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1 Preface 

1.1 Objective of Specification 

The eXtensible Host Controller Interface (xHCI) specification describes the register-level host 

controller interface for Universal Serial Bus (0) Revision 2.0 and above. The specification includes 

a description of the hardware/software interface between system software and the host 

controller hardware. 

This specification is intended for hardware component designers, system builders and device 

driver (software) developers. The reader is expected to be familiar with the current Universal 

Serial Bus Specification revisions. In spite of due diligence, there may exist conflicts between this 

specification and the USB Specification. The USB Specifications take precedence on all issues of 

conflict. 

1.2 Scope of Document 

The specification is primarily targeted to host controller developers and system OEMs, but 

provides valuable information for platform operating system and BIOS device driver developers, 

adapter IHVs/ISVs, and platform/adapter controller vendors. This specification can be used for 

developing new products and associated software. 

1.3 Document Organization 

This specification presents a view of the overall architecture and detailed description of the 

operational model requirements of the host controller, using the defined registers and interface 

data structures. 

The architecture (3) and operational (4) sections are followed by two sections of pure structural 

definitions that detail the register space (5) and interface data structures (6). These definition 

chapters contain little or no operational requirements or usage models. The final sections 

describe the xHCI Extended Capabilities (7), and the virtualization operational model (8). The 

Appendix covers useful information not included elsewhere in the specification. 
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1.4 References 

The following documents are referenced throughout this specification. The Spec Reference 

defines a shorthand mnemonic used in this specification for the respective document listed 

below. 

 

Spec 

Reference 
Title 

Revision Location 

ACPI Advanced 
Configuration and 
Power Interface 

Specification 

3.0b1 
October 10, 
2006 

www.acpi.info 

BCS Battery Charging 

Specification 

1.1 

April 15, 
2009 

www.usb.org 

EHCI Enhanced Host 

Controller Interface 
Specification 

1.0 

March 12, 
2002 

www.intel.com/technology/usb 

EHCI Enhanced Host 
Controller Interface 
Specification 

1.0 
March 12, 
2002 

www.intel.com/technology/usb 

EHCI1_1Add EHCI v1.1 Addendum 1.1 

August, 
2008 

www.intel.com/technology/usb 

iASL iASL - ACPI Source 
Language Compiler, 

Table Compiler, and 
AML Disassembler 

20120111-
32 

January, 11 
2012 

www.acpica.org/downloads/binary_tools.php 

MUCC Universal Serial Bus 

Micro-USB Cables and 
Connectors 
Specification 

1.01 

April 4, 
2007 

www.usb.org 

OTG On-The-Go and 
Embedded Host 

Supplement to the USB 
Revision 2.0 
Specification 

2.0 
May 8, 2009 

www.usb.org 

PCI PCI Local Bus 
Specification 

3.0 
February 3, 
2004 

www.pcisig.com 

PCIe PCI Express Base 
Specification 

3.0 
November 

10, 2010 

www.pcisig.com 

                                                   

1Revisions 3.0b and beyond of the ACPI specification define the _UPC (USB3 Connector Type) and _PLD (Group) 
extensions referenced in Appendix D.1.1. The ACPI extensions required to support USB Power Delivery are going 
to be defined in an upcoming of the ACPI specification. 
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PCI PM PCI Bus Power 
Management Interface 

Specification 

1.2 
March 3, 

2004 

www.pcisig.com 

SR-IOV PCI Single Root I/O 
Virtualization 

1.0 
Sept. 11, 

2007 

www.pcisig.com 

SSIC Inter-Chip Supplement 

to the Revision 3.0 
Specification 

0.9 

Dec. 11, 
2011 

www.usb.org 

USB2 Universal Serial Bus 

Specification 

2.0 

April 27, 
2000 

www.usb.org 

USB2 LPM USB 2.0 Link Power 
Management 
Addendum and 

Errata for USB 2.0 ECN: 
Link Power 
Management - 7/2007 

Final 

July 16, 
2007 

5/13/11 

www.usb.org 

USB3 Universal Serial Bus 3.1 
Specification 

1.0 
 

www.usb.org 

USB PD Universal Serial Bus 
Power Delivery 
Specification 

Rev. 1.0, 
Version 1.2 

June 26, 

2013 

www.usb.org 

xHCI Extensible Host 
Controller Interface 

Specification for 
Universal Serial Bus 

1.0 
May 21, 

2010 

www.intel.com/technology/usb/spec.htm 

Note: Rather than enumerating the full specification name every time one of the above 

specs are referenced in this document, the abbreviation listed in the Spec 

Reference column shall be used. 

1.5 Index 

This document does not include an index. An effective substitute when viewing 

with a Adobe® Reader® is to use the Search dialog box to locate all references to 

a specific xHCI feature or field. 

To facilitate indexing, all references to register and data fields may be 

automatically located using their mnemonic, acronym, or name. There was also 

an effort to maintain consistent naming and phrasing throughout the spec.  

 For example: To find all references to the Port Power (PP) field of the 

PORTSC register, in Reader® open the Search dialog box, and since this 

field has a acronym, enter the string “PP” in the ‘What word of phrase 

would you like to search for?’ text box. Check the ‘Whole words only’ and 

‘Case-sensitive’ check boxes, and press the ‘Search’ button to list all 
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references to the Port Power flag in this specification in the ‘Results’ 

window. 

 To find all references to the Frame ID field, for which no mnemonic or 

acronym is defined, simply enter “Frame ID” into the ‘What word of 

phrase would you like to search for?’ text box.  

 Often it is useful to cut and paste a phrase into the ‘What word of phrase 

would you like to search for?’ text box. If you search on the phrase 

"advance to the next TD" you will get about 12 hits, "zero length" about 9 

hits, etc. 

After pressing the ‘Search’ button, the results of the search are displayed in the 

‘Results:’ window of the Search dialog box. Clicking on any tree entry in the 

Results: window will jump you to the selected text in the spec. Using the Up and 

Down Arrow keys while the Search dialog box has focus will allow you to quickly 

view all the search results in the document.  

The Search dialog box has been supported by Adobe® Reader® and Acrobat® for 

quite a while, but how it is accessed may vary from one version to another. With 

most versions of Adobe® products Shift+Ctrl+F will bring up the Search dialog 

box, or... 

In Reader® 8 to open the Search dialog box, select “Edit” then “Search” from the 

menu. 

In Reader® 10 open the Search dialog box, by clicking on the Tool Bar icon that 

looks like a pair of binoculars. If the Search icon is not visible in the Tool Bar, 

then right click on the Tool Bar, mouse over ‘Edit’ then click on ‘Advanced Find’.  

In Acrobat® 9 open the Search dialog box, next to the Search text box there is a 

small "down arrow". Click on the arrow and select "Open Full Acrobat Search...". 

If the Search text box is not visible in the Tool Bar, then right click on the Tool 

Bar, and click on ‘Find’.  
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1.6 Terms and Abbreviations 

ACK Handshake packet indicating a positive acknowledgment. 

Alternate Interface An optional Interface setting provided by a USB device. 

Alternate Interface settings may be used to define a range 

of payload sizes for USB endpoints. 

Async Pipe A “Best Effort” Pipe defined by a Control or Bulk endpoint. 

attached This specification makes a distinction between the words 

“attach” and “connect”. 

A USB2 downstream device is considered to be “attached” 

to an upstream port if the upstream port has detected 

either the D+ or D- data line pulled high through a 1.5 kΩ 

resistor. 

A USB3 downstream device is considered to be “attached” 

to an upstream port if the upstream port has detected 

SuperSpeed far-end receiver terminations. 

Aux Power The xHCI supports split power “wells”; the Core Power well 

and the Aux Power well (or Auxiliary Power well). The Aux 

Power well is optional. For example, Aux Power well voltage 

may be present whenever AC or battery power is applied to 

the system. For more information refer to section 4.23.1. 

Base The beginning of the host controller’s MMIO address space 

is referred to as “Base”. 

Best Effort Service Latency (BESL) BESL indicates the best effort to resumption of service to a 

device after the initiation of a resume event by a device. 

Best Effort Latency Tolerance 

(BELT) 

Best Effort Latency Tolerance (BELT) messages are 

supported by USB3 devices (excluding hubs) using an 

optional USB3 “Device Notification (DEV_NOTIFICATION)” 

Transaction Packet (TP) with a Notification_Type = 

LATENCY_TOLERANCE_MESSAGE (LTM). This message is 

also referred to as a Latency Tolerance Message (LTM) TP. 

This TP contains a specific value known as the Best Effort 

Latency Tolerance (BELT) value that indicates the current 

tolerable service latency for that device. 

bInterval Interval value defined by a USB Endpoint Descriptor. 
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Burst The transmission of multiple back-to-back data packets on 

the USB. 

Bus Error Counter The Bus Error Counter is an internal counter that the xHC 

maintains, which determines the number of consecutive 

Errors allowed while executing a USB Transaction. 

Bus Instance 

(BI) 

A Bus Instance represents a “unit” bus bandwidth at the 

speed that the BI supports. e.g. A SuperSpeed BI represents 

5Gb/s of bandwidth. A High-speed BI represents 480Mb/s 

of bandwidth, Low-/Full-speed BI represents 12Mb/s of 

bandwidth. Multiple Root Hub ports may share the 

bandwidth of a single BI. Note that the bit rates are 

maximums for the respective buses. 

Capability Registers The Capability Registers specify read-only limits, 

restrictions and capabilities of the host controller 

implementation. These values are used as parameters to 

the host controller driver. 

Chip Hardware Reset A Chip Hardware Reset may be either a PCI reset input or an 

optional power-on reset input to the xHC, e.g. the initial 

power-up of the Aux Power well. 

clear When used in reference to a flag or field of a data structure 

or register, the flag or field shall be cleared to ‘0’. 

Composite Device A USB composite device has only a single USB device 

address, and exposes multiple interfaces that are 

controlled independently of each other.  

connected A USB2 downstream device is considered to be 

“connected” to an upstream port if, 1) device has pulled 

either the D+ or D- data line high through a 1.5 kΩ resistor, 

and 2) if the device is high-speed or full-speed it has been 

reset and the Chirp signaling has determined its speed. 

A USB3 downstream device is considered to be 

“connected” to an upstream port if, 1) SuperSpeed far-end 

receiver terminations have been detected, 2) training was 

successful, and 3) the Port Capability/Configuration LMP 

exchanges are successful. 



 

 

28    

Control Endpoint As defined by the USB specification, a pair of device 

endpoints with the same endpoint number that are used by 

a control pipe. Control endpoints transfer data in both 

directions and, therefore, use both endpoint directions of a 

device address and endpoint number combination. Thus, 

each control endpoint consumes two endpoint addresses. 

Core Power The xHCI supports split power “wells”; the Core Power well 

and Aux Power well. The xHCI Core Power well is required 

and may be switched on or off to manage xHC power 

consumption. For more information refer to section 4.23.1. 

D0 PCI controller power “On” state. Refer to PCI PM 

specification.  

D1 or D2 PCI controller intermediate power states. Refer to PCI PM 

specification. 

D3 PCI controller power “Off” state. Refer to PCI PM 

specification. 

Default Control Endpoint The Default Control Endpoint always exists once a USB 

device is powered, in order to provide access to the device's 

configuration, status, and control information. The Default 

Control Endpoint is always endpoint number '0'. 

Device Context Base Address 

Array 

The Device Context Base Address Array contains 256 

entries and supports up to 255 USB devices or hubs, where 

each element in the array is a 64-bit pointer to the base 

address of a Device Context. Entry 0 is reserved. 

Device Context A Device Context is a data structure that describes an 

individual USB device attached to the host controller. A 

Device Context is organized as an array of up to 32 context 

data structures, consisting of 1 Slot Context and up to 31 

Endpoint Context data structures. 

DCI The Device Context Index (DCI) is a value used to reference 

the respective element of the Device Context data 

structure. Refer to section 4.5.1. 
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Dequeue Pointer The Dequeue Pointer is a pointer into a TRB Ring. It 

references the next TRB in a TRB Ring to be processed by 

the consumer of TRB Ring work items. The Dequeue 

Pointer for Transfer and Command Rings is NOT defined as 

a physical xHC register. A facsimile of this pointer is 

maintained internally by the xHC and system software to 

manage a respective ring. 

Device Endpoint A uniquely addressable portion of a USB device that is the 

source or sink of information in a communication flow 

between the host and device. Also see Endpoint Address. 

Device Resources Resources provided by USB devices, such as buffer space 

and endpoints. Also see Host Resources and Universal 

Serial Bus Resources. 

Device Slot Device Slot refers to the xHC interface associated with an 

individual USB device, e.g. the associated Device Context 

Base Address Array entry, a Doorbell Array register, and its 

Device Context. 

Device Software Software that is responsible for managing a USB device. 

This software may or may not also be responsible for 

configuring the device for use. 

Direct-Assignment Direct-Assignment is a term used with virtualization to 

describe a hardware device interface that is Directly 

Assigned to a Virtual Machine. Direct-Assigned devices do 

not suffer from the overhead incurred by device whose 

hardware register-level interface is emulated in software by 

a virtual environment. 

Doorbell Array The Doorbell Array is an array of 256 Doorbell Registers, 

which supports up to 255 USB devices or hubs. Doorbell 

Register 0 is allocated to the Host Controller, the remaining 

registers are allocated to individual Device Slots. 

Doorbell Register A Doorbell Register provides system software with a 

mechanism for notifying the xHC if it has Slot, or Endpoint 

related work to perform. A DB Target field in the Doorbell 

Register is written with a Reason Code to “ring” the 

doorbell. 
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Downstream The direction of data flow from the host or away from the 

host. A downstream port is the port on a hub electrically 

farthest from the host that generates downstream data 

traffic from the hub. Downstream ports receive upstream 

data traffic. 

DPH Error A DPH Error may be due to one or more of the following 

conditions: an incorrect Device Address, the Endpoint 

Number and Direction does not refer to an endpoint that is 

part of the current configuration, or the DPH does not have 

an expected sequence number. 

DPP Error A DPP Error may be due to one or more of the following 

conditions: CRC incorrect, DPP aborted, DPP missing, ACK 

TP with the Retry Data Packet (rty) bit set, or the data 

length in the DPH does not match the actual data payload 

length. 

DSP DownStream Port an SSIC term that “refers to the port of a 

host to which a peripheral is connected”. 

Dword A data element that is four bytes (32 bits) in size. 

EDTLA Event Data Transfer Length Accumulator. Refer to section 

4.11.5.2 for more information. 

EHCI Enhanced Host Controller Interface. Intel defined USB host 

controller specification for High-speed devices. 

Embedded hub A USB 2.0 or 3.x hub that is located on the system board, 

and between the xHC device and the system board USB 

connector or non-removable USB device. 

Endpoint A uniquely addressable portion of a USB device that is the 

source or sink of information in a communication flow 

between the host and device. 

Endpoint Address The xHCI defines an Endpoint Address as 5-bit value that is 

a combination of an Endpoint Number (bits 4-1) and an 

Endpoint Direction (bit 0). For Control Endpoints, the 

Direction (bit 0) is set to ‘1’ to form its Endpoint Address. 

Note that xHCI encoding of an Endpoint Address is not the 

same as the Endpoint Descriptor bEndpointAddress field 

defined by the USB specification. 
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Endpoint Context An Endpoint Context data structure defines a Transfer Ring 

which is used to manage transfers associated with the 

respective endpoint. An Endpoint Context exists for each 

endpoint of a device. 

Endpoint Direction The direction of data transfer on the USB. The direction can 

be either IN or OUT. IN refers to transfers to the host; OUT 

refers to transfers from the host. When computing the 

Endpoint Address an IN endpoint is represented by a ‘1’ 

and an OUT endpoint is represented by a ‘0’. 

Endpoint ID Identical to the Device Context Index (DCI). Refer to section 

4.5.1. 

Endpoint Number A four-bit value between 0h and Fh, inclusive, associated 

with an endpoint on a USB device. 

Enhanced SuperSpeed A collection of features or requirements that apply to both 

USB 3.0 and USB 3.1 bus operation. may also be referred to 

as “Enhanced SS”. 

Enqueue Pointer The Enqueue Pointer is a pointer into a TRB Ring. It 

references the next TRB location available to producer for 

scheduling work items to the Ring. The Enqueue Pointer is 

NOT defined as a physical xHC register. A facsimile of this 

pointer is maintained internally by the xHC and system 

software to manage a respective ring. 

ERDY Handshake acknowledgment packet indicating an Endpoint 

is Ready to move data. 

Endpoint Service Interval Time 

(ESIT) 

The service period of an Interrupt or an Isochronous 

Endpoint. An ESIT defines a period of one or more 

microframes. 

Event Data TD  A TD that consists of just one Event Data TRB. 

Event Data TRB A Normal Transfer TRB with its Event Data (ED) flag equal 

to ‘1’. Refer to section 4.11.5.2. 

Frame A 1 millisecond time base established on full-/low-speed 

USB buses. 
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Fine-grain scatter/gather The xHCI TRBs support byte granularity for the TRB Data 

Buffer Pointer and TRB Transfer Length fields, which 

enables “fine-grain” scatter/gather operations. 

FS See Full-speed. 

Full-speed USB operation at 12 Mb/s. Also see low-speed, high-speed, 

SuperSpeed and SuperSpeedPlus. 

Handshake Packet A USB packet that acknowledges or rejects a specific 

condition. For examples, see ACK and NAK. 

High-bandwidth endpoint A high-speed USB device endpoint that transfers more than 

1024 bytes and less than 3073 bytes per microframe. 

High-speed USB operation at 480 Mb/s. Also see low-speed, full-speed, 

SuperSpeed, and SuperSpeedPlus. 

High-Touch High touch registers are referenced regularly during the 

normal operation of the xHC by system software, e.g. 

Ringing doorbells to queue work, managing interrupts, etc. 

Host The host computer system where the USB Host Controller 

is installed. This includes the host hardware platform (CPU, 

bus, etc.) and the operating system in use. 

Host Controller The host’s USB interface. 

Host Controller Driver 

(xHCD) 

This software entity is the interface between the xHC and 

the USB Driver (USBD). It translates system software 

requests for USB operations to TRBs scheduled on pipes to 

USB devices. 

Host Controller Driver 

Enumeration Component 

(xHCDe) 

This software entity is a component of the xHCD that 

manages the enumeration of USB devices at power up, 

when they are attached, and when they are detached. 

Host Initiated Resume Duration 

(HIRD) 

HIRD is the minimum time the xHC will drive resume 

signaling on a USB2 port when it initiates an exit from L1. 

HS See High-speed. 

Hub A USB device that provides additional connections to the 

USB. 
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Hub Tier One plus the number of USB links in a communication path 

between the host and a peripheral device. 

Input Device Context The Device Context component (Slot and Endpoint 

Contexts) of an Input Context. An Input Context data 

structure pointed to by a Command TRB. 

Input Endpoint Context An Endpoint Context contained in an Input Context. An 

Input Context data structure pointed to by a Command 

TRB. 

Input Slot Context A Slot Context contained in an Input Context. An Input 

Context data structure pointed to by a Command TRB. 

Integrated hub A Tier 2 USB 2.0 hub that is integrated into an xHC device. 

Interval The time delay between scheduling periodic transfers. 

Intervals are defined in frames (1ms.) for LS/FS devices, 

microframes (125µs.) for HS and SS devices. 

Isoch TD An Isoch Transfer Descriptor consists of an Isoch TRB 

chained to 0 or more Normal TRBs, and describes a work 

item for an isochronous endpoint. Isoch TDs are only found 

on the Transfer Rings associated with Isoch Endpoints. 

Isoch TRB An Isochronous Transfer Request Block that is always the 

first TRB of an Isoch TD. They are only found on the 

Transfer Rings associated with Isoch Endpoints. Refer to 

section 4.11.2.3. 

ISR The Interrupt Service Routine is the software invoked by an 

interrupt. 

L0 USB2 “On” power state. 

L1 USB2 Link Power Managed (LPM) state. 

L2 USB2 Suspend state. 

L3 USB2 “Off” power state. 

Lane A Lane is a point-to-point serial connection, typically 

implemented as a differential signal pair. 
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Latency Tolerance Messaging 

(LTM) 

Latency Tolerance Messaging (LTM) adds the capability for 

attached devices to provide information that can improve 

the host platform's ability to select when and how long to 

sleep. This is accomplished by an attached device sending 

an LTM, informing the host of its acceptable service latency 

between accesses, i.e. the device's latency tolerance. 

LFPS Low Frequency Periodic Signal. Refer to USB3 spec. 

Link A USB physical interconnect between two connected ports. 

A dual-simplex Link consists of a pair of receive and 

transmit Sublinks. A simplex Link consists of a single bi-

directional Sublink. The Sublinks of a dual-simplex Link 

may be asymmetric in the number of Lanes that they 

support and Sublink properties for the two directions. 

link connection A “USB3 link connection” refers to the SuperSpeed Rx and 

Tx signal pairs. 

A “USB2 link connection” refers to the D+/D- signal pair. 

Link Management Packet 

(LMP) 

A type of SuperSpeed header packet used to communicate 

information between a pair of links. 

Link TD A TD that consists of just one Link TRB. 

Link TRB A Transfer Request Block that is always the last TRB of a 

TRB Ring Segment. Link TRBs are used to form large, non-

contiguous Transfer Rings that cross Page boundaries. 

Refer to section 4.11.5.1. 

Low-speed USB operation at 1.5 Mb/s. Also see full-speed, high-speed, 

SuperSpeed, and SuperSpeedPlus. 

Low-Touch Low touch registers are referenced infrequently by system 

software, e.g. only at initialization time, only when a USB 

device is enumerated, etc. 

LS See Low-speed. 

Message Pipe A bi-directional pipe that transfers data using a 

request/data/status paradigm. The data has an imposed 

structure that allows requests to be reliably identified and 

communicated, e.g. a Control endpoint. 
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Microframe A 125 microsecond time base established on USB buses by 

the xHC. Full-speed USB buses utilize an 8 microframe time 

base. 

LTM See Latency Tolerance Messaging. 

MMIO Memory Mapped I/O 

MOD The Modulus function "dividend MOD divisor" is the 

remainder of the Euclidean division of the dividend by the 

divisor. 

MSI Message Signaled Interrupts. PCI feature that provides 

vectored interrupts to a single interrupt controller. 

MSI-X Extended Message Signaled Interrupts. PCI feature that 

provides vectored interrupts to multiple interrupt 

controllers. 

NAK Handshake packet indicating a negative acknowledgment. 

Normal TRB A Normal Transfer Request Block that is used on transfer 

Rings to define a single contiguous buffer for a data 

transfer. Normal TRBs may be “chained” to support 

scatter/gather or buffer concatenation operations. Refer to 

section 4.11.2.1. 

NRDY Handshake acknowledgment packet indicating an endpoint 

is Not Ready to move data. 

OHCI Open Host Controller Interface. Industry defined USB host 

controller specification for Low-speed and Full-Speed 

devices. 

Optional Normative If an Optional Normative feature is implemented, it shall 

comply with the requirements specified for that optional 

normative feature. The optional normative approach 

assures interoperability between multiple vendors, by 

definition, when implementing the same xHCI extensions. 

Operational Registers The Operational Registers specify host controller 

configuration and runtime modifiable state. And are used 

by system software to control and monitor the operational 

state of the host controller. 
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OSI An Operating System Instance is the software operating 

environment that runs in a Virtual Machine. Virtualization 

allows multiple Operating System Instances to concurrently 

run within a platform. 

Output Device Context A Device Context data structure pointed to by a Device 

Context Base Address Array entry. 

Output Endpoint Context An Endpoint Context contained in the Device Context data 

structure pointed to by a Device Context Base Address 

Array entry. 

Output Slot Context A Slot Context contained in the Device Context data 

structure pointed to by a Device Context Base Address 

Array entry. 

Page A Page refers to the smallest possible size of a block of 

contiguous physical memory used by a processor 

architecture that supports paged memory. 

0 Peripheral Component Interconnect. Refer to the 0 

specification. 

PCI Config Space PCI Configuration Space. A segregated address space that 

provides a means of identifying and enumerating the host 

controller by system software. 

PCIe PCI Express. Refer to the PCIe specification. 

Periodic Pipe A “Guaranteed Bandwidth” Pipe defined by an Isoch or 

Interrupt endpoint. 

Pipe A logical abstraction representing the association between 

an endpoint on a device and software on the host. A pipe 

has several attributes; for example, a pipe may transfer data 

as streams (stream pipe) or messages (message pipe). 

Throughout this document, term “pipe” is used to 

generically refer to an endpoint. 

Pipe Schedule An internal xHC construct that identifies the endpoints that 

currently have work items scheduled for USB. 

POST Power On Self Test - Code executed during a computer's 

pre-boot sequence. 
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Power well Refer to Aux Power or Core Power. 

PSCEG Port Status Change Event Generation. Refer to section 

4.19.3. 

Qword A data element that is eight bytes (64 bits) in size. 

Register Space The Register Space represents the hardware registers 

presented by the xHC to system software that reside in the 

Memory Address Space. 

Root Hub A (tier 1) Root Hub is always presented by the xHC. Refer to 

section 4.19 for more information. 

Root Hub Port The downstream port on a Root Hub. 

Scatter/Gather Scatter/Gather mechanisms are used in Virtual Memory 

environments to gather the non-contiguous physical 

memory Pages into a contiguous data stream, or to scatter 

a contiguous data stream to non-contiguous physical 

memory Pages. 

Service Interval The period specified by the bInterval field of the USB 

Endpoint Descriptor. Service Intervals are always a multiple 

of microframes (125µs.). 

Service Interval Boundary The point in time defined by the beginning of the first 

(micro)frame of a Service Interval. 

Service Opportunity (SO) A Service Opportunity is a block of time that the xHC 

allocates for moving packets on USB, for a specific 

endpoint. An individual Service Opportunity is limited to 

the number of packets defined by the Endpoint Context 

Max Burst Size and Mult fields, however less packets may 

be moved in a Service Opportunity. 

Service Opportunity Packet Count 

(SOPC) 

The number of packets that the xHC shall schedule during 

one Service Opportunity. The default value of the SOPC = 

Endpoint Context (Max Burst Size x Mult. 

set When used in reference to a flag or field of a data structure 

or register, a flag shall be set to ‘1’ and field shall be set to a 

specified value, which may include ‘0’. 
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SET_CONFIGURATION Refers to a standard USB Set Configuration request defined 

in section 9.4.7 of the USB2 spec. 

SET_INTERFACE Refers to a standard USB Set Interface request defined in 

section 9.4.10 of the USB2 spec. 

Setup Stage TD A Setup Stage Transfer Descriptor consists of a single 

Setup Stage TRB. It describes a work item for a control 

endpoint. Setup Stage TDs are only found on the Transfer 

Rings associated with Control Endpoints. 

Setup Stage TRB A Setup Stage Transfer Request Block that is always the 

first TRB of a Setup Stage TD. They are only found on the 

Transfer Rings associated with Control Endpoints. Refer to 

section 4.11.2.2. 

Slot Context The Slot Context data structure defines information that 

applies to the slot, the device as whole, or to all Endpoint 

Contexts. 

Slot ID Refers to the index of a Device Slot. The Slot Identifier 

defines a value that is used to index into the Doorbell Array 

and Device Context Base Address Array. It is a logical 

Device Address that is used for all system software 

references to a physical USB device attached to the xHC. 

SO See Service Opportunity. 

SOF See Start-of-Frame.  

SOPC See Service Opportunity Packet Count. 

SS See SuperSpeed. 

SSIC SuperSpeed Inter-Chip, refer to the SSIC spec. 

SSP See SuperSpeedPlus. 

Start-of-Frame 

(SOF) 

The first transaction in each USB2 (micro)frame. A SOF 

allows endpoints to identify the start of the (micro)frame 

and synchronize internal endpoint clocks to the host. 
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Stream Pipe A pipe that transfers data as a stream of samples with no 

defined USB structure, e.g. an Interrupt, Isoch, or Bulk 

endpoint. 

SR-IOV PCIe Single Root – I/O Virtualization. Refer to SR-IOV 

specification. 

Sublink A Sublink consists of one or more Lanes. A simplex Sublink 

only supports a single bidirectional Lane. A dual-simplex 

Sublink supports one or more unidirectional Lanes. All 

Lanes of a multi-lane Sublink are the same speed. 

SuperSpeed USB operation at Gen 1 speed (5 Gb/s). Also see 

SuperSpeedPlus, low-speed, high-speed and full-speed. 

Refer to the USB3 spec. 

SuperSpeedPlus (SSP) USB operation at Gen 2 speed (10 Gb/s). Also see 

SuperSpeed, low-speed, high-speed and full-speed. 

However, where specific differences exist between the USB 

3.0 and USB 3.1 definition of SuperSpeed features or 

requirements, those differences will be uniquely identified 

as SuperSpeedPlus (or SSP) features or requirements.Refer 

to the USB3 spec. 

System Software A general reference to the software that is responsible for 

managing the xHCI. 

TD See Transfer Descriptor. 

TD Transfer Size The TD Transfer Size is defined by the sum of the Length 

fields in all TRBs that comprise the TD. 

