14.1.1 System Bus Bandwidth Scheduling

	4.14.2 Periodic Transfer Ring Scheduling
	4.14.2.1 Isochronous Transfer Ring Scheduling
	4.14.2.1.1 High-speed endpoints
	4.14.2.1.2 Full-speed or High-speed endpoints
	4.14.2.1.3 SuperSpeed endpoints
	4.14.2.1.4 Isochronous Scheduling Threshold

	4.14.3 Interrupt Transfer Ring Scheduling
	4.14.3.1 Low-, Full-, and High-speed Endpoints
	4.14.3.2 SuperSpeed Endpoints

	4.14.4 Asynchronous Transfer Ring Scheduling
	4.14.4.1 SuperSpeed Burst Transactions

	4.15 Suspend-Resume
	4.15.1 Port Suspend
	4.15.1.1 Selective Suspend
	4.15.1.2 Function Suspend

	4.15.2 Port Resume
	4.15.2.1 Device Initiated
	4.15.2.2 Host Initiated
	4.15.2.3 Wakeup Events

	4.16 Bandwidth Management
	4.16.1 Bandwidth Negotiation
	4.16.2 Bandwidth Domains

	4.17 Interrupters
	4.17.1 Interrupter Mapping
	4.17.2 Interrupt Moderation
	4.17.3 Interrupt Pin Support
	4.17.4 Interrupter Target Identification
	4.17.5 Interrupt Blocking

	4.18 Transfer Definition and Attributes
	4.18.1 No snoop
	4.18.2 No Snoop and Relaxed Ordering for USB Traffic
	4.18.2.1 No Snoop option for payload
	4.18.2.2 No Snoop option for Scratchpad references

	4.19 Root Hub
	4.19.1 Root Hub Port State Machines
	4.19.1.1 USB2 Root Hub Port
	4.19.1.1.1 Powered-off
	4.19.1.1.2 Disconnected
	4.19.1.1.3 Disabled
	4.19.1.1.4 Reset
	4.19.1.1.5 Test Mode
	4.19.1.1.6 Enabled
	4.19.1.1.7 U0
	4.19.1.1.8 U2Entry
	4.19.1.1.9 U2
	4.19.1.1.10 U2Exit
	4.19.1.1.11 U3Entry
	4.19.1.1.12 U3
	4.19.1.1.13 Resume
	4.19.1.1.14 RExit

	4.19.1.2 USB3 Root Hub Port
	4.19.1.2.1 Disabled
	4.19.1.2.2 Powered-off
	4.19.1.2.3 Disconnected
	4.19.1.2.4 Polling
	4.19.1.2.5 Reset
	4.19.1.2.6 Error
	4.19.1.2.7 Compliance
	4.19.1.2.8 Loopback
	4.19.1.2.9 Enabled
	4.19.1.2.10 U0
	4.19.1.2.11 U1’
	4.19.1.2.12 U2’
	4.19.1.2.13 U3’
	4.19.1.2.14 Recovery

	4.19.2 Port Status Change Generation
	4.19.3 Connect Status Change Reporting
	4.19.4 Port Power
	4.19.4.1 Enabled U0 States

	4.19.5 Port Reset
	4.19.5.1 Warm Port Reset

	4.19.6 Port Test Modes
	4.19.7 Port Routing and Control
	4.19.8 Cold Attach Status

	4.20 Scratchpad Buffers
	4.21 PCI Express
	4.21.1 Configuration sharing among PCI functions
	4.21.2 Bus Master Enable (BME)

	4.22 xHCI Extended Capabilities
	4.22.1 Pre-OS to OS Handoff Synchronization
	4.22.2 Debug Capability Operational Model
	4.22.3 Virtualization

	4.23 Power Management
	4.23.1 Power Wells
	4.23.2 xHCI Power Management
	4.23.2.1 Save and Restore Operations

	4.23.3 PCI Power Management
	4.23.3.1 Standard PCI Power Management
	4.23.3.2 PCI Extended Power Management

	4.23.4 USB Power Management
	4.23.4.1 USB2
	4.23.4.2 USB3
	4.23.4.3 USB Power Delivery

	4.23.5 USB Link Power Management
	4.23.5.1 Root Hub Port LPM Support
	4.23.5.1.1 USB2 LPM Support

	4.23.5.2 Max Exit Latency
	4.23.5.2.1 No Ping Response Error
	4.23.5.2.2 Max Exit Latency Too Large Error

	4.24 Host Controller Management
	4.24.1 Internal Errors
	4.24.2 Port to Connector Mapping
	4.24.2.1 Root Hub Port to External Port Assignment
	4.24.2.2 External Port to USB Connector mapping
	4.24.2.3 Mapping Example