Token Packet A type of packet that identifies what transaction is to be 

performed on the bus. 

Total Available Bandwidth The Total Available Bandwidth identifies a Bus Instance’s 

ability to move real data. As rule of thumb, the Total 

Available Bandwidth will be at least 20% lower than the 

cited bit rate of a Bus Instance, or more depending on the 

mix of packet sizes. Also note that multiple Root Hub ports 

may share the bandwidth of a single Bus Instance. 

Transaction The delivery of service to a USB endpoint; consists of a 

token packet, optional data packet, and optional handshake 



 

 

40    

packet. Specific packets are allowed/required based on the 

transaction type. 

Transaction Packet 

(TP) 

Transaction Packets (TPs) are SuperSpeed packets that 

traverse a path between the host and device. TPs are used 

to control data flow between devices and the host as well 

as to manage the end to end connection. 

Transaction Translator A functional component of a USB hub. The Transaction 

Translator responds to special high-speed transactions and 

translates them to full/low-speed transactions with 

full/low-speed devices attached on downstream facing 

ports. 

Transfer One or more bus transactions to move information 

between a software client and its function. 

Transfer Descriptor 

(TD) 

A Transfer Descriptor defines a single Transfer to a USB 

device. A TD consists of one or more Transfer Request 

Blocks. The TRBs of a Multiple-TRB Transfer Descriptor are 

tied together using the Chain flag in the TRB Control 

component. 

Transfer Request Block 

(TRB) 

A TRB is a small, flexible data structure in memory that 

defines the characteristics of a single DMA operation 

executed by the xHC. 

Transfer Ring A Transfer Ring is a TRB Ring associated with an Endpoint 

Context. Each Transfer Ring describes the scheduled work 

items for a single USB Endpoint. 

Transfer Type Determines the characteristics of the data flow between a 

software client and its function. Four standard transfer 

types are defined: control, interrupt, bulk, and isochronous. 

TRB See Transfer Request Block. 

TRB Ring A TRB Ring is defined by three parameters: a pointer to the 

TRB Ring data structure base address, and Enqueue and 

Dequeue Pointers that define the “active” TRBs in the ring. 

TT See Transaction Translator. 
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U0 Maximum power USB3 link state. The USB3 link is in its full 

power state and USB 3 device in the “On” power state. 

U1, U2 Intermediate USB3 link power state. The link is in an 

intermediate USB3 Link Power Managed (LPM) state and 

the USB 3 device in “On” power state. 

U3 Lowest USB3 link power state. USB3 device in Suspend 

state. 

UHCI Universal Host Controller Interface. Intel defined USB host 

controller specification for Low-speed and Full-Speed 

devices. 

Universal Serial Bus Driver (USBD) The host resident software entity responsible for providing 

common services to clients that are manipulating one or 

more functions on one or more Host Controllers. 

Universal Serial Bus Resources Resources provided by the USB, such as bandwidth and 

power. Also see Device Resources and Host Resources. 

Upstream The direction of data flow towards the host. An upstream 

port is the port on a device electrically closest to the host 

that generates upstream data traffic from the hub. 

Upstream ports receive downstream data traffic. 

USBD See Universal Serial Bus Driver. 

USP UpStream Port - an SSIC term that “refers to the port of a 

peripheral to which a host is connected”. 

Virtual Intermediary 

(VI) 

A Virtual Intermediaries (VIsUS) describes a mechanism 

that runs in the VMM, Service VM, or other software entity 

for sharing devices between virtual platforms. It is assumed 

that the mechanism shall be invoked and executed on 

every IO transaction, i.e. generates VM_Enter and VM_Exit 

events. 

Virtualized Environment A platform software environment that includes a VMM 

which manages VMs. 

VM Virtual Machine. A Virtual Machine manages a single 

Operating System Instance (OSI). 
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VMM Virtual Machine Manager. A Virtual Machine Manager 

manages Virtual Machine instances in a virtualized 

environment. 

wMaxPacketSize Maximum Packet Size value defined by a USB Endpoint 

Descriptor. 

Word A data element that is two bytes (16 bits) in size. 

XactErr A USB Transaction Error. May be due to a CRC error, a 

timeout, etc. 

xHCI Extended Capabilities The xHCI Extended Capabilities specify optional features of 

a xHC implementation, as well as providing the ability to 

add new capabilities to implementations after the 

publication of this specification. 

xHC instance A xHC instance is either the physical or virtual version of 

the xHC presented as a PCIe SR-IOV Physical Function (PF0) 

or Virtual Function (VF1-n). A xHC implementation that 

does not support virtualization only presents a single xHC 

instance to the platform. 

Zero-based Value If a maximum is defined for a range of working values (e.g. 

32), a Zero-based Value is a value where the legal range of 

values is 0 to maximum-1 (e.g. 0 to 31). 
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1.7 Compliance 

Adopters can demonstrate compliance of their product(s) with this specification 

through the xHCI compliance testing program provided by Intel ®. For details on 

the xHCI compliance testing program, please send email to 

ssusbcompliance@usb.org. 

The xHCI Compliance Test Suite provides an excellent reference of software 

expectations when communicating with the xHCI and a concise list of the test 

validation assertions associated with this specification.  

1.8 Documentation Conventions 

1.8.1 Capitalization 

Some terms are capitalized to distinguish their definition in the context of this 

document from their common English meaning. Words not capitalized have their 

common English meaning. When terms such as “memory write” or “memory 

read” appear completely in lower case, they include all transactions of that type.  

Register names and the names of fields and bits in registers and headers are 

presented with the first letter capitalized and the remainder in lower case.  

1.8.2 Bold Text 

Terms or names in bold text indicate the sentence provides a basic xHCI 

definition of the respective term/name. All other references to an xHCI defined 

term/name use the exact same text string as the definition so that you can 

search on it easily. Refer to section 1.5 for more information on searching. 

1.8.3 Italic Text 

Italic text is used to identify Capitalized names that are explicitly named xHCI; 

registers, register fields, or flags in registers.  

1.8.4 Numbers and Number Bases 

Hexadecimal numbers are written with a lower case “h” suffix, e.g., FFFFh and 

80h. Hexadecimal numbers larger than four digits are represented with a space 

dividing each group of four digits, as in 1E FFFF FFFFh. Binary numbers are 

written with a lower case “b” suffix, e.g., 1001b and 10b. Binary numbers larger 

than four digits are written with a space dividing each group of four digits, as in 

1000 0101 0010b.  

All other numbers are decimal. 
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1.8.5 Implementation Notes 

Implementation Notes should not be considered to be part of this specification. 

They are included for clarification and illustration only. Implementation Notes 

within this document are enclosed in a box and set apart from other text.  

1.8.6 Word Usage 

The word shall is used to indicate mandatory requirements strictly to be 

followed in order to conform to the xHCI specification and from which no 

deviation is permitted (shall equals is required to). 

The use of the word must is deprecated and shall not be used when stating 

mandatory requirements; must is used only to describe unavoidable situations. 

The use of the word will is deprecated and shall not be used when stating 

mandatory requirements; will is only used in statements of fact. 

The word should is used to indicate that among several possibilities one is 

recommended as particularly suitable, without mentioning or excluding others; 

or that a certain course of action is preferred but not necessarily required; or 

that (in the negative form) a certain course of action is deprecated but not 

prohibited (should equals is recommended that). 

The word may is used to indicate a course of action permissible within the limits 

of the standard (may equals is permitted). 

The word can is used for statements of possibility and capability, whether 

material, physical, or causal (can equals is able to). 

The abbreviation i.e. is for the Latin phrase id est which means that is. 

The abbreviation e.g. is for the Latin phrase exempli gratia which means for 

example. 

1.8.7 Pseudo Code 

Throughout this document pseudo code is used to illustrate operating 

principals. 

Comments are demarcated by the double forward slashes “//”. 

The pseudo code conventions include: 

If/else condition statements: 

If conditions: 

// true operations 
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else 

// false operations 

And For loops: 

For conditions: 

// operations 

1.8.8 Other Notation 

The symbol combination “=>” shall be read as “transitions to”. e.g. OCA => ‘1’ 

means the value of OCA transitions to ‘1’.  

 

 

§ § 
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2 Introduction 

2.1 Motivation 

The development of the eXtensible Host Controller Interface was driven by 3 

key factors; Speed, Power Efficiency , and Virtualization. 

Speed The storage capacities of portable devices have been increasing with 

Moore’s Law. Vendors of these devices need high performance 

interfaces so that these high capacity devices can be loaded in 

reasonable amounts of time. The SuperSpeed support of the xHCI 

addresses this need. 

Power Efficiency When USB was originally developed, it was targeted at desktop 

platforms and performance was the primary objective, which meant 

that host power consumption was not an important consideration. 

Since then, mobile platforms have become the platform of choice, 

and their batteries have made host power consumption and idle 

time efficiency key considerations. The xHCI elimination of the host 

memory based transaction schedules and its support for the 

advanced USB3 power management features are key to providing 

more power efficient platforms without sacrificing performance. 

Virtualization Virtualization is beginning to play a key role in system architectures 

and the legacy USB host controller architectures exhibit some 

serious shortcomings when applied to virtualized environments. 

Legacy USB host controller interfaces define a data pump; where 

critical state related to overall bus management (Bandwidth 

allocation, Address assignment, etc.) reside in the software driver. 

Trying to apply the standard hardware IO virtualization technique, of 

replicating IO interface registers, to the legacy USB host controller 

interface is problematic because critical state that must be managed 

across Virtual Machines (VMs) is not available to hardware. The xHCI 

architecture moves the control of this critical state into hardware, 

enabling USB resource management across VMs. The xHCI 

virtualization features also provide for: 1) Direct-Assignment of 

individual USB devices (irrespective of their location in the bus 

topology) to any VM, 2) minimizing run-time inter-VM 

communications, and 3) support for native USB device sharing. 

The eXtensible Host Controller Interface addresses these factors. In addition, 

the xHCI architecture provides a new industry standard means for interfacing to 

USB devices that delivers the extensibility necessary to meet future needs.  
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2.2 Goals 

The goal of xHCI architecture is to define a USB host controller to ultimately 

replace UHCI/OHCI/EHCI, to provide highly power efficient operation, higher 

performance, and extensibility to new USB specifications, such as USB3 and 

beyond. Key xHCI architectural goals are: 

 Efficient operation – idle power and performance better than current 

USB host controller architectures. 

 A device level programming model that is fully consistent with the 

existing USB software model 

 Decouple the host controller interface presented to software from the 

underlying USB protocols 

 Minimize host memory accesses, fully eliminating them when USB 

devices are idle 

 Eliminate the “Companion Controller” model  

 Enable hardware “fail-over” modes in system resource constrained 

situations so devices are still accessible, but perhaps at less optimal 

power/performance point 

 Provide the ability for different markets to differentiate hardware 

capabilities, e.g. target host controller power, performance and cost 

trade-offs for specific markets 

 Define an extensible architecture that provides an easy path for new USB 

specifications and technologies, such as higher bandwidth interfaces, 

optical transmission medium, etc., without requiring the definition of yet 

another USB host controller interface 

2.3 Key features 

Robust Support for all USB 3.x Features.  This specification describes a host 

controller architecture that is capable of supporting compliant USB 3.x 

SuperSpeedPlus and SuperSpeed devices. This includes new USB 3.x features 

such as asynchronous transactions and other extensions to the protocol.  

Support for all USB device speeds.  The xHCI specification defines support for 

all USB device speeds including; USB 2.0 Low-, Full-, and High-speed devices, 

and USB 1.1 Low- and Full-speed. 

System Power Management. Current PC architectures are providing ubiquitous 

support for aggressive power management. The USB3 architecture focuses on 

power conservation to improve battery life in mobile, battery powered 

applications. USB2 LPM (Link Power Management) extensions are also 
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supported by the xHCI. Special attention has been paid to minimizing power 

consumption when the system is Idle. USB is a critical component in delivering a 

consistent, coherent and robust user experience. If the implementation includes 

PCI configuration registers, then the host controller is required to implement a 

PCI Power Management Interface (PCI PM). 

Provides simple, robust solutions for legacy USB host controller issues.  The 

xHCI specification enables solutions to a myriad of issues, which have proven to 

be problematic for USB host controllers. Some of the issues resolved in the xHCI 

specification include: Memory thrashing, Memory access efficiency, and conflicts 

with CPU power management. The xHCI architecture provides both new specific 

features and optimizations to its architecture to solve the legacy issues.  

Optimized for Best Memory Access Efficiency.  The xHCI’s data transfer model 

eliminates the memory based transaction schedules that existed in previous  

host controller architectures. It utilizes Transfer level operations to decrease the 

average number of memory accesses required to execute USB operations.  

Minimized Hardware Interface Complexity.  The xHCI provides a simple 

interface for software to provide the host controller with parameterized Transfer 

Requests that the host controller uses to execute transactions on the USB. The 

interface allows software to asynchronously add work to the interface while the 

host controller is executing, without requiring the use of software 

synchronization primitives. 

Support for 32 and 64-bit Addressing. Over the implementation lifetime of this 

specification, it is expected that xHCI controllers will be used increasingly in 

architectures that support more than 32-bits of addressable memory space. The 

xHCI inherently supports up to 64-bits of addressing. 

Support for Virtual Memory. All xHCI register and data structures are designed 

to support the “coarse-grain” Scatter/Gather requirements of page based virtual 

memory architectures. 

Support for “fine-grain” Scatter/Gather.  The interface supports a hardware 

scatter/gather method for all data transfers that may be used for accessing 

memory. The EHCI scatter/gather mechanism was an example of Coarse Grain 

scatter/gather. It was tailored specifically to work with page based virtual 

memory, specifying a Start Offset, a Transfer Length and a list of Page aligned 

addresses. The xHCI scatter/gather mechanism is not constrained by memory 

page boundary or size limitations. xHCI scatter/gather lists may be comprised of 

buffers starting on any byte boundary and any byte length. This feature  allows 

the xHCI scatter/gather mechanism to be used for accessing page aligned data, 

as well as at the application level to minimize software data copies. 

Support for Virtualization. Through use of the PCIe SR-IOV specification, the 

xHCI provides a Virtual Machine Manager with the ability to enable Virtual xHCs 
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(VxHCs) controllers, and assign any USB Device to any VxHC instance. 

Virtualization support is an optional normative xHCI feature. 

2.4 xHCI Product Compliance 

Adopters and Contributors of the eXtensible Host Controller Interface 

Specification for Universal Serial Bus (xHCI) have signed the eXtensible Host 

Controller Interface (xHCI) Specification Contributor Agreement in order to be 

licensed to use and implement this Specification. This Contributors Agreement 

provides Contributors and Adopters with a reciprocal, royalty-free license to 

certain intellectual property rights from Intel and other Adopters and 

Contributors for their products that are compliant with the xHCI specification. 

Adopters and Contributors can demonstrate compliance with the Specification 

through the testing program as defined by Intel.  
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3 Architectural Overview 

A USB Host System is composed of a number of hardware and software layers. 

Figure 3-1 illustrates a conceptual block diagram of the building block layers in 

a host system that work in concert to support USB 3.x.  

Figure 3-1: Universal Serial Bus, Revision 3.x System Block Diagram 
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The component layers are: 

 Application Software. This software uses the services provided by one 

or more USB devices. Application software interfaces with USB devices 

through standardized interfaces provided by the Class Drivers.  
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 Class Driver Software. This software executes on the host PC 

corresponding to a particular “class” of USB device (Mass Storage, 

Human Interface, Audio, etc.). Class Driver software is typically part of 

the operating system or provided with the USB device.  

 USB Driver (USBD). The USBD is a system software Bus Driver that 

abstracts the details of the particular Host Controller Driver for a 

particular operating system. The generic USB interface presented to the 

system by USBD is referred to as the USB Driver Interface or the USBDI. 

 Host Controller Driver (xHCD). xHCD provides the software layer 

between the Host Controller hardware and the USBD. The details of the 

host controller driver depend on the host controller hardware register 

interface definition. 

 Host Controller (xHC). The host controller is the specific hardware 

implementation of the host controller architecture. There is one host 

controller specification for the USB 3 host controller, which enables 

support for Low-, Full-, High-, SuperSpeed, and SuperSpeedPlus devices. 

The interface presented by the xHC to the system is referred to as the 

eXtensible Host Controller Interface  or the xHCI. 

 USB Device. This is a hardware device that expands the bus topology 

(hub) or performs a useful end-user function. Interactions with USB 

devices flow from the applications through the software and hardware 

layers to the USB devices. 

A key feature of the USB architecture is the Device Framework that it presents. 

The Device Framework defines the interface between a USB device and a Class 

Driver, which is independent of the particular host controller interface that a 

system employs to communicate with the USB. This interface consists of a 

Default Pipe, and zero or more additional class defined Pipes. The Default Pipe 

(also referred to as the Default Control Endpoint) is used to enumerate and 

manage a USB device. It can also be used to provide access to application 

specific features of the device. The class defined Pipes provide specialized 

Quality-of-Service requirements to perform device class specific functions.  

The Device Framework allows the USB architecture to separate the details of the 

“Bus” interface from that of the application specific (“Device”) interface, 

resulting in a split driver model (xHCD/Class Driver). Note that in this context, 

Device Class refers to the portion of a USB device that performs some useful 

end user application specific function (e.g. Mass Storage, Audio, Human 

Interface, etc.). 

The USB bus driver (USBD) provides a standard method of interfacing to the 

transport mechanisms (USB Framework) defined by the USB architecture (Isoch, 

Interrupt, Control, and Bulk Pipes) and the Device Class driver is where all the 

application specific knowledge resides. A Class Driver will also include any 
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“value add” that a vendor may provide. As long as the USB Framework presented 

through the USBDI remains unchanged, the USB Class Drivers do not have to 

change because the USB bus driver does (e.g. to support the xHCI).  

Working groups in the USB-IF have defined several standard USB Device Classes 

(Mass Storage, Audio, etc.). A USB device vendor may choose to define a 

proprietary Device Class for their product or utilize part or all of an appropriate 

USB-IF defined Device Class. The USB-IF defined Device Classes provide a 

baseline set of features, for their respective class. Several USB Device Classes 

are supported natively by today’s Operating Systems.  

Native OS support for Device Classes allows a compliant device to provide a 

user with basic functionality if the vendor Device Class drivers are not available, 

however a vendor can define their own Class Driver to add value. Many 

commodity USB device vendors (mice, keyboard, etc.) take advantage of those 

provided by OS vendors and don’t bother to offer their own Class Drivers. If a 

vendor offers a USB device that does not fall under one of the standard USB 

defined Device Classes supported by an OS then they shall offer their own Class 

Driver. 

The xHCI is used for all communications to devices connected through the Root 

Hub ports of the USB 3 host controller.  

The xHCI architecture allows the USB 3 host controller to provide USB 

functionality for all speed devices without requiring, as in previous generations, 

companion controllers along with the associated software support for their 

respective drivers. The enhanced features of the xHCI architecture are key to 

delivering this simplified operating environment.  

Note that Figure 3-2 does not imply a particular xHC implementation, however 

the functional partitioning that it illustrates is useful for this discussion. The 

Host Interface Logic manages the Registers and DMA associated with the xHC.  
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Figure 3-2: USB 3 EXtensible Host Controller 
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The xHC always manages the respective speed USB devices connected to its 

Root Hub ports. Depending on the implementation, the resources of a USB bus 

instance (bandwidth, device addressability, etc.) may be presented on each root 

hub port, shared across multiple root hub ports, or a combination of allocations.  

This specification defines the registers and interfaces for the eXtensible Host 

Controller Interface. 

3.1 Interface Architecture 

The xHCI interface defines three interface spaces (refer to Figure 3-3): 

 Host Configuration Space. Every xHC implementation shall include a 

means of identifying and enumerating the host controller by system 

software. This specification provides a PCI example of the Host 

Configuration Space, which is referred to as PCI Config Space. The PCI 

Config Space definition provides a working example of configuration 

space use for system xHC enumeration and resource (interrupt, power, 

virtualization, etc.) management. 

 MMIO Space. The Register Space represents the hardware registers 

presented by the xHC to system software that reside in the Memory 

Address Space. The Register Space provides for the implementation-

specific parameters defined in the xHCI normal and Extended 

Capabilities registers, the Operational and Runtime control and status 

registers, and the Doorbell Array used to flag accesses to individual USB 

devices. This space, normally referred to as I/O space, is implemented as 

Memory-Mapped I/O (MMIO) space. 
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 Host Memory. This space is defined by the control data structures 

(Device Context Base Address Array, Device Contexts, Transfer Rings, 

etc.) and data buffers that are allocated and managed by the xHC Driver 

to enable the endpoint traffic of individual devices. This space is 

allocated in the Kernel and User areas of the Memory Address Space.  

 

Figure 3-3: General Architecture of the eXtensible Host Controller Interface 
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The xHCI provides support for two categories of USB transfer types: 

asynchronous and periodic. Isochronous and Interrupt transfers are Periodic 

transfer types. Asynchronous transfer types include Control and Bulk. Figure 3-3 

illustrates that the xHCI provides a homogeneous mechanism (Transfer Rings) 

for each category of transfer type. 

The USB Base Address Register (BAR) in the PCI Config Space points to the base 

address of the xHC register interface. The xHC register interface consists of 4 

major components: Capability Registers, Operational Registers, Runtime 

Registers, and the Doorbell Array. The Operational and Capability Registers are 

concatenated in MMIO space. The Runtime Registers are actually just an 

extension of the Operational Registers. Their partitioning allows the xHC to 

better support virtualization, by allowing the Runtime Registers to reside on a 

separate page boundary. A xHCI Capabilities Pointer mechanism (similar to that 

defined by PCI) is presented in the Capability Registers to point to new or 

optional capabilities of an xHC implementation.  

The Capability Registers specify read-only limits, restrictions and capabilities of 

the host controller implementation. These values are used as parameters to the 

host controller driver. 



 

 

 

  55 

The Runtime and Operational Registers specify host controller configuration 

and runtime modifiable state, and are used by system software to control and 

monitor the operational state of the host controller. These registers are 

partitioned as a function of those that are heavily accessed dur ing runtime and 

those that are accessed only at initialization time or only lightly during runtime 

to better support virtualization of the xHCI.  

The xHCI Extended Capabilities specify optional features of an xHC 

implementation, as well as providing the ability to add new capabilities to 

implementations after the publication of this specification.  

The Doorbell Array is an array of up to 256 Doorbell Registers, which supports 

up to 255 USB devices or hubs. Each Doorbell Register provides system 

software with a mechanism for notifying the xHC if it has Slot or Endpoint 

related work to perform. A DB Target field in the Doorbell Register is written 

with a value that identifies the reason for “ringing” the doorbell. Doorbell 

Register 0 is allocated to the Host Controller for Command Ring management.  

The term Device Slot is used as a generic reference to a set of xHCI data 

structures associated with an individual USB device. Each device is represented 

by an entry in the Device Context Base Address Array , a register in the Doorbell 

Array register, and a device’s Device Context . The term Slot ID refers to the 

index used to identify a specific Device Slot. For example the value of Slot ID will 

be used as an index to identify a specific entry in the Device Context Base 

Address Array. 

The Device Context Base Address Array supports up to 255 USB devices or 

hubs, where each element in the array is a pointer to a Device Context data 

structure. 

The Command Ring is used by software to pass device and host controller 

related commands to the xHC. The Command Ring shall be treated as read-only 

by the xHC. Refer to section 4.9.3 for a discussion of Command Ring 

Management. 

The Event Ring is used by the xHC to pass command completion and 

asynchronous events to software. The Event Ring shall be treated as read-only 

by system software. Refer to section 4.9.4 for a discussion of Event Ring 

Management. 

A Transfer Ring is used by software to schedule work items for a single USB 

Endpoint. A Transfer Ring is organized as a circular queue of Transfer 

Descriptor (TD) data structures, where each Transfer Descriptor defines one or 

more Data Buffers that will be moved to or from the USB. Transfer Rings are 

treated as read-only by the xHC. Refer to section 4.9.2 for a discussion of 

Transfer Ring Management. 
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All three types of rings support the ability for system software to grow or shrink 

them while they are active. Special TDs written to the Transfer and Command 

rings allow software to change their size, however since the Event Ring is read-

only to software, the Event Ring Segment Table is provided so that software 

may modify its size. 

3.2 xHCI Data Structures 

The xHC is expected to run in virtual memory environments where the size of a 

contiguous block of physical memory will be limited by the Page size of the 

system. The data structures that the xHC uses to manage devices and endpoints 

are designed to accommodate this limitation, by either keeping the data 

structure under 4K Bytes (the minimum Page size supported), or providing 

mechanisms to link non-contiguous blocks of physical memory to form larger, 

logically contiguous data structures, e.g. circular queues of data structures that 

point to the data buffers used for transferring USB data to or from the host. The 

data buffers referenced by these data structures may be byte aligned and 

reference from 1 to 64K bytes of contiguous physical data.  

3.2.1 Device Context Base Address Array 

The Device Context Base Address Array  (DCBAA) provides the xHC with a Slot ID 

based lookup table for accessing the Device Context data structure associated 

with each slot. This data structure consists of an array of pointers to Device 

Context data structures. When a device attach is detected: system software 

initializes a Device Context data structure, requests a Slot ID from the xHC, and 

inserts a pointer to the newly created Device Context into the DCBAA at the 

location indicated by the Slot ID. 

Note that the first entry (Slot ID = ‘0’) in the Device Context Base Address Array 

is utilized by the xHCI Scratchpad mechanism. Refer to section 4.20 for more 

information. 

3.2.2 Device Context 

The Device Context data structure is managed by the xHC and used to report 

device configuration and state information to system software. The Device 

Context data structure consists of an array of 32 data structures. The first 

context data structure (index = ‘0’) is a Slot Context data structure (6.2.2). The 

remaining context data structures (indices 1-31) are Endpoint Context data 

structures (6.2.3). 

As part of the process of enumerating a USB device, system software allocates a 

Device Context data structure for the device in host memory and initializes it to 

‘0’. Ownership of the data structure is then passed to the xHC with an Address 

Device Command. The xHC maintains ownership of the Device Context until the 

device slot is disabled with a Disable Slot Command. The Device Context data 
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structure shall be treated as read-only by system software while it is owned by 

the xHC. 

3.2.3 Slot Context 

The Slot Context data structure contains information that relates to the device 

as a whole, or affects all endpoints of a USB device. This data structure is 

defined as a member of the Device Context and Input Context data structures. 

Refer to section 3.2.5 for information on the Input Context data structure. 

The information provided by the Slot Context includes; control, state, 

addressing, and power management. The Slot States reported by the xHC 

identify the current state of a device and map closely to the USB Device States 

described in the USB specification. The addressing information is used for a 

variety of purposes; The USB Device Address, assigned by the xHC, is available 

for developers to trace device related USB activity with a bus analyzer. The 

Route String is used by the xHC to target SuperSpeed packets. And the Speed, 

TT Port Number, and TT Hub Slot ID fields allow the xHC to execute the split 

transactions necessary to address low- and full-speed devices attached to high-

speed hubs. The power management information includes the Max Exit Latency, 

used by the xHC to determine the scheduling of Isoch packets on the bus.  

As a Device Context member, the Slot Context data structure is used by the xHC 

to report the current values of device parameters to system software. The Slot 

Context data structure of a Device Context is also referred to as “Output Slot 

Context”. 

As an Input Context member, the Slot Context data structure is used by system 

software to pass command parameters to the host controller. The Slot Context 

data structure of an Input Context is also referred to as “Input Slot Context”. If a 

command targeted at a Device Slot is successful, the xHC will update the Output 

Slot Context to reflect the parameter values that it is actively using to manage 

the device prior to generating a Command Completion Event . 

An xHCI Reserved area of the Slot Context is available as an xHC implementation 

defined scratchpad. 

All Reserved fields in the Slot Context are for the exclusive use of the xHC and 

shall not be modified by system software except when the Slot is in the Disabled 

state. 

3.2.4 Endpoint Context 

The Endpoint Context data structure defines the configuration and state of a 

specific USB endpoint. This data structure is defined as a member of the Device 

Context and Input Context data structures. Refer to section 3.2.5 for information 

on the Input Context data structure. 
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Most of the fields of the Endpoint Context contain endpoint related type, 

control, state, and bandwidth information, that correspond to the information in 

the associated endpoint related descriptors reported by the device. An Endpoint 

Context also defines a TR Dequeue Pointer field, which normally provides a 

pointer to the Transfer Ring associated with the pipe. There is a special case for 

USB3 Bulk endpoints where Streams may be associated with an endpoint. 

Streams allow the data stream of an endpoint to be multiplexed between 

Transfer Rings by the device (refer to section 4.12 for more information on 

Streams). In this case, a level of indirection is introduced to access the Transfer 

Rings associated with the endpoint, and the Endpoint Context TR Dequeue 

Pointer field contains a pointer to a Stream Context Array data structure 

(commonly referred to as a Stream Array), where each Stream Context data 

structure in the array may contain a NULL pointer (if the Stream ID is not 

assigned) or point to the Transfer Ring or another Stream Context Array 

associated with the respective Stream. 

Note that the Device Context and Input Context data structures provide for all 

possible (31) endpoints that can be declared by a USB device. Most devices 

declare only a small number of endpoints, which means that many of the  

Endpoint Context data structures in a Device Context or Input Context may be 

unused. 

The Endpoint Context also contains some fields that are helpful in debugging 

the transfer operations associated with the pipe. An Error Counter (CErr) may be 

used to force unlimited retries of USB transactions. 

As a Device Context member, the Endpoint Context data structure is used by the 

xHC to report the current values of endpoint related parameters to system 

software. In this document the Endpoint Context data structure of a Device 

Context is also referred to as “Output Endpoint Context”. 

As an Input Context member, the Endpoint Context data structure is used by 

system software to pass endpoint related command parameters to the host 

controller. In this document the Endpoint Context data structure of an Input 

Context is also referred to as “Input Endpoint Context”. If a command 

referencing an Input Context is successful, the xHC will update the Output 

Endpoint Context to reflect the parameter values that it is actively using to 

manage the endpoint prior to generating a Command Completion Event. 

An xHCI Reserved area of the Endpoint Context is available as an xHC 

implementation defined scratchpad. 

3.2.4.1 Stream Context Array 

A Stream Context Array is employed to define the Transfer Rings of a USB3 

endpoint that supports Streams. A  Stream Context Array consists of Stream 

Context data structures. The number of Stream Context data structures in a 
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Primary Stream Context Array and its location are defined by fields in the parent 

Endpoint Context. 

Figure 4-20 illustrates how a Stream Context Array may be used to extend the 

number of Transfer Rings that are supported by an endpoint.  

3.2.4.1.1 Stream Context 

The Stream Context data structure provides a pointer to the Stream’s Transfer 

Ring and provides some opaque (scratchpad) space for the xHC.  

3.2.5 Input Context 

The Input Context data structure is used by system software to define device 

configuration and state information that will be passed to the xHC by an Address 

Device, Configure Endpoint, or Evaluate Context Command . It consists of an 

Input Control Context data structure, followed by a Slot Context, and 1-31 

Endpoint Context data structures. The Input Control Context data structure 

qualifies which of the remaining contexts are affected by the command. After a 

command is complete, software may reuse or free the Input Context data 

structure. 

Throughout this document Slot Context or Endpoint Contexts contained in an 

Input Context are also referred to as “Input” Slot or Endpoint Contexts. 

Refer to section 6.2.5 for more information on the Input Context. 

3.2.5.1 Input Control Context 

The Input Control Context data structure contains two groups of flags (Drop and 

Add) organized as bit vectors. The interpretation of these flags is command 

dependent, but generally they are used to indicate which endpoints are affected 

by the command and how. 

For example: to set up the xHC to support a particular USB device configuration, 

software will initialize the Endpoint Context data structures of an Input Context 

with the target endpoint configuration information, insert a Configure Endpoint 

Command on the Command Ring that points to the Input Context, and ring the 

Host Controller Doorbell. The Input Endpoint Context information would include: 

type, Max Packet Size, Interval, etc. The Add flags in the Input Control Context 

indicate which endpoints software wants to be added to the xHC’s list of valid 

endpoints, i.e. which Input Endpoint Contexts are valid. If the command is 

successful, the endpoint information in the Input Context is copied by the xHC to 

the respective contexts in the Device Context and the xHC will set the state of 

those endpoints to Running and begin listening to their doorbells.  

Refer to section 6.2.5.1 for more information on the Input Control Context. 



 

 

60    

3.2.6 Rings 

A Ring is a circular queue of data structures. Three types of Rings are used by 

the xHC to communicate and execute USB operations:  

 Command Ring 

o One for the xHC 

 Event Ring 

o One for each Interrupter (refer to section 4.17) 

 Transfer Ring 

o One for each Endpoint or Stream 

The Command Ring is used by system software to issue commands to the xHC. 

The Event Ring is used by the xHC to return status and results of commands and 

transfers to system software. 

Transfer Rings are used to move data between system memory buffers and 

device endpoints. 

Below is a description of the operation of a Transfer Ring. All ring types employ 

the same basic mechanisms to transfer information between the xHC and host 

memory. 

3.2.6.1 Transfer Ring Example 

Transfers to and from the Endpoint of a USB device are defined using a Transfer 

Descriptor (TD), which consists of one or more Transfer Request Blocks (TRBs, 

refer to sections 4.11 and 6.4). Transfer Descriptors are managed through 

Transfer Rings that reside in host memory. A Chain flag in the TRB is used to 

identify the TRBs that comprise a TD. Therefore, a TD refers to a conse cutive set 

of TRB data structures on a Transfer Ring, where the Chain flag is set in all but 

the last TRB of a TD. Note that a TD may consist of a single TRB, whose Chain 

flag shall not be set. 

A Transfer Ring exists for each active endpoint or Stream declared by a USB 

device. Transfer Rings contain “Transfer” specific TRBs. Section 4.11.2 for more 

information on Transfer TRBs. 
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Figure 3-4: Transfer Ring2 
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In the simplest case, software defines a Transfer Ring by allocating and 

initializing a memory buffer for it, then setting the Enqueue and Dequeue 

Pointers to the address of this memory buffer and writing it into the TR Dequeue 

Pointer field of the associated Endpoint or Stream Context. Each memory buffer 

that comprises a Transfer Ring is called a Segment. Multiple Segments may be 

linked together to form large rings, and Segments may be added or removed 

from a ring during runtime. A Transfer Ring is empty when the Enqueue Pointer 

equals the Dequeue Pointer. 

Note: The Transfer Ring Enqueue and Dequeue Pointers are not accessible through 

physical xHC registers. They are logical entities, maintained internally by both 

system software and the xHC. Refer to section 4.9.2 for more information on 

Enqueue and Dequeue Pointers. 

After a Transfer Ring is initialized Transfer Descriptors (comprised of one or more 

TRBs) may be placed on it. 

A “ring” is formed by the placement of a special Link TRB at the end of a 

Transfer Ring which jumps the TRB execution back to its beginning.  

3.2.7 Transfer Request Block 

 

                                                   

2When the Dequeue and Enqueue Pointers are equal the Transfer Ring is empty. The Dequeue Pointer identifies 
the address of the next TRB to be executed by the xHC. The Enqueue Pointer identifies the address of the next 
TRB location available to software for queuing a TD. TRBs between the Dequeue and Enqueue Pointers are 
owned by the xHC.  
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Figure 3-5: Transfer Request Block 
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A Transfer Request Block (TRB) is a data structure constructed in memory by 

software to transfer a single physically contiguous block of data between host 

memory and the xHC. TRBs contain a single Data Buffer Pointer, the size of the 

buffer, and some additional control information.  

3.2.7.1 Operation 

For small, single buffer operations (of which many are required in the USB 

protocol) a TD will be composed of a single TRB. For large multi-buffer 

operations (e.g. Scatter/Gather), TRBs can be chained to form a complex TD. The 

small size of the TRB data structure allows up to 256 individual buffers to be 

defined in a 4K Segment (page of memory).  

The longer a system is running, the harder it is to find contiguous pages in 

physical memory. If due to runtime changes in workload demands, hot-plug 

events, etc., the host needs to increase the size of an existing Transfer Ring or 

allocate a multi-page Transfer Ring, then a special Link TRB may be used to 

extend a ring to include additional non-physically contiguous Segments. 

The Data Buffer Pointer field of a TRB provides byte granularity for data 

addressing. 

The Length field, which resides in the Status Dword, identifies the size  of the 

buffer referenced by the Data Buffer Pointer. The maximum value the Length 

field may contain is 64K. When Length bytes are transferred, the next TRB in the 

ring is automatically accessed by the xHC. It is system software’s responsibility 

to ensure that the Length field is consistent with any Page crossings that may be 

encountered. 

The Control Dword in the TRB shall contain a TRB Type field and may contain 

one or more of the following fields: Chain (CH), Interrupt On Completion  (IOC), 

Immediate Data (IDT), No-Snoop (NS), Interrupt-on Short Packet (ISP), Start 

Isoch ASAP (SIA), and Frame ID. Refer to section 6.4.1 for more information on 

the contents and use of the Transfer TRB Control Dword. 
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Figure 3-6: Simple Transfer Example 
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Figure 3-6 illustrates a Transfer TRB Ring with multiple pending TDs. The 

Enqueue Pointer identifies the next TRB location available to system software 

for scheduling work (TDs) to the Ring. The Dequeue Pointer identifies the next 

TRB in the Transfer Ring to be executed by the xHC. Upon completion of a 

Transfer TRB, the Length and Status of the transfer may optionally be reported 

in a Transfer Event TRB. Refer to section 6.4.2.1 for more information on the 

Transfer Event TRB. 

Note:  A Transfer Ring may include an Event Data TRB. Rather than pointing to a Data 

buffer this TRB contains a 64-bit value which software may use to tag a TD and 

generate a special Transfer Event to pass that tag back to software when the TD 

is complete. Refer to section 4.11.5.2 for more information. 

3.2.7.2 Other Rings 

In addition to the Transfer Ring, the xHCI utilizes a Command and Event Rings. 

These rings are described later in this document. All xHCI ring types support the 

ability of software to grow or shrink them while the xHC is actively using them.  

3.2.8 Scatter/Gather Transfers 

Virtual Memory environments divide physical memory into Pages, and use Page 

Tables to make non-contiguous physical memory appear contiguous in User 

“virtual” address space. Scatter/Gather mechanisms are typically used to 

concatenate the non-contiguous physical memory Pages into a contiguous data 

stream to present to a device. In this case, the host builds a Multi -TRB TD to 

define the contiguous virtual memory seen by the User. Because the block of 

User memory to be transferred often does not start on a Page boundary, the 

Data Buffer Pointer of the first TRB of a Multi-TRB TD may not point to a Page 

boundary (and the Length field of that TRB will be less than a Page Size). 

Subsequent TRBs of the TD will point to Page boundaries and be Page Size in 

length, respectively, defining full Pages of data, except for the last TRB, whose 

Data Buffer Pointer will point to a Page boundary but may have a Length value 

less than the Page Size. 

Transfers that are comprised of non-contiguous data (e.g. cross memory Page 

boundaries) are referred to as Scatter/Gather Transfers. Chained TRBs are used 
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to provide the additional pointers that are required to define a Scatter/Gather 

Transfer. A sequence of “chained” TRBs form a Multi-TRB Transfer Descriptor. 

The Chained bit in the TRB Control word is set in all TRBs, except the last one of 

a Multi-TRB TD. Chained TRBs are always contiguous in a Transfer Ring.  

Software shall never update the Enqueue Pointer (that is, toggle the Cycle bit of 

a TRB) until all TRBs between the previous and the new Enqueue Pointer 

location are fully formed. It is the responsibility of system software to ensure 

that the TDs are correctly formed, i.e. the TRBs of a TD are contiguous in the 

Transfer Ring and correctly chained. 

The size of a Scatter/Gather Transfer is equal to the sum of the Length fields all 

the TRBs of a TD. 

Figure 3-7: Scatter/Gather Transfer Example 
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In the figure above note that the Chain bit (CH) is set in all but the last TRB of 

the Multi-TRB TD. The xHC parses the TRBs in the Multi-TRB TD from the 

Dequeue Pointer towards the Enqueue Pointer (top to bottom in this figure) to 

form a concatenated data buffer from separate buffers that reside in memory. If 

the Transfer Ring was associated with an OUT Endpoint then the concatenated 

data buffer would be sent to the USB Device as single transfer.  

Note that no constraints are placed on the TRB Length fields in a Scatter/Gather 

list. Classically all the buffers pointed to by a scatter gather list were required to 

be “page size” in length except for the first and last (as illustrated by the 

example above). The xHCI does not require this constraint. Any buffer pointed to 

by a Normal, Data Stage, or Isoch TRB in a TD may be any size between 0 and 

64K bytes in size. For instance, if when an OS translates a virtual memory buffer 

into a list of physical pages, some of the entries in the list reference multiple 

contiguous pages, the flexible Length fields of TRBs allow a 1:1 mapping of list 

entries to TRBs, i.e. a multi-page list entry does not need to be defined as 

multiple page sized TRBs. 
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3.2.9 Control Transfers 

Several features of a Control Endpoint require that it be handled differently than 

other USB endpoint types. In particular a Control Endpoint defines a Message 

Pipe, while all other endpoint types are Stream Pipes. 

A USB Message Pipe is bidirectional and transfers data using the USB 

setup/data/status stage paradigm. The data has an imposed structure that 

allows requests to be reliably identified and communicated. A USB Stream Pipe 

(Isoch, Interrupt, and Bulk endpoint) transfers data as a stream of samples with 

no defined USB structure. 

USB Control transfers minimally require two transaction stages on the bus: 

Setup and Status. A control transfer may optionally contain a Data stage 

between the Setup and Status stages. The xHCI defines three types of TDs: 

Setup Stage, Data Stage, and Status Stage TDs, which correspond to respective 

USB control transfer stages, to support control transfers. Software “constructs” 

a control transfer by placing either two (Setup Stage and Status Stage), or three 

(Setup Stage, Data Stage, and Status Stage) TDs on the Transfer Ring before 

ringing the doorbell. 

A Setup Stage TD generates a USB SETUP transaction, which is used to transmit 

information to the control endpoint of a USB device. A Setup Stage TD always 

consists of a single Setup Stage TRB which contains the 8 byte Setup Data 

described in section 9.3 of the USB2 spec. 

Software is responsible for the amount of data that is transferred with a Data 

Stage TD and its direction are consistent with the length and direction specified 

by the Setup Data in the Setup Stage TRB . A Data Stage TD consists of a Data 

Stage TRB followed by zero or more Normal TRBs. If the data is not physically 

contiguous, Normal TRBs may be chained to the Data Stage TRB. All the TRBs in 

the Data Stage TD transfer data in the same direction (i.e., all INs or all OUTs), as 

defined by the Data Stage TRB. 

A Status Stage TD is required to complete a control transfer by retrieving the 

completion status of the USB SETUP transaction from the USB device. The 

Status Stage TD is always the last TD in a control transfer sequence. A Status 

Stage TD always consists of a single Status Stage TRB and may include an Event 

Data TRB. Refer to section 8.5.3.1 of the USB2 specification and section 8.12.2.1 

of the USB3 specification for more information on status reporting.  
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Figure 3-8: Control Transfer Descriptor Example 
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Figure 3-8 is an example of the contents of a Control Endpoint Transfer Ring. 

This example illustrates two control transfers: 1) a Setup stage transfer with no 

Data stage (top TD) is followed by 2) a Setup stage transfer with an IN Data 

stage. Note that the Status Stage TRBs define ‘0’ length transfers, and that the 

direction of the Data Stage and Status Stage TRBs depends on the Control 

transfer direction identified in the Setup Stage TRB, and whether a Data Stage is 

required. Refer to section 4.11.2.2 for more information on Setup Stage 

transfers. 

3.2.10 Bulk and Interrupt Transfers 

Bulk and Interrupt Transfer Descriptors use Normal TRBs and depending on the 

data buffering requirements can use one or more chained Normal TRBs to form a 

TD. Multi-TRB Bulk or Interrupt TDs may define a Scatter/Gather operation as 

described in section 3.2.8. 

3.2.11 Isoch Transfers 

The Transfer Ring associated with an Isochronous Endpoint works as follows:  

 Each Isoch Transfer Descriptor (TD) consists of an Isoch TRB chained to 

zero or more Normal TRBs. 

 The TRB Type field in the Control field of the first TRB of an Isoch TD is 

set to Isoch TRB. 

 One Isoch TD is “consumed” every Interval (defined by bInterval in the 

USB Endpoint Descriptor). 
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 If the data required by an Isoch TD is not physically contiguous (e.g. 

crosses a page boundary), then one or more additional Normal TRBs shall 

be chained to the Isoch TRB by the host. 

 The size of an Isoch Transfer in bytes shall be limited to either Max 

Packet Size * Max Burst Size * Mult (defined in the Endpoint Context), or 

the sum of the Length fields defined by the Isoch TRB and all Normal 

TRBs chained to it. 

 For Isoch Out transfers, the xHC shall generate a Ring Underrun Transfer 

Event if the Transfer Ring is empty when an active interval boundary is 

reached. 

 For Isoch IN transfers, the xHC shall generate a Ring Overrun Transfer 

Event if the Transfer Ring is empty when an active interval boundary is 

reached. 

 IMPLEMENTATION NOTE 

Fractional Isoch Transfers 

To relax the real-time demands on the system, an Isoch Transfer scheduled by 

an application may define the data for many frames3. Also in order to hit a 

precise data rate the size of the Isoch transfers may have to vary from frame to 

frame. For instance, system software may define 10ms. of 44.1 KHz 16-bit stereo 

data to be transferred to a set of USB headphones. To minimize latency and the 

buffering requirements of the USB headphones, the driver will schedule the 

minimum amount of data to be sent every millisecond. That is, 176 bytes (44 4 -

byte/sample (16-bits/channel)) are moved every millisecond for 9ms. and 180 

bytes are moved in the 10th ms. (to cover the “.1”). Assuming that the 10ms. of 

audio data is stored contiguously on a single page in memory, then a set of 10 

TDs shall be posted to the Transfer Ring each containing a single Isoch TRB, with 

the Length of the last TRB being 4 bytes larger than the rest.  

If the audio data buffer is not physically contiguous (e.g. crosses a Page 

boundary), then an additional Normal TRB will be chained to the Isoch TD that 

crossed the Page boundary. 

 

 

                                                   

3The period between isochronous transfers is often referred to as a “Frame”, however strictly speaking the 
period is defined by the Endpoint Descriptor bInterval field. The value of bInterval is in Frames (1ms.) or 
Microframes (125μs.) depending on whether the device is LS/FS or HS/SS. In this document, references to 
“frame” or “interval” in isochronous discussions should be interpreted as “the period between isochronous 
transfers”. 
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Figure 3-9: Isochronous Transfer Example 
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In Figure 3-9 above note: 

 Four Isoch TDs are defined, representing the Isoch data scheduled for 4 

consecutive frames. 

 The Isoch data transferred in Frames A, B and D are all contiguous blocks 

(i.e. no page boundary crossings).  

 The Isoch data to be transferred in Frame C crosses a Page boundary. 

The Pointer of the Isoch TRB (Frame C Lo) is used to access the first 

bytes of Isoch data in memory. A Normal TRB is chained to the Frame C 

Isoch TRB, and the Pointer of the Normal TRB (Frame C Hi) is used to 

access the remaining Isoch data for the frame on the next Page of 

memory. 

 The number of bytes that will be transmitted in single USB Frame is 

defined by sum of the Length fields of all TRBs in an Isoch TD. 

This example illustrates a case where the Isoch data buffers for multiple 

Intervals are physically contiguous. The xHCI Isoch mechanism also supports 

cases where multiple data buffers are transferred in a single Isoch Interval. In 

this latter case, one or more Normal TRBs may be chained to the initial Isoch 

TRB. It is the responsibility of system software to ensure that the Length and 
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Pointer fields of all TRBs in an Isoch TD are correct. An Isoch TD is terminated by 

a TRB with the Chain flag cleared to ‘0’.  

3.3 Command Interface 

To manage the xHC and the devices attached to it, the xHC provides an 

independent Command Ring interface. A work item on a Command Ring is called 

a Command Descriptor (CD). Command Ring operation is very similar to that of 

Transfer Rings, software issues a command to the xHC by placing a CD on  the 

Command Ring then rings the Host Controller doorbell. The size of the 

Command Ring can be modified using the same Link TRB mechanism that 

Transfer Rings use. 

All commands result in a Command Completion Event being placed on the Event 

Ring, which reports the completion status of the command. 

Commands are executed by the xHC in the order that they are placed on the 

Command Ring. System software may add CDs to the Command Ring while it is 

running, however the execution of CDs should be stopped if software wants to 

delete or reorder (i.e. raise the priority of) scheduled CDs. Special Command 

Ring controls allow commands to be stopped or aborted.  

The table below provides a summary of the xHCI command set. The remainder 

of this section provides a high level description of each of the commands. 

Table 3-1: Command TRB Summary 

Name Description 

No Op Tests TRB Ring mechanism 

Enable Slot Returns a Device Slot ID and transitions the Device Slot from the 

Disabled to the Default state. 

Disable Slot Transitions the selected Device Slot from any state to the Disabled 

state. Any pending transfers are terminated and the slot is made 

available again. 

Address Device Enables the Default Control Endpoint, optionally issues a 

SET_ADDRESS request to the USB device, and transitions the 

Device Slot to the Addressed state. 

Configure 

Endpoint 

Enables and/or Disables selected endpoints for the device. 
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Evaluate 

Context 

Informs xHC that software has modified selected Context 

parameters. 

Reset Endpoint Resets selected Endpoint. This command is used to recover from a 

halted endpoint. 

Stop Endpoint Stops or aborts operation on selected Endpoint. 

Set TR 

Dequeue 

Pointer 

Updates the Transfer Ring Dequeue Pointer of an enabled 

endpoint. 

Reset Device Resets selected Device Slot. This command is used to synchronize 

the state of a Device Slot when resetting a USB device. 

Force Event Used with virtualization by a VMM to force a TRB on to an Event 

Ring owned by a VM. 

Negotiate 

Bandwidth 

Initiates Bandwidth Request Events. 

Set Latency 

Tolerance 

Used by software to set the Best Effort Latency Tolerance (BELT) 

value for the xHC. 

Get Port 

Bandwidth 

Provides a means for software to identify the periodic bandwidth 

available on xHC Root Hub Ports. 

Force Header Allows software to generate SS LMPs or TPs to a Root Hub Port. 

 

Refer to Table 6-86 for the TRB Type IDs associated with Commands.  

3.3.1 No Op 

The No Op Command may be issued by software to exercise the TRB Ring 

mechanism of the xHC without affecting any xHC or USB Device state, or to 

report the current value of the Command Ring Dequeue Pointer.  

Refer to section 4.6.2 for more information on the No Op Command. 

3.3.2 Enable Slot 

The Enable Slot Command is issued by software to obtain an ID for an available 

Device Slot. System software uses the  Slot ID returned by the command as an 

index into the Device Context Base Address Array  to link a Device Context data 

structure for the USB device to a xHC Device Slot. 
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Refer to section 4.9.3 for more information on the Enable Slot Command. 

3.3.3 Disable Slot 

The Disable Slot Command is issued by software to inform the xHCI that a 

Device Slot is no longer needed, and that any resources assigned to the slot can 

be released. This command would be issued when a device is detached from the 

USB. A disabled Device Slot is available for assignment by the Enable Slot 

Command. 

Refer to section 4.9.4 for more information on the Disable Slot Command. 

3.3.4 Address Device 

This xHCI command replaces the USB SET_ADDRESS request normally 

generated by a system enumerator when enumerating USB devices through the 

xHC. All USB devices use the default address (‘0’) after the device has been 

reset. Execution of the Address Device Command (BSR = ‘0’) causes the xHC to 

issue a SET_ADDRESS request to the USB device, assigning a unique address to 

it. This operation causes a USB device that is in the Default state to transition to 

the Address state. 

This command, which is issued immediately after an Enable Slot Command, also 

informs the xHC that the pointer in the Device Context Base Address Array  

references a Device Context data structure. 

The Address Device Command TRB points to an Input Context data structure. 

The Input Slot Context and Endpoint 0 Context define the information needed by 

the xHC to communicate with the control endpoint of the device. If the 

SET_ADDRESS request issued by the xHC is successful, the contents of the Input 

Slot and Endpoint 0 Context data structures are copied to the respective Device 

Context data structures, and the Transfer Ring associated with endpoint 0 is set 

to the Running state. 

Note that the xHC, not software, selects the address that is assigned to the USB 

device. This approach ensures that addresses will not be overloaded when 

assigned in virtualized environments. 

This command is issued as part of the USB device enumeration process after a 

USB device attachment or reset. Once a successful Address Device Command 

has completed, system software can complete the standard USB device 

enumeration process, i.e. issuing GET_DESCRIPTOR requests through the 

Default Control Endpoint to retrieve the USB Device, Configuration, etc. 

descriptors from the USB device. Using the information in these descriptors 

system software may then determine which Class Driver(s) to associate with the 

USB device. 

Refer to section 4.6.5 for more information on the Address Device Command. 
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3.3.5 Configure Endpoint 

When system software issues a SET_CONFIGURATION request to a USB Device, 

it enables a specific set of endpoints (pipes) in the device, which are defined by 

the respective Configuration Descriptor. To simplify the xHC hardware 

implementation, the xHC does not read descriptors from a device or monitor 

SET_CONFIGURATION (or SET_INTERFACE) requests to a device. Instead, the 

xHC depends on system software to coordinate the pipes configured in the xHC 

with those configured in the device. System software uses the Configure 

Endpoint Command to explicitly identify to the xHC the pipes that would be 

enabled by a target configuration and the characteristics of those pipes. Not 

only does the Configure Endpoint Command inform the xHC of the target USB 

Device configuration, but it also gives the xHC an opportunity to reject a 

configuration if the necessary USB bandwidth or xHC internal resources are not 

available. 

The Configure Endpoint Command points to an Input Context data structure, 

which defines the target configuration parameters for the xHC. For proper 

operation of the xHC, every endpoint that will be enabled by a target device 

configuration shall be defined in a respective Endpoint Context data structure of 

the Input Context, and the parameters of the Endpoint Contexts shall correlate 

target endpoint settings (Endpoint Type, Max Packet Size, Burst Size, etc.). xHC 

and device behavior will be undefined if there are any mismatches. This also 

means that if the Configure Endpoint Command does not complete successfully, 

software shall not issue a SET_CONFIGURATION request to the device.  

System software also uses the Configure Endpoint Command to inform the xHC 

of pipe changes due to selecting an Alternate Interface on a device. Typically an 

Alternate Interface setting is used to modify the payload size or bandwidth 

requirement of a pipe, however it may also be used to disable or enable one or 

more pipes. The Input Control Context data structure of the Input Context allows 

software to explicitly identify which pipes are enabled, disabled, or modified by 

a target Alternate Interface setting. The parameters of the Input Endpoint 

Contexts for enabled or modified pipes shall correlate target pipe settings 

(Endpoint Type, Max Packet Size, etc.). If the Configure Endpoint Command does 

not complete successfully, software shall not issue a SET_INTERFACE request to 

the device. 

Prior to issuing this command, software constructs a set of data structures 

based on the Input Context in host memory that fully describe the target 

configuration (or Alternate Interface setting). The Input Control Context 

identifies which endpoints are affected by the command. The Endpoint Contexts 

of endpoints that are either enabled or modified shall be fully specified. The 

Endpoint Contexts of endpoints disabled by the command or not referenced in 

the Input Control Context are ignored by the xHC. If Streams are enabled for an 

endpoint, then the Endpoint Context shall point to a Primary Stream Context 

Array, otherwise it points to a Transfer Ring. If declared, each Stream Context in 
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a Primary Stream Context Array may point to a Secondary Stream Context Array 

or a Transfer Ring. Stream Contexts in a Secondary Stream Context Array shall 

point to a Transfer Ring or Null.  

If the Configure Endpoint Command is successful, the contents of the Input 

Endpoint Context data structures enabled or modified by the command are 

copied to the respective Output Endpoint Context data structures in the Device 

Context. And any Transfer Rings or Stream Contexts referenced by the Input 

Endpoint Contexts will be used by the xHC to manage the respective pipes. In 

this case, software may free the Input Context data structure, but any Stream 

Context or Transfer Ring referenced by it shall remain allocated for use by the 

xHC. 

If the Configure Endpoint Command fails, the previous configuration defined in 

the Device Context is maintained. 

Refer to section 4.6.6 for more information on the Configure Endpoint 

Command. 

3.3.6 Evaluate Context 

The Evaluate Context Command is issued by software to inform the xHC that 

specific fields should be modified in the Device Context. There are several cases 

during the enumeration process of a USB device where an incomplete Context is 

used to communicate with the device. For instance, the default Max Packet Size 

for a FS device is 8 bytes. Software will initialize the Max Packet Size field of the 

Default Control Endpoint Context to ‘8’ . Then use the endpoint to issue a 

GET_DESCRIPTOR(Device) request to the device, retrieving the first 8 bytes of 

the Device Descriptor. Byte 7 of the Device Descriptor defines the actual Max 

Packet Size for the Default Control Endpoint. This command would then be used 

to update the Max Packet Size field of the Default Control Endpoint to its true 

value. Other fields that may need to be updated late in the enumeration process 

are the Slot Context Hub and Max Exit Latency . 

The command passes a pointer to an Input Context data structure to the xHC. 

The xHC evaluates specific fields of the Input Context and updates the Device 

Context. The specific fields affected by the command are identified in the 

respective context descriptions in section 6.2.  

Upon successful completion of an Evaluate Context Command, the xHC shall 

begin executing with the updated context parameters.  

Refer to section 4.6.7 for more information on the Evaluate Context Command. 

3.3.7 Reset Endpoint 

The Reset Endpoint Command  is issued by software to recover from a halted 

condition on an endpoint. 
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Refer to section 4.6.8 for more information on the Reset Endpoint Command. 