	5 Register Interface
	5.1 Register Conventions
	5.1.1 Attributes
	5.1.2 Power Well Considerations

	5.2 PCI Configuration Registers (USB)
	5.2.1 Type 0 PCI Header
	5.2.2 Class Code Register
	5.2.3 Serial Bus Release Number Register (SBRN)
	5.2.4 Frame Length Adjustment Register (FLADJ)
	5.2.5 Default Best Effort Service Latency (DBESL)
	5.2.6 Default Best Effort Service Latency Deep (DBESLD)
	5.2.7 PCI Power Management Interface
	5.2.7.1 PCI Power Management Registers

	5.2.8 Message Signaled Interrupts (MSI & MSI-X) Capability
	5.2.8.1 MSI configuration
	5.2.8.2 MSI-X configuration
	5.2.8.3 MSI-X Table
	5.2.8.4 MSI-X PBA
	5.2.8.5 Accessing the MSI-X Table and MSI-X PBA

	5.2.9 PCI Express Capability
	5.2.10 SR-IOV Extended Capability

	5.3 Host Controller Capability Registers
	5.3.1 Capability Registers Length (CAPLENGTH)
	5.3.2 Host Controller Interface Version Number (HCIVERSION)
	5.3.3 Structural Parameters 1 (HCSPARAMS1)
	5.3.4 Structural Parameters 2 (HCSPARAMS2)
	5.3.5 Structural Parameters 3 (HCSPARAMS3)
	5.3.6 Capability Parameters 1 (HCCPARAMS1)
	5.3.7 Doorbell Offset (DBOFF)
	5.3.8 Runtime Register Space Offset (RTSOFF)
	5.3.9 Capability Parameters 2 (HCCPARAMS2)

	5.4 Host Controller Operational Registers
	5.4.1 USB Command Register (USBCMD)
	5.4.1.1 Run/Stop (R/S)

	5.4.2 USB Status Register (USBSTS)
	5.4.3 Page Size Register (PAGESIZE)
	5.4.4 Device Notification Control Register (DNCTRL)
	5.4.5 Command Ring Control Register (CRCR)
	5.4.6 Device Context Base Address Array Pointer Register (DCBAAP)
	5.4.7 Configure Register (CONFIG)
	5.4.8 Port Status and Control Register (PORTSC)
	5.4.8.1 USB2 to USB3 Port State Mapping

	5.4.9 Port PM Status and Control Register (PORTPMSC)
	5.4.9.1 USB3 Protocol PORTPMSC Definition
	5.4.9.2 USB2 Protocol PORTPMSC Definition

	5.4.10 Port Link Info Register (PORTLI)
	5.4.10.1 USB3 Protocol PORTLI Definition
	5.4.10.2 USB2 Protocol PORTLI Definition

	5.4.11 Port Hardware LPM Control Register (PORTHLPMC)
	5.4.11.1 USB3 Protocol PORTHLPMC Definition
	5.4.11.2 USB2 Protocol PORTHLPMC Definition

	5.5 Host Controller Runtime Registers
	5.5.1 Microframe Index Register (MFINDEX)
	5.5.2 Interrupter Register Set
	5.5.2.1 Interrupter Management Register (IMAN)
	5.5.2.2 Interrupter Moderation Register (IMOD)
	5.5.2.3 Event Ring Registers
	5.5.2.3.1 Event Ring Segment Table Size Register (ERSTSZ)
	5.5.2.3.2 Event Ring Segment Table Base Address Register (ERSTBA)
	5.5.2.3.3 Event Ring Dequeue Pointer Register (ERDP)

	5.6 Doorbell Registers

	6 Data Structures
	6.1 Device Context Base Address Array
	6.2 Contexts
	6.2.1 Device Context
	6.2.2 Slot Context
	6.2.2.1 Address Device Command Usage
	6.2.2.2 Configure Endpoint Command Usage
	6.2.2.3 Evaluate Context Command Usage
	6.2.2.4 Reset Device Command Usage

	6.2.3 Endpoint Context
	6.2.3.1 Address Device Command Usage
	6.2.3.2 Configure Endpoint Command Usage
	6.2.3.3 Evaluate Context Command Usage
	6.2.3.4 Max Burst Size
	6.2.3.5 Max Packet Size
	6.2.3.6 Interval
	6.2.3.7 Reset Device Command Usage
	6.2.3.8 Max ESIT Payload