3.3.8 Stop Endpoint 

The Stop Endpoint Command is used by system software to manage a Transfer 

Ring. This command allows software to abort, reprioritize, or temporarily s top 

the execution of TDs on a ring. 

Refer to section 4.6.9 for more information on the Stop Endpoint Command. 

3.3.9 Set TR Dequeue Pointer 

The Set TR Dequeue Pointer Command complements the Stop Endpoint 

Command, allowing software to modify the xHC Dequeue Pointer associated 

with a pipe, and redirect the execution of TDs on its Transfer Ring.  

Refer to section 4.6.10 for more information on the Set TR Dequeue Pointer 

Command. 

3.3.10 Reset Device 

The Reset Device Command is used by software to inform the xHC that the USB 

Device associated with a Device Slot has been Reset. In the Slot Context of the 

selected device slot, the reset operation sets the Slot State field to the Default 

state and the USB Device Address field to ‘0’. The reset operation also disables 

all endpoints of the slot except for the Default Control Endpoint by setting the 

Endpoint Context Slot State field to Disabled in all enabled Endpoint Contexts. 

Refer to section 4.6.11 for more information on the Reset Device Command. 

3.3.11 Force Event 

The Force Event Command is an Optional Normative command of the xHCI, that 

is only used when the virtualization features of the xHC are enabled. This 

command, combined with other xHC mechanisms, allows a Virtual Machine 

Manager (VMM) to emulate a USB device to a Virtual Machine. Specifically this 

command is used by a VMM to insert an Event TRB on an Event Ring of a target 

VM. Refer to section 8 for more details on the xHC virtualization support.  

Refer to section 4.6.12 for detailed information on the use of the Force Event 

Command. 

3.3.12 Negotiate Bandwidth 

The Negotiate Bandwidth Command  is an Optional Normative command of the 

xHCI, that is used to recover USB bandwidth in a running system. Refer to 

section 4.16 for more information on how xHC bandwidth management works.  
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3.3.13 Set Latency Tolerance Value 

The Set Latency Tolerance Value  Command may be issued by software to 

provide a software defined Best Effort Latency Tolerance (BELT) value for the 

xHC. 

Refer to section 4.6.14 for more information on the Set Latency Tolerance Value 

Command. 

3.3.14 Get Port Bandwidth 

The Get Port Bandwidth Command is issued by software to retrieve the 

percentage of periodic bandwidth available on each Root Hub Port of the xHC. 

This information can be used by system software to recommend topology  

changes to the user if they were unable to enumerate a device due to a 

Bandwidth Error. 

Refer to section 4.6.15 for more information on the Get Port Bandwidth 

Command. 

3.3.15 Force Header 

The Force Header Command may be issued by software to send a Link 

Management (LMP) or Transaction Packet (TP) to a USB device, through a 

selected Root Hub Port. For instance, it may be used to send a PING TP or a 

Vendor Device Test LMP. 

Refer to section 4.6.16 for more information on the Force Header Command. 

3.4 General Information 

The xHC manages all transfer types using a simple TRB Ring data structure. The 

TRB Ring provides automatic, in-order streaming of data transfers. Software can 

asynchronously add TRBs (data buffers) to a TRB Ring and maintain streaming, 

without having to invoke locking schemes. 

USB-defined Short Packet semantics are fully supported on all  processing 

boundary conditions without software intervention.  

Hub TT Split transactions are automatically managed by the xHC without 

software intervention. 

Isochronous transfers are managed using Isoch TRBs. These data structures are 

optimized for the variability per data payload and time-oriented characteristics 

of the isochronous transfer type. 
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3.5 Root Hub Management 

The host controller of a USB bus is required to implement Root Hub 

functionality. The Operational Register space contains port registers that 

provide the hardware status and control needed to manage each port within the 

USB Specification. An xHC Root Hub may provide USB 2.0 and USB 3.x Root hub 

ports4 to support Low-, Full-, or High-Speed as well as SuperSpeed devices. The 

host controller traverses the Transfer Rings and encounters work items that 

result in the host controller executing USB transactions. These transactions are 

routed to the Root Hub port associated with the attached downstream USB 

device. 

The port registers provide system software with the control and status 

information required to manipulate the port in accordance with the USB 

Specification. The supported features include: detecting device connects, 

disconnects, performing device resets, manipulating port power and managing 

port power management capabilities. 

System software should provide an abstraction to the USB system software 

stack that allows the Root Hub ports to be manipulated by the system as if they 

were ports on an external hub. Refer to section 5.4.8 for more information on 

Root Hub Port Status and Control Registers.  

3.6 xHCI Device Enumeration 

Under normal operating conditions (assuming all xHCI drivers are loaded and 

operational), the typical port enumeration sequence is described in section  4.3. 

                                                   

4Section 10.1 of the USB3 spec describes a USB 3.x hub as a “logical combination of 2 hubs: a USB 2.0 hub and an 
Enhanced SuperSpeed hub”. Each logical hub has its own set of addressable ports for supporting the respective 

protocol. Each downstream (A) connector of a hub connects to one port of each logical hub. This allows Low-, 
Full-, or High-Speed as well as Enhanced SuperSpeed devices to be attached to any connector. The xHCI follows 
this model by providing separate USB2.0 and USB3.x Root Hub ports. Refer to section 4.19.7 for details. 
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4 Operational Model 

This section describes the general operational model for the eXtensible Host 

Controller Interface (xHCI) hardware and eXtensible Host Controller Driver 

(xHCD) (generally referred to as system software). Each significant operational 

feature of the eXtensible Host Controller (xHC) is discussed in a separate 

section. Each section presents the operational model requirements for the xHC 

hardware. Where appropriate, recommended system software operational 

models for features are also presented. 

4.1 Command Operation 

There is only one Command Ring that is used for issuing xHC specific commands 

or commands related to Device Slots. The Command Ring Control Register is 

defined in the Operational Register space (refer to section 5.4.5).  

All xHC commands are issued by placing the desired Command TRB(s) (6.4.3) on 

the Command Ring, then ringing the xHC command Doorbell register, i.e. writing 

the Host Controller Command code to the DB Target field of Doorbell register 0 

(refer to section 5.6). 

All commands result in the generation of a Command Completion Event TRB 

(6.4.3) on the Event Ring. Refer to section 4.11.3 for a discussion of Event TRBs. 

4.2 Host Controller Initialization 

When the system boots, the host controller is enumerated, assigned a base 

address for the xHC register space, and the system software sets the Frame 

Length Adjustment (FLADJ) register to a system-specific value. 

Refer to section 4.23.1 for a discussion of the affect of Power Wells on register 

state after power-on and light resets. 

Following are a review of the operations that system software would perform in 

order to initialize the xHC using MSI-X as the interrupt mechanism5: 

 Initialize the system I/O memory maps, if supported. 

 After Chip Hardware Reset6 wait until the Controller Not Ready (CNR) flag 

in the USBSTS is ‘0’ before writing any xHC Operational or Runtime 

registers. 

                                                   

5Refer to the PCI spec for the initialization and use of MSI or PIN interrupt mechanisms 

6A Chip Hardware Reset may be either a PCI reset input or an optional power-on reset input to the xHC. 
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Note: This text does not imply a specific order for the following operations, however 

these operations shall be completed before setting the USBCMD register 

Run/Stop (R/S) bit to ‘1’. 

 Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG 

register (5.4.7) to enable the device slots that system software is going to 

use. 

 Program the Device Context Base Address Array Pointer (DCBAAP) 

register (5.4.6) with a 64-bit address pointing to where the Device 

Context Base Address Array is located. 

 Define the Command Ring Dequeue Pointer by programming the 

Command Ring Control Register (5.4.5) with a 64-bit address pointing to 

the starting address of the first TRB of the Command Ring.  

 Initialize interrupts7 by: 

o Allocate and initialize the MSI-X Message Table (5.2.8.3), setting 

the Message Address and Message Data, and enable the vectors. 

At a minimum, table vector entry 0 shall be initialized and 

enabled. Refer to the PCI specification for more details. 

o Allocate and initialize the MSI-X Pending Bit Array (PBA, 5.2.8.4).  

o Point the Table Offset and PBA Offsets in the MSI-X Capability 

Structure to the MSI-X Message Control Table and Pending Bit 

Array, respectively. 

o Initialize the Message Control register (5.2.8.3) of the MSI-X 

Capability Structure. 

o Initialize each active interrupter by: 

 Defining the Event Ring: (refer to section 4.9.4 for a 

discussion of Event Ring Management.)  

 Allocate and initialize the Event Ring Segment(s).  

 Allocate the Event Ring Segment Table (ERST) 

(section 6.5). Initialize ERST table entries to point 

to and to define the size (in TRBs) of the respective 

Event Ring Segment. 

 Program the Interrupter Event Ring Segment Table 

Size (ERSTSZ) register (5.5.2.3.1) with the number 

of segments described by the Event Ring Segment 

Table. 

 Program the Interrupter Event Ring Dequeue 

Pointer (ERDP) register (5.5.2.3.3) with the starting 

address of the first segment described by the 

Event Ring Segment Table. 

 Program the Interrupter Event Ring Segment Table 

Base Address (ERSTBA) register (5.5.2.3.2) with a 

64-bit address pointer to where the Event Ring 

Segment Table is located. 

                                                   

7Interrupts are optional. The xHC may be managed by polling Event Rings. 
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 Note that writing the ERSTBA enables the Event 

Ring. Refer to section 4.9.4 for more information 

on the Event Ring registers and their initialization.  

 Defining the interrupts: 

 Enable the MSI-X interrupt mechanism by setting 

the MSI-X Enable flag in the MSI-X Capability 

Structure Message Control register (5.2.8.3). 

 Initializing the Interval field of the Interrupt 

Moderation register (5.5.2.2) with the target 

interrupt moderation rate. 

 Enable system bus interrupt generation by writing 

a ‘1’ to the Interrupter Enable (INTE) flag of the 

USBCMD register (5.4.1). 

 Enable the Interrupter by writing a ‘1’ to the 

Interrupt Enable (IE) field of the Interrupter 

Management register (5.5.2.1). 

 Write the USBCMD (5.4.1) to turn the host controller ON via setting the 

Run/Stop (R/S) bit to ‘1’. This operation allows the xHC to begin 

accepting doorbell references. 

At this point, the host controller is up and running and the Root Hub ports 

(5.4.8) will begin reporting device connects, etc., and system software may begin 

enumerating devices. System software may follow the procedures described in 

section 4.3, to enumerate attached devices. 

USB2 (LS/FS/HS) devices require the port reset process to advance the port to 

the Enabled state. Once USB2 ports are Enabled, the port is active with SOFs 

occurring on the port, but the Pipe Schedules have not yet been enabled.  

SS ports automatically advance to the Enabled state if a successful device attach 

is detected. 

4.3 USB Device Initialization 

This section describes the process of detecting and initializing a USB device 

attached to an xHC Root Hub port. 

The USB device initialization process is the same, whether the dev ice attached 

to the port is a Function or a Hub. Once the Pipes associated with an external 

hub are set up, the Hub Driver will enumerate the devices attached to the 

external hub’s ports using standard Hub Class command sequences. This section 

focuses on the device initialization process when a device is attached to a Root 

Hub port. 

After a Chip Hardware Reset, HCRST, or commanded to the PLS = RxDetect state, 

all Root Hub ports shall be in Disconnected state, i.e. the port is powered on (PP 



 

 

80    

= ‘1’) and waiting for a device connect. Refer to section 4.19.1 for more 

information on xHCI Root Hub port states. 

If a USB device is attached to a port when it is in the Disconnected state: 

 USB3 protocol ports shall: 

o Advance to the Polling state (refer to Figure 4-30): 

 If polling is successful, the port shall advance to the 

Enabled state, and the Current Connect Status (CCS) and 

Connect Status Change (CSC) flags are set to ‘1’.  

 If polling is unsuccessful, the port shall advance to the 

Disconnected state. 

 USB2 protocol ports shall: 

o Advance to the Disabled state (refer to Figure 4-25) and set the 

Current Connect Status (CCS) and Connect Status Change (CSC) 

flags to ‘1’. 

Note: The “Disabled” Root Hub port state represents different conditions when 

referring to USB3 or USB 2 protocol ports. For USB3 ports, the Disabled state 

indicates that the port is in the DSPORT.Disabled state (refer to Figure 10-9 in 

the USB3 spec.). For USB2 ports, the Disabled state indicates that the port is in 

the Disabled state (refer to Figure 11-10 in the USB2 spec). 

The following steps describe a typical USB Device initialization process:  

1. When the xHC detects a device attach, it shall set the Current Connect 

Status (CCS) and Connect Status Change (CSC) flags to ‘1’. If the 

assertion of CSC results in a ‘0’ to ‘1’ transition of Port Status Change 

Event Generation (PSCEG, section 4.19.2), the xHC shall generate a Port 

Status Change Event . 

2. Upon receipt of a Port Status Change Event system software evaluates 

the Port ID field to determine the port that generated the event.  

3. System software then reads the PORTSC register of the port that 

generated the event. 

CSC = ‘1’ if the event was due to an attach (CCS = ‘1’) or detach (CCS = 

‘0’). Assuming the event was due to an attach:  

a. A USB3 protocol port attempts to automatically advance to the 

Enabled state as part of the attach process.  

 

If successful, the port shall transition to the Enabled state, i.e. the 

Port Enabled/Disabled (PED) flag shall be set to ‘1’, and the Port 

Reset (PR) flag and Port Link State (PLS) field shall be ‘0’. The 

attached USB device shall be in the Default state.  

 

If unsuccessful, the port shall transition to the Disconnected state, 

i.e. the PED and PR flags shall be cleared to ‘0’ and Port Link State 
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(PLS) field shall be set to RxDetect (‘5’). The attached USB device 

shall remain powered. 

b. A USB2 protocol port requires software to reset the port to advance 

the port to the Enabled state and a USB device from the Powered 

state to the Default state. After an attach event, the PED and PR flags 

shall be ‘0’ and the PLS field shall be ‘7’ (Polling) in the PORTSC 

register. 

 

System software shall enable the port by resetting the port (writing a 

'1' to the PORTSC PR bit) then waiting for a Port Status Change Event 

due to the assertion of Port Reset Change (PRC) flag. Refer to section 

4.3.1 for an overview of the Root Hub port reset activities.  

 

The completion of the port reset shall cause the PORTSC register 

PRC and PED flags to be set (‘1’), the PR flag to be cleared (‘0’), and 

the PLS field to be U0 (‘0’). If the assertion of PRC results in a ‘0’ to ‘1’ 

transition of PSCEG (4.19.2), the xHC shall generate a Port Status 

Change Event as a result of the transition of PRC. The reset operation 

sets the USB2 device into the Default state, preparing it for a 

SET_ADDRESS request. 

4. After the port successfully reaches the Enabled state, system software 

shall obtain a Device Slot for the newly attached device using an Enable 

Slot Command, as described in section 4.3.2. 

5. After successfully obtaining a Device Slot, system software shall initialize 

the data structures associated with the slot as described in section  4.3.3. 

6. Once the slot related data structures are initialized, system software 

shall use an Address Device Command to assign an address to the device 

and enable its Default Control Endpoint, as described in section 4.3.4. 

7. For LS, HS, and SS devices; 8, 64, and 512 bytes, respectively, are the 

only packet sizes allowed for the Default Control Endpoint, so step a may 

be skipped. 

 

For FS devices, system software should initially read the first 8 bytes of 

the USB Device Descriptor to retrieve the value of the bMaxPacketSize0 

field and determine the actual Max Packet Size for the Default Control 

Endpoint, by issuing a USB GET_DESCRIPTOR request to the device, 

update the Default Control Endpoint Context with the actual Max Packet 

Size and inform the xHC of the context change. Step a describes this 

operation. 

a. The USB GET_DESCRIPTOR request requires a Data Stage, so the 

Setup Stage TD shall be followed by a Data Stage TD, then a Status 

Stage TD. To do this software shall:  
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i)  Allocate an 8 byte buffer to receive the Device Descriptor. 

ii)  Initialize the Setup Stage TD (a single Setup Stage TRB) on the Endpoint 

0 Transfer Ring. 

•  TRB Type = Setup Stage TRB. 

•  Transfer Type (TRT) = IN Data Stage (3). 

•  TRB Transfer Length = 8. 

•  Interrupt On Completion (IOC) = 0. 

•  Immediate Data (IDT) = 1. 

•  bmRequestType = 80h. (Dir = Device-to-Host, Type = Standard, 

Recipient = Device) 

•  bRequest = 6 (GET_DESCRIPTOR). 

•  wValue = 0100h. Low byte = 0 (Descriptor Index), High Byte = 1 

(Descriptor type). 

•  wIndex = 0. 

•  wLength = 8. 

•  Cycle bit = Current Producer Cycle State. 

iii)  Advance the Endpoint 0 Transfer Ring Enqueue Pointer 

iv)  Initialize the Data Stage TD (a single Data Stage TRB) on the Endpoint 0 

Transfer Ring. 

•  TRB Type = Data Stage TRB. 

•  Direction (DIR) = ‘1’. 

•  TRB Transfer Length = 8. 

•  Chain bit (CH) = 0. 

•  Interrupt On Completion (IOC) = 0. 

•  Immediate Data (IDT) = 0. 

•  Data Buffer Pointer = The address of the Device Descriptor receive 

buffer. 

•  Cycle bit = Current Producer Cycle State. 

v)  Advance the Endpoint 0 Transfer Ring Enqueue Pointer 

vi)  Initialize the Status Stage TD (a Status Stage TRB) on the Endpoint 0 

Transfer Ring. 

•  TRB Type = Status Stage TRB. 

•  Direction (DIR) = ‘0’. 

•  TRB Transfer Length = 0. 

•  Chain bit (CH) = 0. 

•  Interrupt On Completion (IOC) = 1. 

•  Immediate Data (IDT) = 0. 

•  Data Buffer Pointer = 0. 

•  Cycle bit = Current Producer Cycle State. 
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vii)  Advance the Endpoint 0 Transfer Ring Enqueue Pointer 

viii)  Ring the Device Slots’ Doorbell with DB Target = Control EP 0 Enqueue 

Pointer Update. 

ix)  When a successful Transfer Event is returned for the GET_DESCRIPTOR 

Status Stage TRB system software shall update the Endpoint 0 Context 

Max Packet Size with wMaxPacketSize value returned in the Device 

Descriptor buffer, if the wMaxPacketSize value is different. 

x)  Software shall then issue an Evaluate Context Command with Add 

Context bit 1 (A1) set to ‘1’ to inform the xHC of the change to the Default 

Control endpoint’s Max Packet Size parameter. After successfully 

executing the Evaluate Context Command the xHC will use the updated 

Max Packet Size for all subsequent Default Control Endpoint transfers.  

8. Now that the Default Control Endpoint is fully operational, system 

software may read the complete USB Device Descriptor and possibly the 

Configuration Descriptors so that it can hand the device off to the 

appropriate Class Driver(s). To read the USB descriptors, software will 

issue USB GET_DESCRIPTOR requests through the devices’ Default 

Control Endpoint. 

9. After reading the Configuration Descriptors software may issue an 

Evaluate Context Command with Add Context bit 0 (A0) set to ‘1’ to 

inform the xHC of the value of the Max Exit Latency parameter. Note that 

the value of the Output Slot Context Interrupter Target field may also be 

modified by this command.  

10. The Class Driver may then configure the Device Slot using a Configure 

Endpoint Command as described in section 4.3.5, and configure the USB 

Device itself by issuing a USB SET_CONFIGURATION request through the 

devices’ Default Control Endpoint. The successful completion of  both 

operations is required to advance the state of the USB device from 

Address to Configured and xHC Device Slot from Addressed to 

Configured. 

11. If required, system software may configure Alternate Interfaces. For each 

Alternate Interface set the alternate interface as described in section 

4.3.6. 

12. The pipe interfaces to the USB device are now fully operational.  

Note: To ensure proper operation software shall fully initialize the hubs and TTs of 

each tier of the USB topology before proceeding to the next tier, starting at the 

Root Hub. Failure to meet this requirement may result in undefined xHC 

behavior. 
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4.3.1 Resetting a Root Hub Port 

Resetting a Root Hub port, resets the attached USB device, and if successful, the 

port logic reports the speed of the attached device and sets the port to the 

Enabled state. Whether successful or not, the Port Reset Change (PRC) flag is set 

to ‘1’. If the assertion of PRC results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a 

Port Status Change Event shall be generated. 

To reset a USB device attached to a Root Hub port, system software shall 

perform the following operations: 

1. Write the PORTSC register with the Port Reset (PR) bit set to ‘1’. 

2. Wait for a successful Port Status Change Event for the port, where the 

Port Reset Change (PRC) bit in the PORTSC field is set to ‘1’.  

Section 4.19.5 describes the port reset operations performed by the xHC. 

The next step requires system software to obtain a Device Slot (section 4.3.2), 

then associate the newly attached device with the Device Slot and enable its 

Default Control Endpoint. 

Note: After a Root Hub port is successfully reset, the PORTSC Port Speed field shall 

indicate the speed of the attached device. 

4.3.2 Device Slot Assignment 

The first operation that software shall perform after detecting a device attach 

event and resetting the port is to obtain a Device Slot for the device by issuing 

an Enable Slot Command to the xHC through the Command Ring. The Enable 

Slot Command returns a Slot ID that is selected by the host controller. Refer to 

section 4.6.3 for a detailed description of the Enable Slot command. 

System software executes the Slot Assignment process by successfully 

completing an Enable Slot Command as described in section 4.11.4.2. 

System software shall wait for the Command Completion Event associated with 

the Enable Slot Command before issuing any more commands to the slot. If the 

command was successful, software may proceed to the Device Slot Initialization 

phase (section 4.3.3). 

Successful completion of the Enable Slot Command shall transition the Device 

Slot to the Enabled state. Refer to section 4.5.3 for more information on Device 

Slot states. 
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4.3.3 Device Slot Initialization 

Once an xHC Device Slot ID has been obtained for a USB device, software shall 

initialize the data structures associated with the slot. The following steps shall 

be performed by system software: 

1. Allocate an Input Context data structure (6.2.5) and initialize all fields to 

‘0’. 

2. Initialize the Input Control Context (6.2.5.1) of the Input Context by 

setting the A0 and A1 flags to ‘1’. These flags indicate that the Slot 

Context and the Endpoint 0 Context of the Input Context are affected by 

the command. 

3. Initialize the Input Slot Context data structure (6.2.2). 

•  Root Hub Port Number = Topology defined. 

•  Route String = Topology defined8. Refer to section 8.9 in the USB3 spec. Note 

that the Route String does not include the Root Hub Port Number. 

•  Context Entries = 1. 

4. Allocate and initialize the Transfer Ring for the Default Control Endpoint. 

Refer to section 4.9 for TRB Ring initialization requirements and to 

section 6.4 for the formats of TRBs. 

5. Initialize the Input default control Endpoint 0 Context (6.2.3). 

•  EP Type = Control. 

•  Max Packet Size = The default maximum packet size for the Default Control 

Endpoint, as function of the PORTSC Port Speed field. 

•  Max Burst Size = 0. 

•  TR Dequeue Pointer = Start address of first segment of the Default Control 

Endpoint Transfer Ring. 

•  Dequeue Cycle State (DCS) = 1. Reflects Cycle bit state for valid TRBs written 

by software. 

•  Interval = 0. 

•  Max Primary Streams (MaxPStreams) = 0. 

•  Mult = 0. 

•  Error Count (CErr) = 3. 

6. Allocate the Output Device Context data structure (6.2.1) and initialize it 

to ‘0’. 

                                                   

8e.g. To access a device attached directly to a Root Hub port, the Route String shall equal ‘0’, and the 
Root Hub Port Number shall indicate the specific Root Hub port to use. 
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7. Load the appropriate (Device Slot ID) entry in the Device Context Base 

Address Array (5.4.6) with a pointer to the Output Device Context data 

structure (6.2.1). 

8. Issue an Address Device Command for the Device Slot, where the 

command points to the Input Context data structure described above. 

Refer to sections 3.3.4 and 6.4.3.4 for more information on the Address 

Device Command. 

4.3.4 Address Assignment 

Typically the first operation that software performs on a USB device is to assign 

an address to it, which transitions the USB device from the Default to the 

Address state. To assign an address to a USB device attached to the xHC, system 

software shall issue an Address Device Command with the Block Set Address 

Request (BSR) flag cleared to ‘0’ to the xHC through the Command Ring. Refer to 

section 4.6.5 for a detailed description of the Address Device command. 

System software executes the Address Assignment process by successfully 

completing an Address Device Command as described in section 4.6.5. 

System software shall wait for Address Device Command completion event on 

the Event Ring before issuing any more commands to the slot. If successful, 

software proceeds to the Device Configuration phase (section 4.3.5). 

Note: For some legacy USB devices it may be necessary to communicate with the 

device when it is in the Default state, before transitioning it to the Address state. 

To accomplish this system software shall issue an Address Device Command with 

the BSR flag set to ‘1’. Setting the BSR flag enables the operation of the Default 

Control Endpoint for the Device Slot but blocks the xHC from issuing a 

SET_ADDRESS request to the device, which would transition it to the Address 

state. 

Successful completion of the Address Device Command with BSR = ‘0’ shall 

transition the Device Slot from the Enabled to the Addressed state. Successful 

completion of the Address Device Command with BSR = ‘1’ shall transition the 

Device Slot from the Enabled to the Default state. Refer to section 4.5.3 for 

more information on Device Slot states. 

4.3.5 Device Configuration 

As part of the initialization process of a USB device, the system software shall 

select a configuration. A USB device presents one or more configurations to 

choose from. The USB Framework requires that a SET_CONFIGURATION request 

is issued to a device to set a specific configuration. Refer to section 9.4.7 of the 

USB2 spec for more information on the USB SET_CONFIGURATION request.  
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For software to successfully “configure” a USB device, the state of both the USB 

Device and the xHC Device Slot assigned to the device must be synchronized. 

Software shall successfully complete a SET_CONFIGURATION request (with a 

Setup Stage TD on the device’s Default Control Endpoint) to select a specific 

configuration, and a Configure Endpoint Command for the slot with the matching 

Endpoint Context configuration information, to transition the USB device and 

the xHC Device Slot to the Configured state. Refer to section 4.11.4.5 for more 

information on the Configure Endpoint Command . 

A USB device may declare multiple alternate interfaces, each with different 

periodic bandwidth and resource requirements. If a Configure Endpoint 

Command for a particular configuration is unsuccessful, software may issue 

additional Configure Endpoint Commands with other interface settings in an 

attempt to successfully configure the slot. If all interface settings have been 

exhausted (i.e. none have been accepted by the xHC), only the Default Control 

Endpoint will remain enabled. 

If system software was unable to successfully complete a Configure Endpoint 

Command due to a Bandwidth Error, it may optionally use the Negotiate 

Bandwidth Command to cause the xHC to request bandwidth with other devices. 

Refer to section 4.16.1 for more information on bandwidth negotiation. 

System software executes the xHCI portion of the device configuration process 

by successfully completing a Configure Endpoint Command  as described in 

section 4.11.4.5. 

System software shall wait for the Command Completion Event associated with 

the Configure Endpoint Command  before issuing any more commands to the 

slot. 

After the Configure Endpoint Command  and SET_CONFIGURATION request 

complete successfully, software may schedule TDs on any enabled endpoint 

Transfer Ring. 

If the Configure Endpoint Command  is not successful, undefined behavior will 

result if software issues a SET_CONFIGURATION request to the  device. 

Successful completion of the Configure Endpoint Command  with the 

Deconfigure (DC) flag = ‘0’ shall transition the Device Slot from the Addressed to 

the Configured state. Refer to section 4.5.3 for more information on how the 

Configure Endpoint Command  affects Device Slot states. 

4.3.6 Setting Alternate Interfaces 

The USB SET_INTERFACE request allows the host to select an Alternate Sett ing 

for a specified interface in a USB device. A SET_INTERFACE request may disable 

or modify the operation of currently enabled endpoints, or it may enable 

previously unused endpoints. A SET_INTERFACE request does not affect 
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endpoints owned by another interface. Refer to section 9.4.10 of the USB2 spec. 

for more information on the USB SET_INTERFACE request.  

A SET_INTERFACE request provides the “Number” of the Interface that is 

affected and the Alternate Setting that it will be set to. A SET_INTERFACE 

request does not explicitly identify which endpoints of a device are affected or 

how. This information is available in the Configuration Descriptor retrieved from 

the device, hence known to host software and the device at their respective 

ends. 

The xHC does not keep track of relationships between USB interfaces and 

endpoints, so it is system software’s responsibility to explicitly “Disable” any 

endpoints that are affected in the current configuration by a USB 

SET_INTERFACE request, and then explicitly “Enable” any endpoints identified in 

the new Alternate Interface Setting. An xHCI endpoint (i.e. Endpoint Context) is 

“Disabled” by stopping it if it is in the Running state with a Stop Endpoint 

Command and freeing its Transfer Ring. 

Setting an Alternate Interface is accomplished by the successful completion of a 

Configure Endpoint command (refer to section 4.6.6), and a USB SET_INTERFACE 

request to the USB device (with a Setup Stage TD on the Default Control 

Endpoint). 