	6.2.4 Stream Context Array
	6.2.4.1 Stream Context

	6.2.5 Input Context
	6.2.5.1 Input Control Context

	6.2.6 Port Bandwidth Context

	6.3 TRB Ring
	6.4 Transfer Request Block (TRB)
	6.4.1 Transfer TRBs
	6.4.1.1 Normal TRB
	6.4.1.2 Control TRBs
	6.4.1.2.1 Setup Stage TRB
	6.4.1.2.2 Data Stage TRB
	6.4.1.2.3 Status Stage TRB

	6.4.1.3 Isoch TRB
	6.4.1.4 No Op TRB

	6.4.2 Event TRBs
	6.4.2.1 Transfer Event TRB
	6.4.2.2 Command Completion Event TRB
	6.4.2.3 Port Status Change Event TRB
	6.4.2.4 Bandwidth Request Event TRB
	6.4.2.5 Doorbell Event TRB
	6.4.2.6 Host Controller Event TRB
	6.4.2.7 Device Notification Event TRB
	6.4.2.8 MFINDEX Wrap Event TRB

	6.4.3 Command TRBs
	6.4.3.1 No Op Command TRB
	6.4.3.2 Enable Slot Command TRB
	6.4.3.3 Disable Slot Command TRB
	6.4.3.4 Address Device Command TRB
	6.4.3.5 Configure Endpoint Command TRB
	6.4.3.6 Evaluate Context Command TRB
	6.4.3.7 Reset Endpoint Command TRB
	6.4.3.8 Stop Endpoint Command TRB
	6.4.3.9 Set TR Dequeue Pointer Command TRB
	6.4.3.10 Reset Device Command TRB
	6.4.3.11 Force Event Command TRB (Optional Normative)
	6.4.3.12 Negotiate Bandwidth Command TRB (Optional Normative)
	6.4.3.13 Set Latency Tolerance Value (LTV) Command TRB (Optional Normative)
	6.4.3.14 Get Port Bandwidth Command TRB
	6.4.3.15 Force Header Command TRB

	6.4.4 Other TRBs
	6.4.4.1 Link TRB
	6.4.4.2 Event Data TRB

	6.4.5 TRB Completion Codes
	6.4.6 TRB Types

	6.5 Event Ring Segment Table
	6.6 Scratchpad Buffer Array
	6.6.1 PSZ

	7 xHCI Extended Capabilities
	7.1 USB Legacy Support Capability
	7.1.1 USB Legacy Support Capability (USBLEGSUP)
	7.1.2 USB Legacy Support Control/Status (USBLEGCTLSTS)

	7.2 xHCI Supported Protocol Capability
	7.2.1 Protocol Speed ID (PSI)
	7.2.2 Supported Protocols
	7.2.2.1 USB Protocols
	7.2.2.1.1 Default USB Speed ID Mapping
	7.2.2.1.2 Protocol Speed ID Count (PSIC) field
	7.2.2.1.3 Protocol Defined field
	7.2.2.1.4 Protocol Slot Type Field

	7.3 HCI Extended Power Management Capability
	7.4 xHCI Extended Message Interrupt Capability
	7.5 xHCI Message Interrupt Capability
	7.6 Debug Capability (DbC)
	7.6.1 Debugging Topologies
	7.6.2 Debug Stacks
	7.6.2.1 Debug Software Startup

	7.6.3 Memory Map
	7.6.3.1 ERST and Event Ring
	7.6.3.2 Endpoint Contexts and Transfer Rings

	7.6.4 Operational Model
	7.6.4.1 Debug Capability Initialization
	7.6.4.2 Event Generation
	7.6.4.3 Halted DbC Endpoints
	7.6.4.4 DbC-Configured Exit Behavior

	7.6.5 Port Routing and Control
	7.6.6 DbC Port State Machine
	7.6.6.1 DbC-Off
	7.6.6.2 DbC-Disconnected
	7.6.6.3 DbC-Enabled
	7.6.6.4 DbC-Configured
	7.6.6.5 DbC-Resetting
	7.6.6.6 DbC-Disabled
	7.6.6.7 DbC-Error