Below is an example of the sequence of events that would be employed to 

successfully set an alternate interface in a USB device.  

System software shall wait for the Command Completion Event associated with 

the Configure Endpoint Command  before issuing further commands to the slot.  

Prior to issuing a Configure Endpoint Command  to change an Alternate Interface 

setting system software should perform the following operations:  

1. Stop any Running Transfer Rings affected by the Alternate Interface 

setting. 

2. Free9 Transfer Rings of all endpoints that will be affected by the 

Alternate Interface setting. 

3. Clear all the Endpoint Context fields of each endpoint that will be 

disabled by the Alternate Interface setting, to ‘0’.  

4. For each endpoint enabled by the Configure Endpoint Command: 

a. Allocate a Transfer Ring9. 

                                                   

9If just the parameters of a currently defined endpoint are being changed by the Alternate Interface setting then 
software may chose to reuse the Transfer Ring for the new interface setting and not free it. In this case, software 

does not need to allocate a new Transfer Ring as described in step 4a). 
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b. Initialize the Transfer Ring Segment(s) by clearing all fields of all 

TRBs to ‘0’.10 

c. Initialize the Endpoint Context data structure:  

•  EP Type = Derived from the Endpoint Descriptor:bmAttributes:Transfer 

Type and Endpoint Descriptor:bEndpointAddress:Direction. Refer to 

Table 6-9 for the encoding. 

•  Max Packet Size = Endpoint Descriptor:wMaxPacketSize & 07FFh. 

•  Interval = Refer to section 6.2.3.6 for the computation of the Interval 

value. 

•  Max Burst Size = SuperSpeed Endpoint Companion 

Descriptor:bMaxBurst or (Endpoint Descriptor: wMaxPacketSize & 

1800h) >> 11. 

•  Mult = ‘0’ or SuperSpeed Endpoint Companion Descriptor:bmAttributes 

Mult field. 

•  CErr = 3, or 0 for an Isoch endpoint. 

•  If Streams are supported by the endpoint (i.e. SuperSpeed Endpoint 

Companion Descriptor:bmAttributes MaxStreams field > 0): 

•  Select a Max Primary Streams (MaxPStreams) value > 0 and <= 

SuperSpeed Endpoint Companion Descriptor:bmAttributes 

MaxStreams 

•  Update MaxPStreams. 

•  Allocate and clear Primary Stream Array. 

•  MaxPStreams = Size of Primary Stream Array. 

•  TR Dequeue Pointer = Start address of Primary Stream Array. 

•  else 

•  MaxPStreams = ‘0’. 

•  TR Dequeue Pointer = Start address of the first segment of the 

previously allocated Transfer Ring. 

•  Dequeue Cycle State (DCS) = 1. Assuming that all TRBs in the 

segment referenced by the TR Dequeue Pointer have been initialized 

to ‘0’, this field reflects Cycle bit state for valid TRBs written by 

software. 

5. Issue and successfully complete a Configure Endpoint Command as 

described in section 4.11.4.5. 

                                                   

10The Cycle bit (C) of all TRBs in a TR Segment shall be initialized to the inverse of the value that the Dequeue Cycle 
State (DCS) field is initialized to. This pseudo code recommends initializing the all bytes in a TR Segment to ‘0’, 
which also initializes the Cycle bit to ‘0’ in all TRBs of the TR Segment, and the DCS flag of the pointer that 

references the TR Segment to ‘1’, however software may initialize the Cycle bit to ‘1’ in all TRBs of a newly 
allocated TR Segment and the DCS flag of the pointer that references it to ‘0’. Refer to section 4.9.2 for more 
information on Cycle bit (C) initialization. 
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System software shall wait for the Command Completion Event associated with 

the Configure Endpoint Command  before issuing any more commands to the 

slot. 

Note: A Configure Endpoint Command is not necessary prior to a SET_INTERFACE 

request, if the SET_INTERFACE request does not change any endpoint 

parameters. 

4.3.7 Low-Speed/Full-Speed Device Support 

Special provisions shall be made to generate the Split Transactions required for 

a Low- or Full-speed device connected through a High-speed hub. A Split 

Transaction token targets the downstream facing port of the hub that isolates 

the High-speed signaling environment from the Full/Low-speed signaling 

environment for this device. To generate the Split Transaction token, the xHC 

requires parameters associated with the target hub for which this full -/low-

speed transaction is destined. This information shall be provided by system 

software in the Multi-TT (MTT), TT Hub Slot ID and TT Port Number fields of the 

device’s Slot Context. 

The xHC uses the TT Hub Slot ID to obtain the hub’s address from the USB 

Device Address field of the hub’s Slot Context.  

The xHC also checks that the Hub flag in the hub’s Slot Context equals ‘1’, to 

verify that the TT Hub Slot ID references a hub. A Parameter Error shall be 

generated for the offending TD if the Hub flag = ‘0’. 

If the device is not Low- or Full-speed or if the device is attached to a Root Hub 

port, then the TT Hub Slot ID, Multi-TT (MTT), and the TT Port Number fields 

shall be cleared to ‘0’.  

Refer to section 8.4.2 of the USB2 spec. for more information on Split 

Transaction tokens, and section 11.14 for Transaction Translator information.  

4.3.8 Bandwidth Management 

When a device cannot be configured because of bandwidth constraints 

Bandwidth Negotiation may be performed. Refer to section 4.16.1 for more 

details. 

4.4 Device Detach 

When the device is detached from a Root Hub port, the PORTSC Current 

Connection Status (CCS) bit shall be cleared to ‘0’ and the Connect Status 

Change (CSC) bit shall be set to ‘1’. If a ‘0’ to ‘1’ transition of PSCEG (4.19.2), the 

xHC shall report the change through a Port Status Change Event. After the 

detection of a detach, system software shall disable the Device Slot associated 
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with the port by issuing a Disable Slot Command for the affected slot. Refer to 

section 4.6.4 for a description of the Disable Slot command. 

4.5 Device Slot Management 

The xHCI supports up to 255 USB devices, where each USB device is assigned to 

a Device Slot. Each xHC Device Slot is comprised of 3 major components: an 

entry in the Device Context Base Address Array, a Device Context data structure, 

and a Doorbell Register in the Doorbell Array. 

The Device Context Base Address Array supports up to 25511 USB devices or 

hubs, where each element in the array is a 64-bit pointer to the base address of 

a Device Context data structure. 

The Slot ID is the index that software uses when accessing the Device Context 

Base Address Array to retrieve a pointer to the Device Context data structure or 

to access the Doorbell Register associated with a device . 

Figure 4-1: Device Context 
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A Device Context data structure describes the characteristics and current state 

of an individual USB device attached to the host controller. The Device Context 

                                                   

11The total number of USB devices supported by the xHCI architecture is less than 256 (the number of Device 
Context slots) because some of the Device Context slots are reserved by the xHCI for special purposes and are 
not available for enumerating USB devices. e.g. If virtualization is enabled, slots allocated to one VF will appear 
to be “reserved” to another VF. 
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is organized as an array of 32 context data structures, consisting of 1 Slot 

Context and 31 Endpoint Context data structures. Figure 4-1 illustrates the 

Device Context layout. Refer to section 6.2.1 for data structure details.  

When software allocates a Device Context data structure all fields in all entries 

shall be initialized to ‘0’.  

The Slot ID is the index that system software uses when accessing a specific 

Device Slot in the Device Context Base Address Array  and the Doorbell Array. 

The Slot Context data structure defines information that applies to the slot, the 

device as whole, or to all Endpoint Contexts.  

Each Endpoint Context data structure defines the characteristics of the 

endpoint; type, direction, bandwidth requirements, etc., and points to a Transfer 

Ring or a Stream Context Array. An Endpoint Context exists for each endpoint of 

a device. The “enabled12” Endpoint Contexts depend on the Configuration 

selected by the Device’s Class Driver. Note that Endpoint Context 0 is always 

associated with the Default Control Endpoint of the device. 

A 32-bit Doorbell Register exists in the Doorbell Array for each Device Slot and is 

indexed by the Slot ID. The DB Target and DB Stream ID fields in the Doorbell 

Register indicates the purpose of “ringing” the doorbell.  

Ringing the Host Controller Doorbell (Doorbell Register 0) with the DB Target = 

Host Controller Command, indicates to the xHC that software has defined a 

command in the Command Ring that it wants executed. 

Ringing the Device Slot’s Doorbell Register, indicates to the xHC that software 

has added work to be executed on the Transfer Ring (pipe) defined by the DB 

Target and DB Stream ID field values. Refer to section 5.2. 

4.5.1 Device Context Index 

The term Device Context Index (DCI) is used throughout this document to 

reference an individual context data structure in the Device Context. The range 

of DCI values is 0 to 31. 

The DCI of the Slot Context is 0. 

For Device Context Indices 1-31, the following rules apply: 

1. For Isoch, Interrupt, or Bulk type endpoints the DCI is calculated from the 

Endpoint Number and Direction with the following formula;  

                                                   
12An Endpoint Context is “enabled” if it is not in the Disabled state. 
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          DCI = (Endpoint Number * 2) + Direction, 

where Direction = ‘0’ for OUT endpoints and ‘1’ for IN endpoints.  

2. For Control type endpoints: 

           DCI = (Endpoint Number * 2) + 1. 

4.5.2 Slot Context Initialization 

All fields of an Input Slot Context data structure (including the Reserved fields) 

shall be initialized to ‘0’ with the following exceptions:  

For Address Device Command: 

•  Route String = Topology defined. 

•  Root Hub Port Number = Topology defined. 

•  Context Entries = ‘1’. Only the Default Control Endpoint is enabled. 

•  Interrupter Target = System defined. 

•  Speed = Defined by downstream facing port attached to the device. 

•  If the device is a Low-/Full-speed function or hub accessed through a High-speed 

hub, then the following values are derived from the “parent” High-speed hub whose 

downstream facing port isolates the High-speed signaling environment from the 

Low-/Full-speed signaling environment: 

•  MTT = '1' if the Multi-TT Interface of the hub has been enabled with a Set 

Interface request, otherwise '0'. Software shall issue a Set Interface request 

to select the Multi-TT interface of the hub prior to issuing any transactions 

to devices attached to the hub. 

•  TT Port Number = The number of the downstream facing port in the parent 

High-speed hub that the device is accessed through. 

•  TT Hub Slot ID = The Slot ID of the parent High-speed hub. 

For Evaluate Context Command: 

•  Max Exit Latency = Topology Defined. Refer to section 4.23.5.2. 

•  Interrupter Target = System defined. 

For Configure Endpoint Command: 

•  Context Entries = Maximum DCI+1 of configured Endpoint Contexts. 

•  If the device is a hub: 

•  Hub = ‘1’. 

•  Number of Ports = bNbrPorts from the USB Hub Descriptor. 

•  If the device Speed = High-Speed (‘3’): 

•  TT Think Time (TTT) = Value of the TT Think Time sub-field (USB2 spec, 
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Table 11-13) in the Hub Descriptor:wHubCharacteristics field. 

•  Multi-TT (MTT) = '1' if the Multi-TT Interface of the hub has been enabled 

with a Set Interface request, otherwise '0'. 

Note: The values of the Route String and Root Hub Port Number fields shall be 

initialized by the first Address Device Command issued to a Device Slot, and shall 

not be modified by any other command. The Interrupter Target field may be 

modified by an Address Device Command or Evaluate Context Command. 

Note: After entering the Addressed state for the first time from the Enabled or Default 

states, the values of the Output Slot Context hub related fields (Hub, TTT, MTT, 

and Number of Ports) shall be initialized by the xHC by the first Configure 

Endpoint Command to transition the Slot from the Addressed to the Configured 

state. To change the Output Slot Context hub related fields, a Slot must first be 

transitioned through the Enabled or Default state. 

4.5.3 Slot States 

The current state of a Device Slot is identified by the Slot State. A subset of the 

possible Slot States are recorded in the Slot State field in the Slot Context data 

structure. The xHCI commands referenced in Figure 4-2 cause a Device Slot to 

transition from one state to another. Table 4-1 defines the Slot State codes. 

Figure 4-2: Slot State Diagram 

Default ConfiguredAddressed

Disabled

Enabled

 

 

Refer to Appendix E for state machine notation. 

Note: The Enabled, Default, Addressed, and Configured states may transition to the 

Disabled state due to a Disable Slot Command, as noted by the large bubble. 

Note: A Device Slot may be referred to as “enabled” if it is not in the Disabled state. 
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Note: Software shall not transition more than one Device Slot to the Default State at a 

time. 

Note: When system software initially allocates and initializes the Output Slot Context 

data structure, it shall set the Slot State field to Disabled (‘0’). All subsequent 

updates of the Slot State field shall be performed by the xHC. 

Note: Unless otherwise stated, the unsuccessful completion of a command will not 

cause a state transition. 

4.5.3.1 Device Slot State Codes 

The following Slot States are maintained by the Host Controller. Refer to section 

9.1 of the USB2 specification for information on the USB Device States.  

Table 4-1: Device Slot State Code Definitions 

Definition USB Device 
State 

Default 
Control EP 

State 

Other 
EP 

State 

USB 
Device 

Address 

DCBAA 
Pointer 

Slot Context 
Slot State 

value 

Disabled N/A Disabled Disabled N/A Not valid Disabled 

Enabled Default Disabled Disabled 0 Not valid Disabled 

Default 
Default Not 

Disabled 
Disabled 0 Valid Default 

Addressed 
Address Not 

Disabled 

Disabled Assigned Valid Addressed 

Configured 
Configured Not 

Disabled 

Any13 Assigned Valid Configured 

 

Refer to Table 6-7 for the numeric encoding of Slot States. 

Note:  The Slot State field of the Slot Context data structure is used to convey a subset 

of the possible Slot States maintained by the xHC. The following sections identify 

the use of the Slot State field. Refer to section 6.2.2 for more information on the 

Slot Context data structure. 

                                                   

13Whether a non-Default Control endpoint is Disabled or not is determined by the Configure Endpoint Command. 
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4.5.3.2 Disabled 

In this slot state the Device Slot is disabled, i.e. the slot’s Doorbell register is 

disabled and the pointer to the slot’s Output Device Context in the Device 

Context Base Address Array  is invalid. The only command that software is 

allowed to issue for the slot in this state is the Enable Slot Command. 

If the Output Slot Context is valid (i.e. an Address Device Command has been 

issued for the slot), the xHC shall set the Slot State field to Disabled upon the 

completion of a Disable Slot Command . 

When in the Disabled state, the slot shall transition to the Enabled state due to 

the successful completion of an Enable Slot Command. 

Note: Software shall not write to the Doorbell register of slots that are in the Disabled 

state. 

Note: A Device Slot shall not generate events when it is in the Disabled state. 

4.5.3.3 Enabled 

In this slot state the Device Slot has been allocated to software by the Enable 

Slot Command, however the Doorbell register for the slot is not enabled and the 

pointer to the slot’s Output Device Context in the Device Context Base Address 

Array is invalid. The only commands that software is allowed to issue for a slot 

in this state are the Address Device and Disable Slot. 

When in the Enabled state, the slot shall transition to the Default state due to 

the successful completion of an Address Device Command with the Block Set 

Address Request (BSR) flag set to ‘1’. 

When in the Enabled state, the slot shall transition to the Addressed state due to 

the successful completion of an Address Device Command with the Block Set 

Address Request (BSR) flag cleared to ‘0’. 

When in the Enabled state, the slot shall transition to the Disabled state due to a 

Disable Slot Command. 

Note: The Enabled state is a logical slot state that is maintained internally by the xHC. 

A unique value for the Enabled state is not defined for the Slot Context Slot State 

field in Table 6-7, i.e. the Slot State field value ‘0’ is overloaded for the Disabled 

and Enabled states, refer to Slot Context Slot State value column in Table 4-1. 

Software initializes the Device Context data structure to ‘0’, hence Slot State = 

Disabled. The Device Context is then assigned to the xHC with an Address Device 

Command. The Address Device Command also transitions the slot to the Default 

or Addressed state, so there never is a case where the xHC would actually set the 

Slot State field to Enabled. 

Note: Software shall not write to the Doorbell register of slots that are in the Enabled 

state. 
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4.5.3.4 Default 

In this slot state the USB device is in the Default state, the pointer to the Device 

Slot’s Output Device Context in the Device Context Base Address Array  is valid, 

the Slot Context and Endpoint Context 0 in the Output Device Context have been 

initialized by the xHC, and the Doorbell register for the slot is enabled only for 

DB Target = Control EP 0 Enqueue Pointer Update . The only commands that 

software is allowed to issue for the slot in this state are the Address Device (BSR 

= 0), Reset Endpoint, Stop Endpoint, Evaluate Context, Set TR Dequeue Pointer, 

and Disable Slot. 

When in the Default state, the slot shall transition to the Addressed state due to 

the successful completion of an Address Device Command with the Block Set 

Address Request (BSR) flag cleared to ‘0’.  

When in the Default state, the slot shall transition to the Disabled state due to a 

Disable Slot Command. 

Upon the completion of a Evaluate Context, Reset Endpoint, Stop Endpoint, or 

Set TR Dequeue Pointer Command while in the Default state, the slot shall 

remain in Default state. 

The xHC shall set the Output Slot Context Slot State field to Default and the USB 

Device Address field to ‘0’ when this state is entered.  

Note: Software shall ensure that only one Device Slot is in the Default state at time, 

otherwise undefined behavior may occur. 

4.5.3.5 Addressed 

In this slot state the USB device is in the Address state, the pointer to the Device 

Slot’s Output Device Context in the Device Context Base Address Array  is valid, 

the Slot Context and Endpoint Context 0 in the Output Device Context have been 

initialized by the xHC, and the Doorbell register for the slot is enabled only for 

DB Target = Control EP 0 Enqueue Pointer Update . The only commands that 

software is allowed to issue for the slot in this state are the Evaluate Context , 

Configure Endpoint, Reset Endpoint, Stop Endpoint, Negotiate Bandwidth, Set TR 

Dequeue Pointer, Reset Device, and Disable Slot. 

When in the Addressed state, the slot shall transition to the Configured state 

due to the successful completion of a Configure Endpoint Command and the 

Deconfigure (DC) flag = ‘0’. 

When in the Addressed state, the slot shall remain in the Addressed state due to 

the successful completion of a Configure Endpoint Command  and the 

Deconfigure (DC) flag = ‘1’, i.e. the Configure Endpoint Command  is treated like a 

No Op Command. 
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When in the Addressed state, the slot shall transition to the Default state due to 

a Reset Device Command . 

The xHC shall set the Output Slot Context Slot State field to Addressed when 

this state is entered. 

Upon the completion of an Evaluate Context , Stop Endpoint, or Set TR Dequeue 

Pointer Command while in the Addressed state, the slot shall remain in 

Addressed state. 

While in the Addressed state, the Reset Device Command may be used to 

transition the slot to the Default state. 

When in the Addressed state, the slot shall transition to the Disabled state due 

to the successful completion of a Disable Slot Command. 

4.5.3.6 Configured 

In this slot state the USB device is in the Configured state, the pointer to the 

Device Slot’s Output Device Context in the Device Context Base Address Array  is 

valid, the Slot Context, Endpoint Context 0, and enabled IN and OUT Endpoint 

Contexts between 1 and 15 in the Output Device Context have been initialized 

by the xHC, and the Device Context doorbell for the slot is enabled for DB Target 

= Control EP 0 Enqueue Pointer Update  and any enabled endpoint. The only 

commands that software is allowed to issue for the slot in this state are the 

Configure Endpoint (DC = ‘0’ or ‘1’) , Reset Endpoint, Stop Endpoint, Set TR 

Dequeue Pointer, Evaluate Context , Reset Device , Negotiate Bandwidth, and 

Disable Slot. 

The xHC shall set the Output Slot Context Slot State field to Configured when 

this state is entered. 

Upon the completion of an Evaluate Context , Configure Endpoint, Reset 

Endpoint, Stop Endpoint , Negotiate Bandwidth, or Set TR Dequeue Pointer 

Command while in the Configured state, the slot shall remain in Configured 

state. 

Upon the completion of a “deconfigure” Configure Endpoint Command (DC = ‘0’)  

while in the Configured state, the slot shall transition to the Addressed state. 

When in the Configured state, the Reset Device Command may be used to 

transition the slot to the Default state. 

When in the Configured state, the completion of a Disable Slot Command shall 

transition the slot to the  Disabled state. 
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4.5.4 USB Standard Device Request to xHCI Command Mapping 

The Standard Device Requests (as described in section 9.4 of the USB2 spec.) 

are generated to USB devices using Setup Stage TDs on a device’s Default 

Control Endpoint. This section discusses the relationship of specific Standard 

Device Requests to xHCI commands. Refer to the USB or Device Class 

specifications for the order and timing of all other Standard Device Requests. 

4.5.4.1 SET_ADDRESS Request 

During the execution of the Address Device Command with BSR = ‘0’, the xHC 

shall automatically issue a SET_ADDRESS request to a device with the USB 

Device Address assigned in the Output Slot Context and block any 

SET_ADDRESS Requests issued by software. Therefore a Setup Stage TD with 

the bmRequestType field set to Host-to-Device, Standard, and Device (0h), and 

the bRequest field set to SET_ADDRESS (5h) issued by software on the Default 

Control Endpoint shall not generate a Setup transaction on the USB and shall 

complete with a TRB Error completion code. 

4.5.4.2 SET_CONFIGURATION Request 

For a USB device to be successfully configured with new endpoint settings, 

system software shall complete a successful Configure Endpoint command to 

the xHC and a successful SET_CONFIGURATION request to a device. Undefined 

results may occur otherwise. 

If software wishes to “deconfigure” a device by issuing a SET_CONFIGURATION 

Setup Stage TD with the Configuration Value (wValue) = ‘0’, and issue a 

Configure Endpoint Command  with all Add Context flags cleared to = ‘0’, and the 

Drop Context flags of all enabled endpoints set to ‘1’. After both operations are 

completed successfully, the device is deconfigured.  

Note: A Configure Endpoint Command is not necessary if a SET_CONFIGURATION 

request does not change any Endpoint Context parameters. 

Refer to section 4.6.6 for more details. 

4.5.4.3 SET_INTERFACE Request 

For an alternate interface of a USB device to be successfully set, system 

software shall complete a successful Configure Endpoint Command and a 

successful SET_INTERFACE Setup request to a USB device. Undefined results 

may occur otherwise. 

Note: A Configure Endpoint Command is not necessary if a SET_INTERFACE request 

does not change any Endpoint Context parameters. 

Refer to section 4.6.6 for more details. 
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4.6 Command Interface 

The command interface of the xHC is managed through the Command Ring 

Control Register (CRCR). The CRCR Command Ring Pointer field provides a 

pointer to the Command Ring. Software places commands on the Command 

Ring, then rings the Host Controller Doorbell Register to notify the xHC. The xHC 

processes the commands and generates Command Completion Events on the 

Primary Event Ring to notify software of their completion status. This section 

describes the operation of the Command Ring and each of the commands.  

Refer to Table 3-1 for a summary of the xHCI command set. 

Note: Undefined xHC behavior may result if commands and all data structures that 

they reference are not correctly formed by software. The algorithms below 

define checks that xHC should perform and the error conditions that may result 

when executing a command. The extent of command and data structure validity 

checking performed by an xHC implementation will vary. More comprehensive 

checking will ease the development and debugging process, but it is ultimately 

software’s responsibility to ensure that the xHC does not receive invalid 

commands. 

Note: A command shall return an TRB Error code if the command (i.e. TRB Type) is not 

recognized by the xHC. 

Note: A command may return an Undefined Error or Vendor Defined Error codes. A 

vendor should identify the possible sources of these error codes to ease 

debugging and error handling. 

Note: Software shall not ring the doorbell of an endpoint that has a state modifying 

command pending. The Configure Endpoint, Evaluate Context, Reset Endpoint, 

Stop Endpoint, and Set TR Dequeue Pointer Commands affect specific endpoints 

of a device. The Address Device, Disable Slot, and Reset Device Commands affect 

all endpoints of a device. 

Note: Software shall be responsible for all command timeouts. If a command times out, 

software may abort the command using the mechanism described in section 

4.6.1.2. 

4.6.1 Command Ring Operation 

The Command Ring is a dedicated TRB Ring (refer to section 4.9 for a 

description of TRB Ring operation), which only allows those TRB types defined in 

Table 6-86. Only one Command Ring exists per xHC instance.  

System software is the producer of all Command TRBs and the xHC is the 

consumer. 

The Command Ring Dequeue Pointer is an internal register maintained by the 

xHC, which is not directly exposed to software. Its value is reported in the 

Command TRB Pointer field of Command Completion Events . 
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The initial value of the Command Ring Dequeue Pointer is defined by the 

Command Ring Pointer field in the Command Ring Control Register (CRCR), 

described in section 5.4.5. The Command Ring Pointer field shall be set by 

system software to point to the Command Ring prior to running the xHC (i.e. 

setting the Run/Stop (R/S) flag to ‘1’ and ringing the Host Controller Command 

Doorbell for the first time). The Command Ring Pointer field may only be 

modified by software while the Command Ring is stopped, as indicated by the 

Command Ring Running (CRR) flag equal to ‘0’. 

A Work Item on a Command Ring is called a Command Descriptor (CD). CDs 

enable the management of Device Slots, virtualization, and the controller as a 

whole. A CD shall be comprised of one Command TRB data structure. Refer to 

section 4.11.4 for information on the commands supported by the xHCI and 

section 6.4.3 for details of the Command TRB data structures.  

Commands are issued by software to the xHC by:  

1. Placing one or more Command Descriptors on the Command Ring and  

2. Ringing the Host Controller Doorbell. 

To ring the Host Controller Doorbell software shall write the Host Controller 

Doorbell register (offset 0 in the Doorbell Register Array), asserting the Host 

Controller Command value in the DB Target field and ‘0’ in the DB Stream ID 

field. 

The xHC, upon detecting a Host Controller Command Doorbell ring, shall 

execute commands until the Command Ring is stopped or empty.  

Note: If multiple commands are posted to the Command Ring, they are executed in 

order, so a delay may be incurred before a particular command is executed. 

The xHC shall generate a Command Completion Event for every command. The 

Command TRB Pointer field of the Command Completion Event shall point to the 

Command TRB that initiated the event. The Completion Code field of the 

Command Completion Event shall indicate the completion status of the 

command. The Slot ID and VF ID fields shall reflect the values of the respective 

fields of the Command TRB that initiated the event. 

The Primary Event Ring receives all Command Completion Events. 

The Command Completion Events that result from processing the commands 

shall be ordered with respect to their location in the Command Ring.  

Command execution times are xHC implementation defined. 

The standard and optional commands supported by the xHCI are listed in 

Table 1. 
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xHC vendors may define proprietary commands using the Vendor Defined TRB 

Type codes identified in Table 6-86. All vendor defined commands shall utilize 

the Command Completion Event TRB  to report completions. 

4.6.1.1 Stopping the Command Ring 

System software may stop the execution of commands on the Command Ring by 

writing a ‘1’ to the Command Stop (CS) bit of the Command Ring Control 

register. Writing a ‘1’ to the CS bit shall stop the xHC from fetching additional 

CDs after the currently executing command completes, “stopping” the Command 

Ring. After the Command Ring has been successfully stopped, a Command 

Completion Event shall be generated with the Completion Code set to Command 

Ring Stopped and the Command TRB Pointer set to the current value of the 

Command Ring Dequeue Pointer. 

While the Command Ring is stopped, ownership of all Command Descriptors on 

the ring is passed to software, which may remove, add, or rearrange Command 

Descriptors. Software restarts command execution by writing the Host Controller 

Doorbell register with the DB Reason field set to Host Controller Command. If 

the Command Ring Pointer field of the Command Ring Control Register (CRCR) 

was written while the ring is stopped the xHC shall restart Command Ring 

execution at the new value defined by the CRCR write, otherwise Command Ring 

execution shall restart at the current Dequeue Pointer value, i.e. the TRB 

following the last command executed (or aborted). Software may modify the 

value of the Command Ring Dequeue Pointer prior to restarting it by writing a 

new value to the Command Ring Pointer field of the Command Ring Control 

register. 

4.6.1.2 Aborting a Command 

System software may abort the execution of the current command by writing a 

‘1’ to the Command Abort (CA) bit of the Command Ring Control register. 

Aborting a command on the Command Ring shall perform the following 

operations: 

•  If a command is currently executing: 

•  A Command Completion Event shall be generated for the aborted command with 

its Completion Code set to Command Aborted. 

•  Advance the Command Ring Dequeue Pointer to point to the next Command 

TRB. 

•  Generate a Command Completion Event with the Completion Code set to Command 

Ring Stopped and the Command TRB Pointer set to the current value of the 

Command Ring Dequeue Pointer. 

Software may follow the method described in section 4.6.1.1 to restart the 

“stopped” Command Ring. 
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Note: If the xHC detects the assertion of an abort request between the execution of two 

commands or after the last command, a Command Completion Event with the 

Completion Code set to Command Aborted may not be found on the Event Ring 

after an abort operation. 

 IMPLEMENTATION NOTE 

Aborting Commands 

Typically when software asserts the Command Abort (CA) flag, the Command Ring will 

normally stop after the completion of a command, i.e. Completion Code is not equal to 

Command Aborted in the last Event Ring Command Completion Event TRB. Only if a 

command is “blocked” will it be aborted. 

An example of a command that may hang is the Address Device Command, because 

waiting for a SET_ADDRESS request to be acknowledged by a USB device is outside of 

the xHC’s ability to control. 

An xHC implementation should “checkpoint” the state associated with a command 

before a command is initiated. If the CA flag is set before the command is complete (e.g. 

its Command Completion Event TRB is posted to the Event Ring), then the command’s 

previous state should be restored by the xHC using the checkpoint information and its 

Completion Code shall be set to Command Aborted. 

Software should time the completion of all xHCI commands, including the Command 

Abort operation, i.e. the delay between the negation of CRR (‘0’) and the assertion of CA 

(‘1’). If software doesn’t see CRR negated in a timely manner (e.g. longer than 5 seconds), 

then it should assume that the there are larger problems with the xHC and assert HCRST. 

4.6.2 No Op 

The No Op command can be issued by software to exercise the TRB Ring 

mechanism of the xHC without affecting any xHC or USB Device state, or to 

report the current value of the Command Ring Dequeue Pointer.  

Note: A No Op Command may be inserted on the Command Ring by software to modify 

the alignment memory boundaries of Command TDs. 

The format of the No Op Command TRB is defined in section 6.4.3.1. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

To issue a No Op Command, system software shall perform the following 

operations: 

•  Insert a No Op Command TRB on the Command Ring and initialize the following 

fields: 

•  TRB Type = No Op Command (refer to Table 6-86). 

•  Clear all other fields of the command TRB to ‘0’. 
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•  Cycle bit = Command Ring’s PCS flag. Refer to section 4.9.2 for a discussion of 

the Cycle bit and PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When a No Op Command is executed by the xHC it shall perform the following 

operations: 

•  Insert a Command Completion Event on the Event Ring and initialize the following 

fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the No Op Command TRB. 

•  Completion Code = Success (refer to Table 6-85). 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

4.6.3 Enable Slot 

The Enable Slot Command is issued by software to obtain an available Device 

Slot and to transition a Device Slot from the Disabled to the Enabled state. Refer 

to section 3.3.2 for a high level description of the Enable Slot Command and it’s 

usage. 

When an Enable Slot Command is processed by the xHC, it will look for an 

available Device Slot. If a slot is available, the ID of a selected slot will be 

returned in the Slot ID field of a successful Command Completion Event on the 

Event Ring. If a Device Slot is not available, the Slot ID field shall be cleared to 

‘0’ and a No Slots Available Error shall be returned in the Command Completion 

Event. 

Upon the successful completion of an Enable Slot Command, system software 

shall use the Slot ID to link a Device Context data structure to the slot by writing 

a pointer to the Device Context in the Device Context Base Address Array[Slot ID]  

location. Undefined operation may occur if the Context Base Address Array  entry 

is not updated prior to issuing a Command for the slot, or ringing the Default 

Control Endpoint (0) doorbell. 

To ensure proper operation of the xHC, system software shall provide “valid” 

Input Control Context, Slot Context and Endpoint Context data structures in the 

Input Context data structure. 

The requirements of a valid Slot Context data structure are defined in section 

6.2.2. 

The requirements of a valid Endpoint Context data structure are defined in 

section 6.2.3.1. 

The format of the Enable Slot Command TRB  is defined in section 6.4.3.2. 
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The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

Sections 6.2.2.1 and 6.2.3.1 also define the Completion Code values that will be 

found in the Command Completion Event if an invalid context is detected. 

To issue an Enable Slot Command, system software shall perform the following 

operations: 

•  Insert an Enable Slot Command TRB on the Command Ring and initialize the 

following fields: 

•  TRB Type = Enable Slot command (refer to Table 6-86). 

•  Slot Type = value specified by the Protocol Slot Type field of the associated xHCI 

Supported Protocol Capability structure (refer to Table 7-9). 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When an Enable Slot Command is executed by the xHC it shall perform the 

following operations: 

•  Insert a Command Completion Event on the Event Ring and initialize the following 

fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Enable Slot Command TRB. 

•  Determine if a Device Slot is available. 

•  If a Device Slot is available: 

•  Slot ID = ID of the selected Device Slot. 

•  Completion Code = Success (refer to Table 6-85). 

•  else // Device Slot is not available 

•  Slot ID = ‘0’. 

•  Completion Code = No Slots Available. 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

The algorithm for Device Slot ID selection is xHC implementation dependent.  

Note: If this command is aborted (i.e. Completion Code = Command Aborted) the Slot 

ID field should be considered by software to be invalid (e.g. no slot was 

allocated). 

4.6.4 Disable Slot 

The Disable Slot Command is issued by software to force a Device Slot to the 

Disabled state. A typical use would be to free a Device Slot when a USB device is 

disconnected. 
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When a Disable Slot Command is processed by the xHC it shall:  

•  Disable the Doorbell register for the slot 

•  Free any bandwidth allocated to the periodic endpoints of the device 

•  Terminate any slot related USB activity (e.g. packet transfers) 

•  Free any internal resources associated with the slot 

•  Internally flag the slot as “available” for subsequent reassignment by an Enable Slot 

Command. i.e. the Device Context Base Address Array entry for the slot is no longer 

considered valid by the xHC and software can free the Device Context, Transfer Ring, 

Stream Context Array, etc. data structures associated with the slot. 

A Command Completion Event is always returned for a Disable Slot Command.  

The format of the Disable Slot Command TRB is defined in section 6 .4.3.3. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2.  

Note: Before software issues a Disable Slot Command the following conditions shall be 

true, otherwise undefined behavior may occur: 

•  Any active endpoints associated with the slot shall be in the Stopped state 

or Idle in the Running state, and any outstanding Transfer Events shall have 

been received. 

•  Any commands targeted at the slot that is being disabled shall be complete, 

i.e. any outstanding Command Completion Events for the slot have been 

received. 

To issue a Disable Slot Command , system software shall perform the following 

operations: 

•  Insert a Disable Slot Command on the Command Ring and initialize the following 

fields: 

•  TRB Type = Disable Slot Command (refer to Table 6-86). 

•  Slot ID = ID of the Device Slot to be disabled. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When a Disable Slot Command is executed by the xHC it shall perform the 

following operations: 

•  Insert a Command Completion Event on the Event Ring and initialize the following 

fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Disable Slot Command TRB. 

•  Slot ID = The value of the command’s Slot ID. 
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•  If the Device Slot identified by the Slot ID has been previously enabled by an 

Enable Slot Command: 

•  Any xHC resources assigned to the Device Slot are freed and the Device Slot 

is made available for reassignment. 

•  The Slot State of the associated Slot Context is set to Disabled. 

•  Completion Code = Success (refer to Table 6-85). 

•  else // The slot has not been enabled by an Enable Slot Command 

•  Completion Code = Slot Not Enabled Error. 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

Note: After software receives the Command Completion TRB for a Disable Slot 

Command it shall clear the respective DCBAA entry to ‘0’. This action allows the 

xHC to identify valid vs. invalid Device Slots after a Restore State operation. 

Note: Any pending events not already posted to an Event Ring may be aborted when 

this command is executed. 

4.6.5 Address Device 

The Address Device Command is issued by software to transition a Device Slot 

from the Enabled to the Default or Addressed state or from the Default to the 

Addressed state, depending on the state of the Block Set Address Request (BSR) 

flag. 

When an Address Device Command is processed by the xHC it shall enable the 

device’s Default Control Endpoint, select an address for the USB device, and 

issue a USB SET_ADDRESS request to the USB Device. The SET_ADDRESS 

request for a USB2 device shall be issued to Address ‘0’. The SET_ADDRESS 

request for a USB3 device shall be issued using the Route String. 

Upon successful completion of an Address Device Command, the Default Control 

Endpoint will be added to the xHCs’ endpoint scheduling list, the Default 

Control Endpoint 0 Context Doorbell shall be enabled, and TRBs can be posted 

to its endpoint Transfer Ring. 

A USB Transaction Error shall be generated if an error is detected on the USB 

SET_ADDRESS request and the Device Slot shall not transition to the Addressed 

state. 

Once a successful Address Device Command has completed, system software 

can issue USB GET_DESCRIPTOR requests through the Default Control Endpoint 

to retrieve the USB Device, Configuration, etc. descriptors from the USB device. 

Using the information in these descriptors system software may determine 

which Class Driver(s) to load for the USB device, and hand off the device.  
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Note: A USB SET_ADDRESS request does not include a data stage, so the default Max 

Packet Size is sufficient to issue the request. However subsequent USB device 

requests require that the xHC use the Max Packet Size defined by the device. The 

first request that system software should issue to a USB Device is a 

GET_DESCRIPTOR request with the wLength set to 8, to retrieve is the USB 

Device Descriptor. The last byte of the returned partial Device Descriptor 

(bMaxPacketSize0) identifies the maximum packet size of the Default Control 

Endpoint. This value shall be used by system software to update the Max Packet 

Size field in the Control Endpoint 0 Context. 

Note: If the Block Set Address Request (BSR) flag is ‘0’ in the Address Device Command 

TRB, then the xHC shall select a USB Device Address and issue a SET_ADDRESS 

request to a USB device as part of an Address Device Command. If the Block Set 

Address Request (BSR) flag is ‘1’ then the xHC shall not issue a SET_ADDRESS 

request to a USB device as part of an Address Device Command. In either case, 

all other operations described in this section for the Address Device Command 

are performed. The BSR flag may be used by software to provide compatibility 

with legacy USB devices which require their Device Descriptor to be read before 

receiving a SET_ADDRESS request. 

Note: If the xHC detects a SET_ADDRESS request on the Default Control Endpoint 

Transfer Ring, it shall generate a TRB Error Completion Status for the TD. The 

xHC shall never forward a SET_ADDRESS request on a Default Control Endpoint 

Transfer Ring to a USB device. 

The format of the Address Device Command TRB is defined in section 6.4.3.4. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

The Address Device Command utilizes the Address Device Command TRB data 

structure defined in section 6.4.3.4, which points to an Input Context data 

structure defined in section 6.2.5. 

The Add Context flags A0 and A1 of the Input Control Context data structure (in 

the Input Context) shall be set to ‘1’, and all remaining Add Context and Drop 

Context flags shall all be cleared to ‘0’.  

System software shall initialize Slot Context and Endpoint Context 0 entries of 

the Input Context. All other Endpoint Contexts in the Input Context shall be 

ignored by the xHC during the execution of this command.  

To issue an Address Device Command, system software shall perform the 

following operations: 

•  Ensure that the Device Context Base Address Array entry points to a properly sized 

and initialized Device Context data structure for the device. 

•  Allocate and initialize an Input Context data structure for the command. 

•  The Add Context flags for the Slot Context and the Endpoint 0 Context shall be 

set to ‘1’. All fields of the Input Context Slot Context data structure shall define 
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valid values, refer to section 4.5.2. The Endpoint 0 Context data structure in the 

Input Context shall define valid values for the TR Dequeue Pointer, EP Type, Error 

Count (CErr), and Max Packet Size fields. The MaxPStreams, Max Burst Size, and 

EP State values shall be cleared to '0'. 

•  Insert an Address Device Command on the Command Ring and initialize the following 

fields: 

•  TRB Type = Address Device command (refer to Table 6-86). 

•  Slot ID = ID of the target Device Slot. 

•  Input Context Pointer = The base address of the Input Context data structure. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

Note: A Slot or Endpoint Context contained in the Input Context is referred to as an 

Input Slot or Endpoint Context. And a Slot or Endpoint Context contained in the 

Device Context data structure pointed to by the Device Context Base Address 

Array is referred to as an Output Slot or Endpoint Context and the Device Context 

itself is referred to as the Output Device Context. 

When an Address Device Command is executed by the xHC it shall perform the 

following operations: 

•  Insert a Command Completion Event on the Event Ring and initialize the following 

fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Address Device Command TRB. 

•  Slot ID = The value of the command’s Slot ID. 

•  If the Device Slot identified by the command’s Slot ID field has been previously 

enabled by an Enable Slot Command: 

•  Retrieve the pointer to the Output Device Context of the selected Device Slot. 

•  If the Block Set Address Request (BSR) flag = ‘1’  

•  If the slot is in the Enabled state: 

•  Copy all fields of the Input Slot Context to the Output Slot Context. 

•  Copy all fields of the Input Endpoint 0 Context to the Output 

Endpoint 0 Context. 

•  Set the Endpoint State (EP State) field in the Output Endpoint 0 

Context to Running. 

•  Set the Slot State in the Output Slot Context to Default. 

•  Set the USB Device Address field in the Output Slot Context to ‘0’. 

•  Completion Code = Success (refer to Table 6-85). 

•  else // The slot is not in the Enabled state: 

•  Completion Code = Context State Error. 
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•  else // BSR = ‘0’ 

•  If the slot is in the Enabled or Default state: 

•  Select a Device Address for the target USB device. 

•  Construct a SET_ADDRESS request to be sent the device 

•  bmRequestType = 0. 

•  wValue = Selected Device Address. 

•  wIndex = 0. 

•  wLength = 0. 

•  Retrieve the Route String from the Input Slot Context. 

•  Issue a SET_ADDRESS request to the target USB device. 

•  If the SET_ADDRESS request is successful: 

•  Copy all fields of the Input Slot Context to the Output Slot 

Context. 

•  Copy all fields of the Input Endpoint 0 Context to the Output 

Endpoint 0 Context. 

•  Set the Endpoint State (EP State) field in the Output Endpoint 0 

Context to Running. 

•  Set the Slot State in the Output Slot Context to Addressed. 

•  Set the USB Device Address field in the Output Slot Context to 

the address selected for the USB device by the xHC. 

•  Completion Code = Success (refer to Table 6-85). 

•  else // SET_ADDRESS request is not successful 

•  Completion Code = USB Transaction Error. 

•  else // The slot is not in the Enabled or Default state: 

•  Completion Code = Context State Error. 

•  else // The slot has not been enabled by an Enable Slot Command 

•  Completion Code = Slot Not Enabled Error. 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

Note: The xHC should check that all referenced contexts are valid before executing the 

command. If an invalid context is detected, the state of the Output Device 

Context shall not change and the a Command Completion Event shall be 

generated with the Completion Code set to Parameter Error. 

Note: The Slot Context (Add Context flag 0 (A0)) and the Default Endpoint Context (Add 

Context flag 1 (A1)) shall be valid in the Input Context referenced by the Address 

Device Command. All other Endpoint Contexts (A2 to A31) in the Input Context 

shall be ignored by the xHC. 

Note: If the SET_ADDRESS request was unsuccessful, system software may issue a 

Disable Slot Command for the slot or reset the device and attempt the Address 
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Device Command again. An unsuccessful Address Device Command shall leave 

the Device Slot in the Default state. 

Note: If an Address Device Command is received and all available USB Device 

Addresses have been assigned for the BI that the device is associated with, then 

a Command Completion Event shall be generated with the Completion Code set 

to Resource Error. 

Note: Software shall be responsible for timing the SetAddress() “recovery interval” 

required by USB and aborting the command on a timeout. Refer to section 9.2.6.3 

in the USB2 spec. 

Note: If BSR = ‘0’ and this command is aborted (i.e. Completion Code = Command 

Aborted), software should assume that the USB device is in an unknown state 

(e.g. the USB device may or may not be in the Address state) and take the 

appropriate action to recover it to a known state, otherwise undefined behavior 

may occur. 

Note: A USB Transaction Error Completion Code for an Address Device Command may 

be due to a Stall response from a device. Software should issue a Disable Slot 

Command for the Device Slot then an Enable Slot Command to recover from this 

error. Refer to section 4.11.2.2 Implementation note. 

Note: All endpoints shall be in the Stopped state or if in the Running state, shall be 

“idle” (e.g. no USB Transactions are in progress, the Transfer Ring is empty, and 

software has processed all outstanding events for the Transfer Ring) when this 

command is executed. If this condition is not met undefined behavior may occur. 

Note: If an Address Device Command fails with USB Transaction Error and the target 

device is behind a TT, software shall issue a ClearFeature(CLEAR_TT_BUFFER) 

request to TT in the HS hub. 

Refer to section 6.2.1 for the definition of a Device Context data structure and its 

access constraints. 

The requirements of a “valid” Slot Context data structure are defined in section 

6.2.2.1. 

The requirements of a “valid” Endpoint Context data structure are defined in 

section 6.2.3.1. 

4.6.6 Configure Endpoint 

The Configure Endpoint Command is issued by software to enable, disable, or 

reconfigure endpoints associated with a target configuration.  

The format of the Configure Endpoint Command TRB is defined in section 

6.4.3.5. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 
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This command is issued by software under the following circumstances:  

•  Configuring a device. To set a configuration in a device, software shall issue a 

Configure Endpoint Command to the xHC in conjunction with issuing USB 

SET_CONFIGURATION request to the device. This command shall be used to enable 

the set of Device Slot endpoints selected by the target configuration, and transition 

a Device Slot from the Addressed to the Configured state. Undefined behavior may 

occur if TDs are posted for endpoints enabled by this command and the 

SET_CONFIGURATION request associated with this command is not successfully 

completed by the USB device. 

•  Deconfiguring a device. To deconfigure a device, software shall issue a Configure 

Endpoint Command to the xHC in conjunction with “deconfiguring” the device. A USB 

device is “deconfigured” by issuing a SET_CONFIGURATION request to a USB device 

with configuration ‘0’ selected. Software shall issue a Configure Endpoint Command 

with Deconfigure (DC) = ‘1’ to inform the xHC that a SET_CONFIGURATION request 

with a configuration value of zero shall be sent to the device. This command shall be 

used to disable all enabled endpoints (except for the Default Control Endpoint) of a 

Device Slot, and transition the Device Slot from the Configured to the Addressed 

state. Undefined USB device behavior may occur if the SET_CONFIGURATION 

request associated with this command is not successfully completed. 

Note: Setting the Deconfigure (DC) flag to ‘1’ in the Configure Endpoint Command TRB 

is equivalent to setting Input Context Drop Context flags 2-31 to ‘1’ and Add 

Context 2-31 flags to ‘0’. If the DC flag = ‘1’, the Input Context Pointer field shall 

be ignored by the xHC and the Output Slot Context Context Entries field shall be 

set to ‘1’. 

Note: If the device only has a Default Control Endpoint, then a Configure Endpoint 

Command is not necessary prior to issuing a SET_CONFIGURATION 

“deconfigure” request to a device. 

•  Setting an Alternate Interface on a device. To set an Alternate Interface on a device, 

software shall issue a Configure Endpoint Command to the xHC in conjunction with 

issuing USB SET_INTERFACE request to the device. This command shall be used to 

disable, enable, or reconfigure a selected set of endpoints determined by the target 

Alternate Interface. Undefined behavior may occur if the SET_INTERFACE request 

associated with this command is not successfully completed. 

Note: A USB device presents one or more Configuration options to system software. 

System software selects a specific configuration with a USB 

SET_CONFIGURATION request. Also, each Interface defined by a Configuration 

may optionally present multiple Alternate Interface settings. System software 

selects a specific Alternate Interface setting with a USB SET_INTERFACE request. 

The result of the USB SET_CONFIGURATION and SET_INTERFACE requests 

allow system software to enable a selected set endpoints on a USB device. The 

specific endpoints enabled by a Configuration or Alternate Interface setting 

depend on the respective descriptors reported by the device. The xHC does not 

maintain information about the relationships between the Configuration and 
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Alternate Interface options presented by a USB device and the endpoints 

enabled by a specific configuration option. System software shall use the Add 

Context and Drop Context flags of the Configure Endpoint Command to explicitly 

identify to the xHC the endpoints of a Device Slot that shall be enabled due to 

the selected USB device Configuration and Alternate Interface settings. 

Note: Slot or Endpoint Contexts are found in Device and Input Contexts. A Slot or 

Endpoint Context contained in the Input Context is referred to as an Input Slot 

or Endpoint Context, and a Slot or Endpoint Context contained in the Device 

Context data structure is referred to as an Output Slot or Endpoint Context. 

The Add Context flag A1 and Drop Context flags D0 and D1 of the Input Control 

Context (in the Input Context) shall be cleared to ‘0’. Endpoint 0 Context does 

not apply to the Configure Endpoint Command and shall be ignored by the xHC. 

A0 shall be set to ‘1’ and refer to section 6.2.2.2 for the Slot Context fields used 

by the Configure Endpoint Command. The state of the remaining Add Context 

and Drop Context flags depend on the specific endpoints affected by the 

command. System software shall initialize the Endpoint Contexts of the Input 

Context referenced by Add Context flags. All Endpoint Context data structures 

not referenced by an Add Context flag shall be ignored by the xHC. Note that 

Endpoint Context flags referenced only by a Drop Context flag does not need to 

be initialized. Refer to section 6.2.3.2 for the Endpoint Context fields used by 

the Configure Endpoint Command. 

Note: An endpoint shall be in the Stopped state or if in the Running state shall be “idle” 

(e.g. no USB Transactions are in progress, the Transfer Ring is empty, and 

software has processed all outstanding events for the Transfer Ring) if its Drop 

Context flag is set. If this condition is not met undefined behavior may occur. 

The following rules apply to processing a Configure Endpoint Command : 

•  The xHC resources assigned to a Device Slot are not modified until after all Drop 

Context and Add Context flags are evaluated. 

•  The Slot State field of a Device Slot Context is not modified until after all Drop 

Context and Add Context flags are evaluated. 

•  The xHC maintains a global Resources Available variable, which is initialized to 

indicate all xHC resources are available. A Resource is an xHC implementation 

defined metric, which refers to the internal xHC data structures, buffer space, or other 

implementation specific resources required to support an endpoint type. 

•  For each USB bus instance, a Bandwidth Available variable is maintained, which 

initialized to the respective maximum available value. Bandwidth is a commodity 

allocated by the host controller. Refer to section 4.14.2 (Reserved Bandwidth) for 

more information on how bandwidth requirements are calculated for an endpoint. 

•  Two temporary variables are maintained by the xHC when evaluating the Configure 

Endpoint Command: Resource Required and Bandwidth Required. Both variables 

are initialized to ‘0’. 
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•  The Resource Required variable identifies the “sum” of xHC resources required 

to support all endpoints affected by a Configure Endpoint Command. Note that 

the “units” of xHC resource measurement is an implementation specific value. 

•  The Bandwidth Required variable identifies the “sum” of USB bandwidth 

necessary to support all endpoints affected by a Configure Endpoint Command. 

•  The Drop Context flags are evaluated before the Add Context flags. 

•  For each endpoint indicated by a Drop Context flag = ‘1’: 

•  If the Output Endpoint Context is not in the Disabled state: 

•  The endpoint related resources are subtracted from the Resource Required 

variable. 

•  If the endpoint is periodic, then the bandwidth assigned to the endpoint is 

subtracted from the Bandwidth Required variable. 

•  else // Output Endpoint Context is in the Disabled state 

•  Do nothing 

•  For each Input Endpoint Context indicated by an Add Context flag = ‘1’: 

•  The resources required to support the endpoint described by the Input Endpoint 

Context shall be added to the Resource Required variable. 

•  If the endpoint described by the Input Endpoint Context is periodic, then the 

bandwidth required to support the endpoint shall be added to the Bandwidth 

Required variable. 

•  If the Drop Context flag is set for an endpoint and the Output Endpoint Context is in 

the Disabled state, the Drop Context flag shall be ignored and no resource or 

bandwidth evaluation shall be performed for the endpoint. 

•  After all Drop Context and Add Context flags are evaluated the xHC determines 

whether the command was successful: 

•  The Resources Required variable is compared to the Resources Available 

variable, if the result indicates an oversubscription of resources by the command 

(i.e. Resources Available - Resources Required is less than 0), then the command 

shall be unsuccessful and a Resource Error Completion Code shall be returned in 

the Command Completion Event. Refer to section 4.14.1.1 for more information 

on xHC resources. 

•  The Bandwidth Required variable is compared to the Bandwidth Available 

variable, if the result indicates an oversubscription of bandwidth by the 

command (i.e. Bandwidth Available - Bandwidth Required is less than 0), then the 

command shall be unsuccessful and a Bandwidth Error Completion Code shall 

be returned in the Command Completion Event. 

•  If the Resource and Bandwidth requirements of the command can be met, then 

the command is successful and a Success Completion Code shall be returned in 

the Command Completion Event. 

•  If the command is unsuccessful: 
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•  Current xHC resource allocations shall be unchanged for the endpoint. 

•  Current xHC bandwidth allocations shall be unchanged for the endpoint. 

•  The Output Slot Context Slot State field shall be unchanged for the device. 

•  The Output Endpoint Contexts referenced by the command in the Device 

Context shall be unchanged. 

•  The Command Completion Event shall indicate the appropriate error Completion 

Code. 

xHC behavior is undefined if the Drop Context (D) flag is ‘0’, the Add Context (A) 

flag is ‘1’, and the Output Endpoint Context is not in the Disabled state (i.e. 

software is trying to add an endpoint without dropping its current resources). 

•  If the command is successful: 

•  The Resources Available variable shall be updated to reflect the new resource 

allocation. 

•  The Bandwidth Available variable shall be updated to reflect the adjusted 

bandwidth allocation. 

•  For each endpoint: 

•  If the Drop Context flag is ‘0’ and the Add Context flag is ‘0’, the xHC shall: 

•  Do nothing. 

•  The respective Input Endpoint Context is ignored by the xHC. 

•  If the Drop Context flag is ‘1’ and the Add Context flag is ‘0’, the xHC shall: 

•  Drop the endpoint from its pipe scheduling list if it is scheduled. 

•  Set the Endpoint State (EP State) field of the Output Endpoint Context to 

Disabled. 

•  The Input Endpoint Context data structure is ignored by the xHC. 

•  If the Drop Context flag is ‘0’ and the Add Context flag is ‘1’, the xHC shall: 

•  Add the endpoint to its pipe scheduling list. 

•  All fields of the Input Endpoint Context data structure in the Configure 

Endpoint Context are copied to the Output Endpoint Context fields in the 

Device Context. 

 

Note that when the Input Endpoint Context is copied to the Output 

Endpoint Context, the ownership of a Stream Context Array pointed to 

by the Input TR Dequeue Pointer is passed from software to the xHC. 

•  The Endpoint State (EP State) field of the Output Endpoint Context is set 

to Running. 

•  Enable the associated Device Context Doorbell. 

•  If the Drop Context flag is ‘1’ and the Add Context flag is ‘1’, the xHC shall: 

•  Release the current Resources and Bandwidth allocated to the endpoint 



 

 

116    

and assign the new Resources and Bandwidth requested for the 

endpoint. 

•  All fields of the Input Endpoint Context data structure in the Configure 

Endpoint Context are copied to the Output Endpoint Context fields in the 

Device Context. 

 

Note that when the Input Endpoint Context is copied to the Output 

Endpoint Context, the ownership of a Stream Context Array pointed to 

by the Input TR Dequeue Pointer field is passed from software to the xHC. 

Software shall not deallocate any Stream Context Array data structures 

while they are owned by the xHC. It is software’s decision whether to set 

the Input TR Dequeue Pointer equal to the Output TR Dequeue Pointer, 

thus reusing the currently allocated Stream Contexts/Transfer Rings, or 

allocating new data structures and changing the Input TR Dequeue 

Pointer value. If new data structures are allocated, software shall be 

responsible for recovering the old data structures after the command 

completes. 

•  Set the Endpoint State (EP State) field of the Output Endpoint Context to 

Running. 

•  If the device is “deconfigured” by this command (i.e. all Output Endpoint 

Contexts (DCI 2-31) are in the Disabled state), the Output Slot Context Slot State 

field shall be set to the Addressed state by the xHC. 

•  If any Output Endpoint Context (2 through 31) is not in the Disabled state, the 

Output Slot Context Slot State field shall be set to the Configured state by the 

xHC. 

•  The Command Completion Event Completion Code shall indicate Success. 

When this command is used to “Set an Alternate Interface on a device”, software 

shall set the Drop Context and Add Context flags as follows: 

•  If an endpoint is not modified by the Alternate Interface setting, then software shall 

set the Drop Context and Add Context flags to ‘0’. 

•  If an endpoint previously disabled, is enabled by the Alternate Interface setting, then 

software shall set the Drop Context flag to ‘0’ and Add Context flag to ‘1’, and initialize 

the Input Endpoint Context. 

•  If an endpoint previously enabled, is disabled by the Alternate Interface setting, then 

software shall set the Drop Context flag to ‘1’ and Add Context flag to ‘0’. 

•  If a parameter of an enabled endpoint is modified by an Alternate Interface setting, 

the Drop Context and Add Context flags shall be set to ‘1’. 

When configuring or deconfiguring a device, only after completing a successful 

Configure Endpoint Command and a successful USB SET_CONFIGURATION 

request may software schedule data transfers through a newly enabled endpoint 

or Stream Transfer Ring of the Device Slot.  
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When setting an Alternate Interface on a device, only after completing a 

successful Configure Endpoint Command and a successful USB SET_INTERFACE 

request may software schedule data transfers through a newly enabled endpoint 

or Stream Transfer Ring of the Device Slot.  