	7.6.7 The USB Debug Device
	7.6.7.1 Enumeration Mode
	7.6.7.2 Run Mode
	7.6.7.2.1 Data Transfers

	7.6.7.3 Event Generation
	7.6.7.3.1 Data Transfers
	7.6.7.3.2 Debug Capability Status Changes

	7.6.7.4 Port Reset

	7.6.8 Debug Capability Structure
	7.6.8.1 Debug Capability ID Register (DCID)
	7.6.8.2 Debug Capability Doorbell Register (DCDB)
	7.6.8.3 Debug Capability Event Ring Registers
	7.6.8.3.1 Debug Capability Event Ring Segment Table Size Reg (DCERSTSZ)
	7.6.8.3.2 Debug Capability Event Ring Segment Table Base Address Register (DCERSTBA)
	7.6.8.3.3 Debug Capability Event Ring Dequeue Pointer Register (DCERDP)

	7.6.8.4 Debug Capability Control Register (DCCTRL)
	7.6.8.5 Debug Capability Status Register (DCST)
	7.6.8.6 Debug Capability Port Status and Control Register (DCPORTSC)
	7.6.8.7 Debug Capability Context Pointer Register (DCCP)
	7.6.8.8 Debug Capability Device Descriptor Info Register 1 (DCDDI1)
	7.6.8.9 Debug Capability Device Descriptor Info Register 2 (DCDDI2)

	7.6.9 Data Structures
	7.6.9.1 Debug Capability Info Context (DbCIC)
	7.6.9.2 Debug Capability Endpoint Context

	7.6.10 USB Descriptors for Debug Class Device
	7.6.10.1 Device Descriptor
	7.6.10.2 Configuration Descriptor
	7.6.10.3 Interface Descriptor
	7.6.10.4 Endpoint Descriptor 1 (Bulk OUT)
	7.6.10.5 SuperSpeed Endpoint Companion Descriptor 1 (Bulk OUT)
	7.6.10.6 Endpoint Descriptor 2 (Bulk IN)
	7.6.10.7 SuperSpeed Endpoint Companion Descriptor 2 (Bulk IN)
	7.6.10.8 Binary Object Store (BOS) Descriptor
	7.6.10.9 String Descriptors

	7.7 xHCI I/O Virtualization (xHCI-IOV) Capability
	7.7.1 Capability Header
	7.7.2 VF Interrupter Range Registers
	7.7.3 VF Device Slot Assignment Registers

	7.8 xHCI Local Memory Capability

	8 Virtualization
	8.1 Operation
	8.1.1 Resource Assignment
	8.1.1.1 MMIO Space
	8.1.1.2 Device Slots
	8.1.1.3 Interrupters

	8.1.2 Device Enumeration and Handoff
	8.1.2.1 Root Hub Attach Emulation
	8.1.2.2 External Hub Attach Emulation

	8.2 SR-IOV Extended Capability
	8.2.1 SR-IOV Extended Capability Structure
	8.2.2 xHCI-IOV Extended Capability Structure

	8.3 Doorbell Registers and Virtualization
	8.3.1 Direct-Assigned Device Slot
	8.3.2 Emulated Device Slot

	8.4 Interrupter Mapping
	8.5 Register Space Emulation

	Appendix A xHCI PCI Power Management Interface
	A.1 PCI Power Management Register Interface
	A.1.1 Power State Transitions
	A.1.2 Power State Definitions
	A.2 PCI PME# Signal
	Appendix B High Bandwidth Isochronous Rules
	B.1 High-speed
	Appendix C Stream Usage Models
	Appendix D Port to Connector Mapping
	D.1 Example
	D.1.1 ACPI Code Example
	Appendix E State Machine Notation
	Appendix F SS Bus Access Constraints
	F.1 Bulk Transfer Bus Access Constraints
	F.2 Interrupt Transfer Bus Access Constraints
	F.3 Isochronous Transfer Bus Access Constraints
	Appendix G 0.96 Exceptions
	G.1 Skip Link TRB IOC flag
	G.2 Force Stopped Event Optional
	G.3 Secondary Bandwidth Domain Reporting Optional
	G.4 USB2 L1 Capability Optional
	Appendix H Release 1.1 Notes
	H.1 Required 1.0 Capabilities/Features
	H.1.1 Hardware LMP Capability
	H.1.2 Contiguous Frame ID Capability
	H.1.3 Stopped EDTLA Capability
	H.1.4 U3 Entry Capability
	H.1.5 Stopped - Short Packet Capability
	H.1.6 Force Save Context Capability
	H.1.7 Compliance Transition Capability
	H.1.8 Configuration Information Capability
	H.2 New 1.1 Features
	H.2.1 Ring Underrun/Overrun Transfer Event Handling