When the command is complete, a Command Completion Event is posted to the 

Event Ring indicating the success or failure of the command.  

If the Slot State is Disabled when a Configure Endpoint Command is received, 

the xHC shall generate a Slot Not Enabled Error on the Event Ring. 

The xHC shall reject a Configure Endpoint Command with Bandwidth Error if it 

determines that the bandwidth required by the configuration is not available.  

The xHC shall reject a Configure Endpoint Command with Resource Error if it 

determines that it does not have enough internal resources (buffer space, etc.) 

available to service all the endpoints defined in the configuration.  

If the configuration defines periodic endpoints, system software may optionally 

issue a Negotiate Bandwidth Command to cause the xHC to renegotiate 

bandwidth with other devices. Refer to section 4.16.1 for more information on 

bandwidth negotiation. 

Upon successful completion of a Configure Endpoint Command, the enabled 

endpoints will be added to the xHCs’ pipe scheduling list, the respective Device 

Context Doorbells shall be enabled, and TRBs can be posted to any enabled 

endpoint or Stream Transfer Ring. 

Refer to section 4.11.4.5 for more information on the Configure Endpoint 

Command. 

The requirements of a “valid” Slot Context data structure are defined in section 

6.2.2.2. 

The requirements of a “valid” Endpoint Context data structure are defined in 

section 6.2.3.2. 

The requirements of a “valid” Stream Context data structure are defined in 

section 6.2.2.1. 

If the successful completion of the Configure Endpoint Command  results in 

endpoints being enabled, then information in the Input Context is copied to the 

Device Context . As illustrated in the figure below. 
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Figure 4-3: Example Configure Endpoint Command 
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To issue a Configure Endpoint Command  system software shall perform the 

following operations: 

•  Allocate and initialize an Input Context data structure for the command. 

•  Insert a Configure Endpoint Command on the Command Ring and initialize the 

following fields: 

•  TRB Type = Configure Endpoint Command (refer to Table 6-86). 

•  Slot ID = ID of the target Device Slot. 

•  Input Context Pointer = The base address of the Input Context data 

structure.Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

Note: This example assumes the existence of two global variables: Bandwidth 

Available, and Resource Available, which identify the amount of the respective 

parameter available for allocation. And two temporary variables: Bandwidth 

Required, and Resource Required, which define the amount of the respective 

parameter required to successfully complete the Configure Endpoint Command. 

Bandwidth is a commodity allocated by the host controller. Refer to section 

4.14.2 for the maximum bus bandwidth may be allocated to periodic endpoints. 

Resource is an xHC implementation specific parameter which may refer to 

internal xHC data structure or buffer space. 

Note: A Slot or Endpoint Context contained in the Input Context is referred to as an 

Input Slot or Endpoint Context. And a Slot or Endpoint Context contained in the 

Device Context data structure pointed to by the Device Context Base Address 

Array is referred to as an Output Slot or Endpoint Context. 
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When a Configure Endpoint Command is executed by the xHC it shall perform 

the following operations: 

•  Insert a Command Completion Event on the Event Ring and initialize the following 

fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Configure Endpoint Command TRB. 

•  Slot ID = The value of the command’s Slot ID. 

•  Initialize the Bandwidth Required variable to 0. 

•  Initialize the Resource Required variable to 0. 

•  If the Device Slot identified by the Slot ID field has been previously enabled by 

an Enable Slot Command: 

•  Retrieve the Output Device Context of the selected Device Slot. 

// Release the resources and bandwidth for the endpoints to be disabled. 

•  If the Output Device Context Slot State is equal to Configured: 

•  If the Deconfigure (DC) flag = ‘1’: 

•  For each Endpoint Context not in the Disabled state: 

•  Subtract the resources allocated to the endpoint from the 

Resource Required variable. 

•  If the endpoint is periodic: 

•  Subtract bandwidth allocated to the endpoint from the 

Bandwidth Required variable. 

•  Set the Output EP State field to Disabled. 

•  Set the Slot State in the Output Slot Context to Addressed. 

•  Completion Code = Success (refer to Table 6-85). Note: This value 

may be overwritten by a later operation. 

•  else // DC = ‘0’ 

•  For each Endpoint Context designated by a Drop Context flag = '1': 

•  Subtract the resources allocated to the endpoint from the 

Resource Required variable. 

•  If the endpoint is periodic: 

•  Subtract bandwidth allocated to the endpoint from the 

Bandwidth Required variable. 

•  Completion Code = Success (refer to Table 6-85). Note: This value 

may be overwritten by a later operation. 

// Calculate the resource and bandwidth requirements for the endpoints to be 

enabled. 
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•  If the Output Device Context Slot State is equal to Addressed or Configured 

and DC = ‘0’: 

•  If all Input Endpoint Contexts identified by Add Context flag fields = ‘1’ 

are valid: 

•  For each Endpoint Context designated by an Add Context flag = '1': 

•  If the xHC resources required by the enabled endpoints are 

available: 

•  Add the resources allocated to the endpoint to the Resource 

Required variable. 

•  If the endpoint is periodic: 

•  Evaluate the bandwidth requirements define by the 

Endpoint Context. 

•  Add bandwidth allocated to the endpoint from the 

Bandwidth Required variable. 

•  If the Resource Required is less than or equal to the Resource 

Available: 

•  If the Bandwidth Required is less than or equal to the Bandwidth 

Available: 

// The resource and bandwidth allocations will allow a successful 

completion, so update Endpoint Context(s). 

•  Subtract the Bandwidth Required from the Bandwidth 

Available. 

•  For each Endpoint Context designated by a Drop Context flag 

= '1': 

•  Set the EP State field to Disabled14. 

•  For each Endpoint Context designated by a Add Context flag 

= '1': 

•  Copy all fields of the Input Endpoint Context to the 

Output Endpoint Context. 

 

Note that this action passes ownership of the Transfer 

Ring or Stream Context Array/Transfer Rings from 

software to the xHC. If the Output Endpoint Context had 

previously pointed to a Transfer Ring or a Stream 

Context Array, software is responsible for performing 

any garbage collection necessary for recovering them. 

•  Set the Output EP State field to Running. 

                                                   

14Note, if both the Add and Drop flags are set for an Endpoint Context, the xHC is not expected to write out the 
intermediate Disabled state to the Output Device Context. The only requirement is that the Endpoint Context is 
correct when the Command Completion Event is generated. 
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•  Load the xHC Enqueue and Dequeue Pointers with the 

value of the TR Dequeue Pointer field from the Endpoint 

Context. 

•  If all Endpoints are Disabled: 

•  Set the Slot State in the Output Slot Context to 

Addressed. 

•  Set the Context Entries field in the Output Slot Context 

to ‘1’. 

•  else // An Endpoint is Enabled 

•  Set the Slot State in the Output Slot Context to 

Configured. 

•  Set the Context Entries field in the Output Slot Context 

to the index of the last valid Endpoint Context in its 

Output Device Context structure. 

•  Completion Code = Success (refer to Table 6-85). 

•  else15 // The Bandwidth Required is greater than the Bandwidth 

Available 

•  If the Bandwidth Error is encountered in the primary 

Bandwidth Domain: 

•  Completion Code = Bandwidth Error. 

•  else // The Bandwidth Error is encountered in a Secondary 

Bandwidth Domain, refer to section 4.16.2 for more 

information on Bandwidth Domains. 

•  Completion Code = Secondary Bandwidth Error. 

•  else // The Resource Required is greater than the Resource Available 

•  Completion Code = Resource Error. 

•  else // Not all Input Endpoint Contexts identified by Add Context flag 

fields = ‘1’ are valid 

•  Completion Code =Parameter Error. 

•  else // The Output Device Context Slot State is not equal to Addressed or 

Configured. 

•  Completion Code = Context State Error. 

•  else // The slot has not been enabled by an Enable Slot Command 

•  Completion Code = Slot Not Enabled Error. 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

                                                   

15It is not required that the following checks for Primary and Secondary Bandwidth availability occur in this order. 
An xHCI implementation may check for Secondary Bandwidth availability first. 
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Note: Disabled endpoints have no resources or bandwidth allocated to them, so if the 

Drop Context flag is ‘1’ for a Disabled endpoint it is ignored. 

Note: The xHC shall consider an Input Endpoint Context invalid if the DCI of an Add 

Context flag = ‘1’ is greater than the value of Context Entries field of the Input 

Slot Context. 

Note: A Configure Endpoint Command may generate a Max Exit Latency Too Large 

Error, because the current Max Exit Latency value caused the xHC to reject the 

configuration, e.g. the Max Exit Latency value prevented a PING required by an 

Isoch endpoing to be scheduled. Refer to section 4.23.5.2.2 for more information 

on the Max Exit Latency Too Large Error. 

Refer to sections 6.2.2 

The requirements of a “valid” Slot Context data structure are defined in section 

6.2.2.2. 

The requirements of a “valid” Endpoint Context data structure are defined in 

section 6.2.3.2. 

The requirements of a “valid” Stream Context data structure are defined in 

section 6.2.4.1. 

4.6.6.1 Exit Latency Delta (ELD) 

The Exit Latency Delta (ELD) provides a hint to software for optimizing power 

management. 

The ELD shall be reported by a Configure Endpoint Command as a non-zero 

value in the Command Completion Parameter field in the Command Completion 

Event. If the Command Completion Parameter = ‘0’, then ELD hinting  is not 

available. 

If the Completion Code of a Configure Endpoint Command = Success, then the 

ELD shall define the amount time in microseconds by which the current Max Exit 

Latency value for the slot may be successfully increased and still allow the 

configuration to succeed. If the Completion Code = Max Exit Latency Too Large 

Error, then the ELD shall define the amount of time in microseconds that Max 

Exit Latency must be reduced by to enable success. The Command Completion 

Parameter field shall be cleared to ‘0’ for all other Configure Endpoint Command 

completion Condition Code values. 

Internally an xHC adjusts its timing with an implementation specific granularity. 

An xHC shall report ELD = ‘1’ if the computed ELD value is too small to allow a 

successful command completion. 
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4.6.7 Evaluate Context 

The Evaluate Context Command is issued by software to inform the xHC that 

specific fields in the Device Context data structures have been modified. There 

are several cases where parameters associated with a Slot Context or the Default 

Control Endpoint Context are initially unknown, which shall be updated after the 

slot has entered the Addressed state. e.g. the Max Packet Size of the control 

endpoint may be determined only after software reads the Device Descriptor 

from the device through the control endpoint. The Device Descriptor shall be 

read to determine whether a device is a hub or not, etc.  

When an Evaluate Context Command is processed by the xHC it shall only affect 

the parameters identified by the respective context. Refer to the Evaluate 

Context Command Usage sub-sections in section 4.5.2 and 6.2.2.3 for more 

information on the specific context fields that are affected.  

The format of the Evaluate Context Command TRB is defined in section 6.4.3.6. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

When the command is complete, a Command Completion Event is posted to the 

Event Ring indicating the success or failure of the command.  

If the Slot State is Disabled when an Evaluate Context Command is received, the 

xHC shall generate a Slot Not Enabled Error Event on the Event Ring. 

Upon successful completion of an Evaluate Context Command, the xHC shall 

begin executing with the updated context parameters.  

The Evaluate Context Command  utilizes the Input Context data structure defined 

in section 6.2.5 to define which Contexts are to be evaluated. The state of the 

Add Context flags depends on the specific endpoints affected by the command. 

All Drop Context flags of the Input Control Context shall be cleared to ‘0’ (these 

flags do not apply to the Evaluate Context Command). System software shall 

initialize Contexts of the Input Context affected by the command. All Contexts 

not referenced by an Add Context flag in the Input Context are ignored by the 

xHC. 

To issue an Evaluate Context Command , system software shall perform the 

following operations: 

•  Allocate and initialize an Input Context data structure for the command. 

•  Insert an Evaluate Context Command on the Command Ring 

•  TRB Type = Evaluate Context Command (refer to Table 6-86). 

•  The Add Context flags shall be initialized to indicate the IDs of the Contexts 

affected by the command. Refer to sections 6.2.2.3 and 6.2.3.3 for the specific 

Context fields that shall be evaluated. 

•  Set all Drop Context flags to ‘0’. 



 

 

124    

•  Slot ID = ID of the target Device Slot. 

•  Input Context Pointer = The base address of the Input Context data structure. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When an Evaluate Context Command  is executed by the xHC it shall perform the 

following operations: 

•  Insert a Command Completion Event on the Event Ring. 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Evaluate Context Command TRB. 

•  Slot ID = The value of the command’s Slot ID. 

•  Completion Code = Success (refer to Table 6-85). 

•  If the Device Slot identified by the Slot ID fields has been previously enabled by 

an Enable Slot Command: 

•  Retrieve the Output Device Context of the selected Device Slot. 

•  If the Output Slot State is equal to Default, Addressed or Configured: 

•  For each Context designated by an Add Context flag = '1': 

•  Evaluate the parameter settings defined by the selected Contexts. 

•  If the Context parameters are not valid: 

•  Completion Code = Parameter Error. 

•  If the Max Exit Latency is non-zero: 

•  Calculate the Isoch Scheduling Delay. 

•  If the Max Exit Latency + Isoch Scheduling Delay does not allow an 

Isoch endpoint to be scheduled: 

•  Completion Code = Max Exit Latency Too Large Error. 

•  If Completion Code = Success: 

•  For each Endpoint Context designated by a Add Context flag = '1': 

•  Update Output Device Context parameters. 

•  else // The Output Slot State is not equal to Default, Addressed or Configured 

•  Completion Code = Context State Error. 

•  else // The slot has not been enabled by an Enable Slot Command 

•  Completion Code = Slot Not Enabled Error. 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

Note: The xHC shall consider an Endpoint Context invalid if the DCI of an Add Context 

flag = ‘1’ is greater than the value of Context Entries. 
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Note The Output Slot/Endpoint Context parameters shall not be changed if any error 

is detected by this command. 

Note: When an Evaluate Context Command modifies the value of Max Exit Latency, the 

xHC shall not drop the data of any Isoch TDs of any endpoints associated with 

the Device Slot targeted by the command. 

Note: Prior to issuing an Evaluate Context Command that modifies the value of the Slot 

Context Interrupter Target software shall ensure that all Endpoints (including the 

Default Control Endpoint), are in the Stopped state. 

The requirements of a “valid” Slot Context data structure are defined in section 

6.2.2.3. 

The requirements of a “valid” Endpoint Context data structure are defined in 

section 6.2.3.3. 

4.6.8 Reset Endpoint 

The Reset Endpoint Command  is issued by software to recover from a halted 

condition on an endpoint. 

The format of the Reset Endpoint Command TRB  is defined in section 6.4.3.7. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

When a Transfer Ring or Stream is halted; the associated endpoint is removed 

from the xHC’s Pipe Schedule, the Doorbell Register for that pipe is disabled, the 

state of the associated Endpoint Context is set to Halted, and any subsequent 

packets received for the endpoint will be silently dropped.  

The Reset Endpoint Command  defines Slot ID and Endpoint ID fields. The Slot ID 

and Endpoint ID fields identify the USB device, and the endpoint of that device 

that is the target of the command. 

The xHC shall perform the following operations when Resetting an endpoint:  

•  If the endpoint is not in the Halted state when an Reset Endpoint Command is 

executed: 

•  The xHC shall reject the command and generate a Command Completion Event 

with the Completion Code set to Context State Error. 

•  else 

•  If the Transfer State Preserve (TSP) flag is ‘0’: 

•  Reset the Data Toggle for USB2 devices or the Sequence Number for USB3 

devices. 

•  Reset any USB2 split transaction state associated with the endpoint. 

•  Invalidate any xHC TDs that may be cached, forcing xHC to fetch Transfer 
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TRBs from memory when the pipe transitions from the Stopped to Running 

state. 

•  else // TSP = ‘1’ 

•  The USB2 Data Toggle or the USB3 Sequence Number for the pipe shall be 

preserved. 

•  Maintain any USB2 split transaction state associated with the endpoint. 

•  The endpoint shall continue execution by retrying the last transaction the 

next time the doorbell is rung, if no other commands have been issued to the 

endpoint. 

•  Set the Endpoint Context EP State field to Stopped. 

•  Enable the Doorbell Register for the pipe. 

•  Generate a Command Completion Event with the Completion Code set to 

Success. 

After the command completes, the Transfer Ring will be reinstated on the xHC’s 

Pipe Schedule the next time its doorbell is rung.  

Note: The Reset Endpoint Command maintains the state of an endpoint so that the 

previously executed packet may be retried, irrespective of the value of the TSP 

flag. e.g. if the endpoint halted retrying the 3rd 1K packet of a 4KB TRB, a 

doorbell ring immediately after a Reset Endpoint Command would cause the 

endpoint to retry the same packet and move the data to/from a 2KB offset within 

the buffer referenced by the TRB. Clearing the TSP flag to ‘0’ resets the Data 

Toggle/Sequence Number of the endpoint, however it has no other effect on 

other state associated with the endpoint, 

Note: Prior to restarting the Transfer Ring, software may use the Set TR Dequeue 

Pointer Command to modify the value of the TR Dequeue Pointer field of the 

Endpoint Context and clear the endpoint state associated with the previously 

executed packet. If the Reset Endpoint Command is followed with a Set TR 

Dequeue Pointer Command, the endpoint shall start execution at the beginning 

of the TRB referenced by the TR Dequeue Pointer the next time the doorbell is 

rung. 

Note: Software shall execute the following sequence to “reset a pipe”, i.e. clear the xHC 

endpoint halt condition, reset the host-side Data Toggle/Sequence Number, 

clear a stall on the device, and reset the device-side Data Toggle/Sequence 

Number. Also, if the device was behind a TT, the TT buffer would also need to be 

cleared. 

•  Reset Endpoint Command (TSP = ‘0’). 

•  If the device was behind a TT and it is a Control or Bulk endpoint: 

•  Issue a ClearFeature(CLEAR_TT_BUFFER) request to the hub. 

•  If not a Control endpoint: 

•  Issue a ClearFeature(ENDPOINT_HALT) request to device. 
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•  Issue a Set TR Dequeue Pointer Command, clear the endpoint state and 

reference the TRB to start. 

•  Ring Doorbell to restart the pipe. 

The Set TR Dequeue Pointer Command resets the state of the endpoint so that 

the xHC starts transferring data at the beginning of the TRB referenced by the TR 

Dequeue Pointer (rather than at the location associated with the previous packet 

that caused the halt) when the doorbell is rung. 

Note: Undefined behavior may occur if this command is executed with TSP = ‘0’ and 

the associated device endpoint is not successfully reset by system software. E.g. 

the Data Toggle may not be synchronized between the xHC and a USB2 device 

(refer to section 8.6 in the USB2 spec). 

To issue a Reset Endpoint Command system software shall perform the 

following operations: 

•  Insert a Reset Endpoint Command TRB on the Command Ring and initialize the 

following fields: 

•  TRB Type = Reset Endpoint Command (r refer to Table 6-86). 

•  Transfer State Preserve (TSP) = Desired Transfer State result. 

•  Endpoint ID = ID of the target endpoint. 

•  Slot ID = ID of the target Device Slot. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command (DB 

Stream ID = ‘0’). 

When a Reset Endpoint Command  is executed by the xHC it shall perform the 

following operations: 

•  Insert a Command Completion Event on the Event Ring and initialize the following 

fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Reset Endpoint Command TRB. 

•  Slot ID = The value of the command’s Slot ID. 

•  If the Device Slot identified by the Slot ID has been enabled by an Enable Slot 

Command: 

•  Retrieve the Device Context of the selected Device Slot. 

•  If the Slot State is set to Default, Addressed, or Configured: 

•  If the Endpoint State (EP State) field is set to Halted: 

•  Set the Endpoint State (EP State) field to Stopped. 

•  If the Transfer State Preserve (TSP) flag is cleared to ‘0’: 

•  Set the USB2 Data Toggle or the USB3 Sequence Number for the 

pipe to ‘0’. 
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•  Enable the Doorbell register for the endpoint. 

•  Completion Code = Success (refer to Table 6-85). 

•  else // The Endpoint State (EP State) field is not set to Halted 

•  Completion Code = Context State Error. 

•  else // The Slot State is not set to Default, Addressed, or Configured 

•  Completion Code = Context State Error. 

•  else // The slot has not been enabled by an Enable Slot Command 

•  Completion Code = Slot Not Enabled Error 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

Note: The xHC resources and bandwidth associated with a reset endpoint are not 

released by the Reset Endpoint Command. 

Note: After the successful completion of a Reset Endpoint Command with TSP = ‘0’, 

system software may issue a CLEAR_FEATURE(ENDPOINT_HALT) request to the 

USB device to reset the halt condition on the endpoint of the device. 

Note: Software shall be responsible for timing the Reset “recovery interval” required 

by USB. 

Note: After a Reset Endpoint Command is executed for a control endpoint, software 

shall execute a Set TR Dequeue Pointer Command to ensure that the endpoint's 

Dequeue Pointer references a Setup TD. 

Note: Software is responsible for cleaning up any partially completed transfers after 

issuing a Reset Endpoint Command, e.g. after this command completes, software 

shall update the associated Transfer Ring to ensure that any endpoint specific 

requirements are met (e.g. as identified in the previous note), before ringing the 

endpoint’s doorbell. 

Note: The Reset Endpoint Command may only be issued to endpoints in the Halted 

state. If software wishes to reset the Data Toggle or Sequence Number of an 

endpoint that isn't in the Halted state, then software may issue a Configure 

Endpoint Command with the Drop and Add bits set for the target endpoint that 

is in the Stopped state or Running but Idle state. 

4.6.8.1 Soft Retry 

A Soft Retry may effectively be used to recover from a USB Transaction Error 

that was due to a temporary error condition (e.g. electrical interference caused 

by a cell phone transmitting too close to a USB cable). Often the delay 

introduced between software detecting the error and attempting a Soft Retry is 

enough to let the temporary condition clear and allow a successful transfer.  

Section 4.10.2.3 describes how the xHC shall halt an endpoint with a USB 

Transaction Error after CErr retries have been performed. The USB device is not 

aware that the xHC has halted the endpoint, and will be waiting for another 
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retry, so a Soft Retry may be used to perform additional retries and recover from 

an error which has caused the xHC to halt an endpoint.  

Software performs a Soft Retry with the following operations: 

1. Issue a Reset Endpoint Command with the TSP flag set to ‘1’. This causes 

the endpoint to advance from the Halted to the Stopped state, but does 

not change the state of the Data Toggle or Sequence Number, and allows 

the xHC to continue the retry process another CErr times. 

2. Ring the doorbell for the endpoint to initiate up to another CErr retries. 

To support Soft Retry, the state of a partially completed TRB transfer (e.g. if 1K 

of a 4K TRB has been moved) shall be maintained by a Reset Endpoint Command 

if TSP = ‘1’. 

Note: Soft Retry attempts shall not be performed on Isoch endpoints. Any attempt to 

do so may result in undefined behavior. 

Note: Soft Retry attempts shall not be performed if the device is behind a TT in a HS 

Hub (i.e. TT Hub Slot ID > ‘0’). Any attempt to do so may result in undefined 

behavior. 

Note: Recovery of lost data on an Interrupt endpoint may be handled by class specific 

mechanism. 

Note: Software shall limit the number of unsuccessful Soft Retry attempts to prevent 

an infinite loop. 

4.6.9 Stop Endpoint 

The Stop Endpoint Command is issued by software to stop the xHC execution of 

the TDs on an endpoint. An endpoint may be stopped by software so that it can 

temporarily take ownership of Transfer Ring TDs that had previously been 

passed to the xHC, or to stop USB activity prior to powering down the xHC. 

While the endpoint is stopped, software may add, delete, or otherwise rearrange 

TDs on an associated Transfer Ring. e.g. this command allows software to insert 

“high-priority” TDs at the Dequeue Pointer so they will be executed immediately 

when the ring is restarted, or to “abort” one or more TDs by removing them from 

the ring. 

The Stop Endpoint Command is expected to stop endpoint activity as soon as 

possible, which may mean that it stops in the middle of a TRB. When the 

endpoint stops, it saves the value of the TR Dequeue Pointer and DCS fields (and 

possibly other “Opaque” state) in the Endpoint/Stream Context so that it can 

pick up where it left off the next time its doorbell is rung, e.g. if the endpoint 

stopped after moving the first 1KB of data in a 4KB TRB, then transfer related 

state maintained by the xHC will allow it to transfer the remaining 3KB of data 

when the doorbell is rung. If a Set TR Dequeue Pointer Command  is issued while 
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an endpoint is in the Stopped state, the transfer related state of the endpoint 

will be dumped when the Output Endpoint/Stream Context TR Dequeue Pointer 

and DCS fields are overwritten. The next time the doorbell is rung, the endpoint 

shall start execution at the beginning of the TRB referenced by the  TR Dequeue 

Pointer. 

Note: If the TR Dequeue Pointer references an Event Data TRB when a TD is stopped, 

the xHC shall execute it before generating the Command Completion Event, by 

generating an Event Data Transfer Event if the IOC flag was set and advancing to 

the next TRB. 

Before generating a Command Completion Event for this command, the xHC 

shall write the final value of the endpoint’s Dequeue Pointer to the TR Dequeue 

Pointer field and CCS flag to the DCS field of the Output Endpoint Context or 

Stream Context associated with the stopped Transfer Ring. And if Stopped 

EDTLA Capability (SEC) = ‘1’, then the xHC shall write the value of the EDTLA to 

the Stopped EDTLA field of the Stream Context associated with the stopped 

Transfer Ring. The xHC shall also ensure that the Stream Context TR Dequeue 

Pointer, DCS, and Stopped EDTLA fields reflect the forward progress of any 

Stream that entered the Move Data state while the endpoint was in the Running 

state. Refer to section 4.12 for more information on Stream endpoint Stopped 

state transitions. 

Note: Stopped EDTLA Capability support (i.e. SEC = '1') shall be mandatory for all xHCI 

1.1 compliant xHCs. 

The format of the Stop Endpoint Command TRB is defined in section 6.4.3.8. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

The Stopped - Short Packet Capability (SPC) flag in the HCCPARAMS1 register 

(5.3.6) indicates whether the xHC is capable of generating a Stopped - Short 

Packet Completion Code. Any discussion of the Stopped - Short Packet 

Completion code assumes that the Stopped - Short Packet Capability  is 

supported (SPC =’1’). 

Note: The Stopped - Short Packet Capability (i.e. SPC = '1') shall be mandatory for all 

xHCI 1.1 compliant xHCs. 

Depending on the timing of the execution of the Stop Endpoint command 

relative to the execution of the TDs on the ring, one of three of scenarios may 

result: 

•  If the command is executed between TDs, then the xHC shall perform a Force 

Stopped Event (FSE) operation by generating a Transfer Event for the endpoint with 

Condition Code = Stopped - Invalid Length, TRB Pointer = current Dequeue Pointer 

value, and TRB Transfer Length = 0, then generate a Success Command Completion 

Event for the command. 
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•  If SPC = '1' and the command is executed, after a Short Packet condition has been 

detected, but before the end of the TD has been reached, (i.e. the TD is in progress 

for the pipe), then a Transfer Event TRB with its Completion Code set to Stopped - 

Short Packet and its TRB Transfer Length set to the value of the EDTLA shall be forced 

for the interrupted TRB, irrespective of whether its IOC or ISP flags are set. This 

Transfer Event TRB will precede the Command Completion Event TRB for the 

command, and is referred to as a Stopped Transfer Event. 

•  If a TD is in progress for the pipe when the command is executed, and a Short Packet 

condition has not been detected or SPC = ‘0’ and a Short Packet condition has been 

detected, then a Transfer Event TRB with its Completion Code set to Stopped, TRB 

Pointer = current Dequeue Pointer value, and TRB Transfer Length set to the residual 

bytes to transfer, shall be forced for the interrupted TRB, irrespective of whether its 

IOC or ISP flags are set. This Transfer Event TRB will precede the Command 

Completion Event TRB for the command, and is also referred to as a Stopped 

Transfer Event. 

While an endpoint is stopped, any USB packets received for it shall be silently 

dropped by the xHC. 

Note that when an endpoint is stopped, the xHC maintains the state necessary to 

restart the last active Transfer Ring where it left off, however software may not 

want to do this. The options are discussed below: 

1. Temporarily Stop Transfer Ring Activity - If the intent of software in 

issuing the Stop Endpoint Command was just to temporarily stop activity 

on the Transfer Ring, then software may restart the stopped ring where it 

left off by simply ringing its doorbell. 

2. Aborting a Transfer - If, because of a timeout or other reason, software 

issued the Stop Endpoint Command to abort the current TD. Then the Set 

TR Dequeue Pointer Command  may be used to force the xHC to dump 

any internal state that it has for the ring and restart activity at the new 

Transfer Ring location specified by the Set TR Dequeue Pointer 

Command. 

3. Modifying the order of execution of TDs on a Transfer Ring - It may be 

necessary for software to place a “high priority” TD on a ring, by inserting 

a TD ahead of any pending TDs. To safely modify the order of execution 

of TDs on a ring, software shall first stop the endpoint. When an 

endpoint is stopped, software may examine the Event Ring to determine 

the current state of TDs on the associated Transfer Ring(s). If the xHC 

stopped in the middle of a TD, then that TD may not be modified by 

software, however any other TDs on the ring may be. If the xHC stopped 

between TDs, then it may modify any TD on the transfer ring. After the 

TDs are inserted, removed, or rearranged to the satisfaction of software, 

it may ring the doorbell to restart operation on the ring.  
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Note: The xHC cannot distinguish whether software temporarily stopped Transfer Ring 

activity or stopping the Transfer Ring to modifying the order of execution of its 

TDs. In either case, if the xHC has read-ahead and cached TRBs for the Transfer 

Ring, it shall invalidate all TRBs not associated with the current TD before 

continuing execution of the Transfer Ring. This ensures that any TDs modified by 

software shall be correctly executed by the xHC. 

Note: If software is issuing the Stop Endpoint Command due to suspending a device or 

a function on a device, it shall set the Suspend (SP) flag to ‘1’ in the Stop Endpoint 

Command TRB (refer to SP definition in Table 6-66). 

The xHC shall perform the following operations when Stopping an endpoint:  

•  The xHC shall stop the USB activity for the pipe. 

•  If a USB IN or OUT transaction is in-flight, it shall be completed. 

•  ERDYs shall be ignored on the pipe for that endpoint. 

•  If LS, FS, or HS, then polling of the pipe shall cease. 

•  If an SS pipe is waiting for an ERDY, the xHC shall clear the flow control condition 

and cease waiting for the ERDY. 

Note: A Set TR Dequeue Pointer Command clears any transfer related state associated 

with an endpoint. If an SS pipe was waiting for an ERDY when the endpoint was 

stopped, then if the endpoint transfer state was not cleared by a Set TR Dequeue 

Pointer Command, the xHC shall reissue an IN or OUT for the pipe when the ring 

is restarted. 

•  The current endpoint Service Opportunity (SO) shall be terminated. 

•  Stop the Transfer Ring activity for the pipe. Refer to Table 4-2 for Stop conditions 

and Actions. 

•  Remove the endpoint from the xHC’s Pipe Schedule. 

•  Generate a Command Completion Event. 

After the command completes, the endpoint shall be reinstated on the xHC’s 

Pipe Schedule the next time its doorbell is rung.  

Note: Prior to restarting the ring, software may use the Set TR Dequeue Pointer 

Command to modify the value of the TR Dequeue Pointer field of the Endpoint 

or Stream Context. The Set TR Dequeue Pointer Command shall invalidate any 

xHC TDs that may be cached, forcing xHC to fetch Transfer TRBs from memory 

when the pipe is restarted. 

Note: If software wants to know the exact number of bytes transferred when a TD is 

stopped: 

 

If the ED flag is ‘0’ and the Completion Code equals Stopped, software may 

subtract the value of the TRB Transfer Length field reported by the Transfer 

Event from the sum of the TRB Transfer Length fields of all Transfer TRBs in the 

TD executed prior to and including the TRB referenced by the Transfer Event. 
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If the ED flag is ‘0’ and the Completion Code equals Stopped - Short Packet, 

software shall use the TRB Transfer Length field of the Transfer Event. 

 

If the ED flag is ‘0’ and the Completion Code equals Stopped - Length Invalid, 

software shall ignore the TRB Transfer Length field of the Transfer Event, and 

simply sum of the TRB Transfer Length fields of all Transfer TRBs in the TD 

executed prior to the TRB referenced by the Transfer Event. 

 

If the ED flag is ‘1’ then the TRB Transfer Length field reflects the number of 

bytes transferred prior to stopping. 

Note: If the ED flag is ‘0’ in the Stopped Transfer Event software may emulate an Event 

Data Transfer Event for the stopped Transfer Ring. It does this by starting at the 

TRB referenced by the Stopped Transfer Event and advancing through the TD, 

searching for the next Event Data TRB. If one is found, the Parameter Component 

of the Event Data TRB and the “number of bytes transferred” as described in the 

previous Note may be used to emulate an Event Data Transfer Event. 

Note: After the command is complete, the TR Dequeue Pointer field of all 

Endpoint/Stream Contexts associated with an endpoint shall contain the current 

value of the Dequeue Pointer for the respective ring. 

The xHC shall generate a Stopped Transfer Event every time a Transfer Ring is 

stopped with a Stop Endpoint Command. This operation is referred to as Force 

Stopped Event (FSE). The forced Stopped Transfer Event explicitly indicates to 

software that the selected Transfer Ring has stopped. If a Transfer Ring is empty 

when a Stop Endpoint Command is issued, a Stopped Transfer Event  shall be 

generated on the Event Ring indicated by the Slot Context Interrupter Target 

field. 

The Table 4-2 identifies the Action that shall be taken by the xHC on the TRB 

referenced by the Dequeue Pointer when the transfer ring stops. When 

restarting a Stopped endpoint, Table 4-2 also identifies whether the xHC shall 

advance the Dequeue Pointer prior to executing a TRB, or if it shall continue the 

execution at the Stopped TRB. 

Note: The cases in Table 4-2 that reference a “FSE” Action shall force an additional 

Stopped Transfer Event. 

Note: A Busy endpoint may asynchronously transition from the Running to the Halted 

or Error state due to error conditions detected while processing TRBs. A possible 

race condition may occur if software, thinking an endpoint is in the Running state, 

issues a Stop Endpoint Command however at the same time the xHC 

asynchronously transitions the endpoint to the Halted or Error state. In this case, 

a Context State Error may be generated for the command completion. Software 

may verify that this case occurred by inspecting the EP State for Halted or Error 

when a Stop Endpoint Command results in a Context State Error. 
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Table 4-2: Stop Endpoint Command TRB Handling 

TRB Type 
referenced by TR 
Dequeue Pointer 

Chain 
bit 

(CH) 
Condition Action 

Advance TR 
Dequeue Pointer 
on Doorbell Ring 

Transfer TRB16 
(Completed) 

Residual Length = 0 

1 

Stopped on TRB 
boundary within a TD17. 

Generate 
Transfer Event. 

An ISSE18 else 
Length = 0, 
CC = Stopped. 

Yes 

0 

Stopped on TD 

boundary.19 

Generate event 

if IOC flag set. 

FSE20. 

Yes 

Transfer TRB 
(Incomplete) 

Residual Length > 0 

X 

Stopped within a TRB Generate 
Transfer Event. 
An ISSE18 else 

Length = 
Residual bytes 
to transfer, 

CC = Stopped. 

No 

Event Data 1 

Stopped on 
intermediate Event 
Data TRB 

Generate 
Transfer Event. 
An ISSE18 else 

ED = 1, 
Length = 
EDTLA, 

CC = Stopped. 

Yes 

                                                   

16A “Transfer” TRB is a Normal, Setup Stage, Data Stage, Status Stage, or Isoch TRB. Note, this row identifies the case 
where the endpoint has stopped on a TRB (that is not the last TRB of a TD), where all the data associated with 
the TRB has already been transferred. 

17This condition is interpreted identically to a “Transfer TRB (Incomplete)”, where 0 bytes have been transferred. 

18 ISSE - If SPC = ‘1’, and a Short Packet condition has been detected, and the end of the TD has not been reached, 
then the xHC shall perform a Intermediate Short Stopped Event (ISSE) operation, generating a Transfer Event for 

the endpoint with Condition Code = Stopped - Short Packet, TRB Pointer = current Dequeue Pointer value, and TRB 
Transfer Length = EDTLA. 

19In this case the xHC is expected to complete the TD normally (e.g. generate a Transfer Event with CC = Success if 

the IOC flag is set and the transfer was successful) and then perform a Force Stopped Event (FSE) operation. 

20FSE - The xHC shall perform a Force Stopped Event (FSE) operation by generating a Transfer Event for the 
endpoint with Condition Code = Stopped - Invalid Length, TRB Pointer = current Dequeue Pointer value, and TRB 

Transfer Length = 0. 
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0 

Stopped on terminating 

Event Data TRB21 

Generate 

Transfer Event. 
ED = 1. 
Length = 

EDTLA.  
CC = previous 
Transfer TRB 

CC. 

FSE20 

Yes 

Link 

1 

Stopped on Link TRB 
within a TD 

Generate 
Transfer Event. 

An ISSE18 else 

Length = 0.  
CC = Stopped, 
Length Invalid. 

Yes22 

0 

Stopped on Link TD Generate event 

if IOC flag set. 

FSE20. 

Yes22 

No Op X 

Stopped on 
Terminating No Op TRB 

Generate 
Transfer Event if 
IOC flag set. 

FSE20. 

Yes 

Vendor Defined X 
Stopped on Vendor 
Defined TRB 

Vendor defined. 

FSE20. 
Vendor Defined 

Invalid TRB 

(C != DCS) 

Prev 
TRB23 CH 

= 1 

Stopped while waiting 
for more TRBs to be 

posted for TD 

Generate 
Transfer 

Event.24 
Length = 0.  
CC = Stopped - 

Length Invalid. 

No 

Prev23 

TRB CH = 
0 

Stopped on TD 
boundary 

FSE20. 

No 

 

Note: If a Transfer Ring has been Halted due to error condition when a Stop Endpoint 

Command is received, no Stopped Transfer Event shall be generated. 

                                                   

21Force normal completion of Event Data TRB before generating Command Completion Event. 

22When the Dequeue Pointer is advanced, the xHC shall begin parsing TRBs at the address identified by the Link 
TRB Ring Segment Pointer field. 

23In this case the TRB referenced by the TR Dequeue Pointer is invalid, so use the state of the Chain (CH) bit from 
the last executed TRB. If no TRBs had been executed previously, assume C = ‘0’ case. 

24The event generated by the “Stopped while waiting for more TRBs to be posted for TD.” condition uses the Slot 

Context Interrupter Target field to identify the target Event Ring. 
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To issue a Stop Endpoint Command system software shall perform the following 

operations: 

•  Insert a Stop Endpoint Command on the Command Ring and initialize the following 

fields: 

•  TRB Type = Stop Endpoint Command (refer to Table 6-86). 

•  Endpoint ID = ID of the target endpoint. 

•  Slot ID = ID of the target Device Slot. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When a Stop Endpoint Command is executed by the xHC it shall perform the 

following operations: 

•  If the Stop Endpoint Command interrupted the execution of a TD, then insert a 

Transfer Event on the Event Ring and initialize the following fields: 

•  TRB Type = Transfer Event. 

•  Slot ID = The value of the command’s Slot ID. 

•  Endpoint ID = The value of the command’s Endpoint ID. 

•  If the TRB referenced by the TR Dequeue Pointer is an Event Data TRB: 

•  ED = ‘1’. 

•  Parameter Component (TRB Pointer) = 64 bits of Event Data TRB Parameter 

component. 

•  Length = The value of the Event Data Transfer Length Accumulator (EDTLA). 

Refer to section 4.11.5.2 for a description of EDTLA. 

•  else // The the TRB referenced by the TR Dequeue Pointer is not an Event Data 

TRB 

•  ED = ‘0’. 

•  TRB Pointer = The address of the TRB interrupted by the command. 

•  Length = The number of bytes remaining to be moved for the interrupted 

TRB. 

•  Completion Code = Stopped (refer to Table 6-85). 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

•  Insert a Command Completion Event on the Event Ring and initialize the following 

fields: 

•  TRB Type = Command Completion Event. 

•  Command TRB Pointer = The address of the Stop Endpoint Command TRB. 

•  Slot ID = The value of the command’s Slot ID. 
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•  If the Device Slot identified by the Slot ID has been previously enabled by an 

Enable Slot Command: 

•  Retrieve the Device Context of the selected Device Slot. 

•  If the Slot State is set to Default, Configured, or Addressed: 

•  If the Endpoint State (EP State) field equals Running: 

•  Stop the USB activity for the pipe as described above. 

•  Stop the Transfer Ring activity for the pipe as described above. 

•  Write Dequeue Pointer value to the Output Endpoint or Stream 

Context TR Dequeue Pointer field. 

•  Write CCS value to the Output Endpoint or Stream Context Dequeue 

Cycle State (DCS) field. 

•  Removed the endpoint from the xHC’s Pipe Schedule. 

•  Set the Endpoint State (EP State) field to Stopped. 

•  Completion Code = Success. 

•  else // The Endpoint State (EP State) field is not Running 

•  Completion Code = Context State Error. 

•  else // The Slot State is not set to Default, Configured, or Addressed 

•  Completion Code = Context State Error. 

•  else // The slot has not been enabled by an Enable Slot Command 

•  Completion Code = Slot Not Enabled Error 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

Note: The xHC resources and bandwidth associated with an endpoint are not released 

by the Stop Endpoint Command. 

Note: The xHC shall wait for any partially completed USB2 split transactions to finish 

before completing the Stop Endpoint Command. 

4.6.10 Set TR Dequeue Pointer 

The Set TR Dequeue Pointer Command  is issued by software to modify the TR 

Dequeue Pointer field of an Endpoint or Stream Context. 

The Slot ID and Endpoint ID fields of the Set TR Dequeue Pointer Command TRB 

identify the USB device, and the endpoint of that device, that is the target of the 

command. If Streams are enabled for the endpoint, the Set TR Dequeue Pointer 

Command TRB Stream ID field identifies the Stream Context that shall be 

modified. 

This command may be executed only if the target endpoint is in the Error or 

Stopped state. 
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The format of the Set TR Dequeue Pointer Command TRB  is defined in section 

6.4.3.9. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

The xHC shall perform the following operations when setting a ring address:  

•  If the endpoint is not in the Error or Stopped state when the Set TR Dequeue Pointer 

Command is executed: 

•  The xHC shall reject the command and generate a Command Completion Event 

with the Completion Code set to Context State Error. 

•  else // The endpoint is in the Error or Stopped state 

•  Set the Dequeue Pointer to the value of the New TR Dequeue Pointer field in the 

Set TR Dequeue Pointer TRB. 

•  Invalidate any xHC TDs that may be cached, forcing xHC to fetch Transfer TRBs 

from memory when the pipe transitions from the Stopped to the Running state. 

•  Copy the value of the New TR Dequeue Pointer field in the Set TR Dequeue Pointer 

TRB to the TR Dequeue Pointer field of the target Endpoint or Stream Context. 

•  Clear any prior transfer state, e.g. setting the EDTLA to 0, clearing any partially 

completed USB2 split transactions, etc. 

•  Generate a Command Completion Event with the Completion Code set to 

Success. 

Note: If, when the Transfer Ring was stopped a TD was only partially executed, then 

any remaining TRBs in that TD shall not be executed when the endpoints’ TR 

Dequeue Pointer is updated by the Set TR Dequeue Pointer Command. 

Note: A Set TR Dequeue Pointer Command may be issued to modify the TR Dequeue 

Pointer field of a non-active Stream Context while a Stream endpoint is in the 

Running state. Refer to section 4.12 for active vs. non-active Stream Context 

information. 

To issue a Set TR Dequeue Pointer Command system software shall perform the 

following operations: 

•  Insert a Set TR Dequeue Pointer Command on the Command Ring and initialize the 

following fields: 

•  TRB Type = Set TR Dequeue Pointer Command (refer to Table 6-86). 

•  Endpoint ID = ID of the target endpoint. 

•  Stream ID = ID of the target Stream Context or ‘0’ if MaxPStreams = ‘0’. 

•  Slot ID = ID of the target Device Slot. 

•  New TR Dequeue Pointer = The new TR Dequeue Pointer field value for the target 

endpoint. 

•  Dequeue Cycle State (DCS) = The state of the xHCI CCS flag for the TRB pointed 

to by the TR Dequeue Pointer field. 
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•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When a Set TR Dequeue Pointer Command  is executed by the xHC it shall 

perform the following operations: 

•  Insert a Command Completion Event on the Event Ring and initialize the following 

fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Set TR Dequeue Pointer Command 

TRB. 

•  Slot ID = The value of the command’s Slot ID. 

•  If the Device Slot identified by the Slot ID has been enabled by an Enable Slot 

Command: 

•  Retrieve the Device Context of the selected Device Slot. 

•  If the Slot State is set to Default, Configured, or Addressed: 

•  If the Endpoint State (EP State) field equals Stopped or Error: 

•  If the Stream ID field is non-zero a Stream Context is referenced so 

perform a Stream ID boundary check as described in section 

4.12.2.1: 

•  If the Stream ID is valid: 

•  Copy the value of the New TR Dequeue Pointer field to the 

TR Dequeue Pointer field of the target Stream Context. 

•  Copy the value of the Dequeue Cycle State (DCS) field to the 

Dequeue Cycle State (DCS) field of the target Stream 

Context. 

•  Completion Code = Success (refer to Table 6-85). 

•  else // The Stream ID is invalid 

•  Completion Code = TRB Error. 

•  else (Stream ID = ‘0’) 

•  If MaxPStreams = ‘0’: 

•  Copy the value of the New TR Dequeue Pointer field to the 

TR Dequeue Pointer field of the target Endpoint Context. 

•  Copy the value of the Dequeue Cycle State (DCS) field to the 

Dequeue Cycle State (DCS) field of the target Endpoint 

Context. 

•  Completion Code = Success. 

•  else // MaxPStreams > ‘0’ 

•  Completion Code = TRB Error. 

•  else // The Endpoint State (EP State) field is not Stopped or Error 

•  Completion Code = Context State Error. 
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•  else // The Slot State is not set to Default, Configured, or Addressed 

•  Completion Code = Context State Error. 

•  else // The slot has not been enabled by an Enable Slot Command 

•  Completion Code = Slot Not Enabled Error 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

Note: Consider the case where there are multiple TDs posted for pipe for a single data 

transfer and an error condition on one TD means that the data transfer is 

terminated, and that the subsequent TDs associated with the data transfer are 

now invalid. The xHC may have read ahead on the Transfer Ring and cached the 

subsequent TDs. To ensure that xHC frees any cached information associated 

with a pipe in a timely manner (so that it can reuse the cache space for other 

pipes), software shall issue a Set TR Dequeue Pointer Command for the pipe 

when the data transfer is terminated, vs. waiting for the next data transfer to be 

ready before issuing the command. 

Note: If software issues a Set TR Dequeue Pointer Command that points to a TRB that 

had previously been partially completed TD, the xHC shall treat that TRB as the 

first TRB of the TD. i.e. any prior state associated with a partially completed TRB 

is lost. 

Note: The xHC does not maintain knowledge of which Streams are active or non-active. 

If software issues a Set TR Dequeue Pointer Command that targets an active 

Stream of an endpoint, undefined behavior may occur. Refer to section 4.12 for 

active vs. non-active Stream Context information) 

4.6.11 Reset Device 

The Reset Device Command is used by software to inform the xHC that the USB 

Device associated with a Device Slot has been Reset (by either; setting the Root 

Hub port PR flag if the device is attached to a Root Hub port, or issuing a 

SetPortFeature(PORT_RESET) request the external hub port upstream of the 

device). In the Slot Context of the selected device slot, the reset operation sets 

the Slot State field to the Default state and the USB Device Address field to ‘0’. 

The reset operation also disables all endpoints of the slot except for the Default 

Control Endpoint by setting the Endpoint Context EP State field to Disabled in 

all enabled Endpoint Contexts. Software should stop all endpoint activity before 

issuing a Reset Device Command. 

For all endpoints except the Default Control Endpoint the xHC shall:  

•  Terminate any USB activity (e.g. packet transfers). 

•  Disable the endpoints’ Doorbell. 

•  Drop any pending events not already posted to an Event Ring. 

•  Free any bandwidth allocated to the periodic endpoints. 
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•  Free any internal resources associated with the endpoint. 

For the Default Control Endpoint the xHC shall terminate any USB activity, abort 

any pending events not already posted to an Event Ring, and transition the 

endpoint to the Running state. Undefined behavior may occur if this command is 

executed and the device associated with it is not successfully reset. E.g. if the 

USB device is not in the Default state, then a subsequent Address Device 

Command shall fail. 

The format of the Reset Device Command TRB  is defined in section 6.4.3.10. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

To issue a Reset Device Command system software shall perform the following 

operations: 

•  Insert an Reset Device Command on the Command Ring and initialize the following 

fields: 

•  TRB Type = Reset Device Command (refer to Table 6-86). 

•  Slot ID = The ID of the Device Slot to reset. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When a Reset Device Command is executed by the xHC it shall perform the 

following operations: 

•  If the Device Slot is in the Addressed or Configured state: 

•  Abort any USB transactions to the Device. 

•  Set the Slot State field of Slot Context to the Default state. 

•  Set the Context Entries field of Slot Context to ‘1’. 

•  Set the USB Device Address field of Slot Context to ‘0’. 

•  For each Endpoint Context of the Device Context (except the Default Control 

Endpoint): 

•  Set the Endpoint Context EP State field to Disabled. 

•  Insert a Command Completion Event on the Event Ring of Interrupter 0 and initialize 

the following fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Reset Device Command TRB. 

•  If the Device Slot was in the Addressed or Configured state: 

•  Completion Code = Success (refer to Table 6-85). 

•  else // The Device Slot was not in the Addressed or Configured state 

•  Completion Code = Context State Error. 

•  Clear all other fields of the event TRB to ‘0’. 
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•  Cycle bit = Event Ring’s PCS flag. 

Note: Software is responsible for recovering any memory data structures (Stream 

Context Arrays, Transfer Rings, etc.) owned by disabled Endpoint Contexts the 

slot when the Reset Device Command is issued. 

The Reset Device Command forces a Device Slot to the Default state, however 

the Reset Device Command TRB (section 6.4.3.10) does not reference an Input 

Context, so there is no Input Context available to use to set the values of the 

Output Device Context. After the completion of a Reset Device Command the 

Slot and Endpoint 0 Contexts shall contain values that allow the xHC to issue 

requests to the Default Control Endpoint of the USB device that has just been 

reset. Refer to sections 6.2.2.4 and 6.2.3.7 for the respective Slot Context and 

Endpoint Context field value settings. 

4.6.12 Force Event (Optional Normative) 

The Force Event Command is used by a VMM to insert an Event TRB in an Event 

Ring of a target VM when the VMM is emulating an xHC device to a VM.  

When a Force Event Command is processed by the xHC it shall insert an Event 

TRB on the target VFs’ Event Ring and copy the data pointed to by the Force 

Event Command, with the exception of the Cycle bit, to the target Event TRB. 

The xHC shall set the Cycle bit to be consistent with the target VFs’ Event Ring. 

A Command Completion Event  with a TRB Error will be generated if the VF ID of 

the Force Event Command is not valid. A VF Event Ring Full Error shall be 

generated if the Target VF’s Event Ring is full.  

Refer to section 8 for detailed information on the use of the Force Event 

Command in a virtualized environment. And refer to section 3.3.11 for a high 

level description of the Force Event Command and it’s usage. 

The format of the Force Event Command TRB  is defined in section 6.4.3.11. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

To issue a Force Event Command system software shall perform the following 

operations: 

•  Allocate and initialize the VF Event TRB that will be sent to the target VF’s Event Ring. 

The details of the VF Event TRB initialization will depend on the type of Event that is 

being forced. 

•  Insert a Force Event Command on the Command Ring of the PF0 and initialize the 

following fields: 

•  TRB Type = Force Event Command (refer to Table 6-86). 

•  VF ID = ID of the target VF. 



 

 

 

  143 

•  VF Interrupter Target = The ID of the target Interrupter assigned to the VF. Refer 

to  Table 6-72 for more information on this value. 

•  Event TRB Pointer = The address of the VF Event TRB. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When a Force Event Command is executed by the xHC it shall perform the 

following operations: 

•  Insert a Command Completion Event on the Event Ring and initialize the following 

fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Force Event Command TRB. 

•  If the VF ID is valid: 

•  If the VF Interrupter Target is in range for the VF: 

•  If the target VF’s Event Ring is not full: 

•  Insert the VF’s Event TRB referenced by the Force Event Command 

Event TRB Pointer into target VF’s Event Ring specified by the VF ID 

and the VF Interrupter Target fields: 

•  Copy all fields of the VF Event TRB except the Cycle bit field to 

the target VF’s Event Ring. 

•  Cycle bit = Target VF’s Event Ring’s PCS flag. 

•  Completion Code = Success (refer to Table 6-85). 

•  else // The target VF’s Event Ring is full 

•  Completion Code = VF Event Ring Full Error. 

•  else // The VF Interrupter Target is not in range for the VF 

•  Completion Code = TRB Error. 

•  else // The VF ID is not valid 

•  Completion Code = TRB Error. 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

Note: When the command completes, the VMM may release the buffer containing the 

Event TRB pointed to by the Force Event Command. 

Note: The “forced” event shall be dropped if the target Event Ring is full. Software 

should reschedule a Force Event Command if an VF Event Ring Full Error is 

returned. 
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4.6.13 Negotiate Bandwidth (Optional Normative) 

The Negotiate Bandwidth Command is used by system software to initiate 

Bandwidth Request Events for periodic endpoints. This command should be 

used recover unused USB bandwidth from the system. 

If the BW Negotiation Capability (BNC) bit in the HCCPARAMS1 register is ‘1’, the 

xHC shall support this command. 

This command shall complete with a Success Completion Code if the command 

is supported, or a TRB Error Completion Code if the command is not supported. 

The xHC shall generate Bandwidth Request Events  upon the reception of the 

command to all target periodic endpoints. The command will complete when all 

Bandwidth Request Events have been generated. 

The format of the Negotiate Bandwidth Command TRB is defined in section 

6.4.3.12. 

The format of the Bandwidth Request Event TRB  is defined in section 6.4.2.4. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

To issue a Negotiate Bandwidth Command system software shall perform the 

following operations: 

•  Insert an Negotiate Bandwidth Command on the Command Ring and initialize the 

following fields: 

•  TRB Type = Negotiate Bandwidth Command (refer to Table 6-86). 

•  Slot ID = The ID of the slot that requires the bandwidth negotiation. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When a Negotiate Bandwidth Command is executed by the xHC it shall perform 

the following operations: 

•  If the command is supported: 

•  If the Device Slot identified by the Slot ID has been enabled by an Enable Slot 

Command: 

•  If the Slot ID identifies a slot in the Addressed or Configured state then: 

•  If there are devices that define candidate periodic endpoints for 

receiving Bandwidth Request Events: 

•  For each device, identify the target Event Ring (specified by the 

Interrupt Target field of the device’s Slot Context). 

•  If there is space on the device’s target Event Ring: 
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•  Insert a Bandwidth Request Event and initialize the following 

fields: 

•  TRB Type = Bandwidth Request Event (refer to Table 6-86). 

•  Slot ID = ID of the device slot. 

•  Completion Code = Success (refer to Table 6-85). 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Device’s target Event Ring’s PCS flag. 

•  else // No space on the device’s target Event Ring 

•  Skip the device. 

•  Completion Code = Success (refer to Table 6-85). 

•  else // The Slot ID identifies slot not in the Addressed or Configured state 

•  Completion Code =Context State Error. 

•  else // The slot has not been enabled by an Enable Slot Command 

•  Completion Code = Slot Not Enabled Error 

•  else // The Negotiate Bandwidth Command is not supported 

•  Completion Code =TRB Error. 

•  Insert a Command Completion Event on the Event Ring of Interrupter 0 and initialize 

the following fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Negotiate Bandwidth Command 

TRB. 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

Note: System software may never issue a Negotiate Bandwidth Command, however if 

the BNC flag is ‘1’ an unsolicited Bandwidth Request Event may be generated by 

hardware, e.g. if the system software is running in a Virtual Machine and 

communicating with an xHCI Virtual Function. This condition occurs when 

system software running in another Virtual Machine issues a Negotiate 

Bandwidth Command through its xHCI Virtual Function. System software should 

immediately honor an unsolicited Bandwidth Request Event and free unused 

USB bandwidth by selecting lower bandwidth alternate configurations or 

interfaces on the devices that it owns. 

Note: If the target Event Ring for a device is full, the Bandwidth Request Event shall be 

dropped by the xHC. 

Note: The xHCI may generate a Bandwidth Request Event for the same slot that a 

Negotiate Bandwidth Command was issued to. 
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4.6.14 Set Latency Tolerance Value (LTV) (Optional Normative) 

Refer to section 4.13.1 for an overview of the xHCI’s USB3 Latency Tolerance 

Messaging (LTM) support. This section describes the Set LTV Command which is 

one component of the Latency Tolerance Reporting (LTR) mechanism. 

The Set LTV Command provides a simple means for host software to provide a 

Best Effort Latency Tolerance  (BELT) value to the xHC. This command is optional 

normative, however it shall be supported if the xHC also supports a 

corresponding host interconnect LTR mechanism. 

Note: The host's interconnect LTR definition is owned by the respective bus 

specification and is outside the scope of this document. (e.g. PCI Express, AHBA, 

etc.) 

The value of the BELT field in the Set LTV Command TRB shall be treated in 

exactly the same way as BELT values received from USB3 devices by the xHC. 

Refer to section 4.13.1. 

Note: The manner in which these values are stored is implementation specific and as 

such falls outside the scope of this specification. 

If the Latency Tolerance Messaging Capability  (LTC) bit in the HCCPARAMS1 

register is ‘0’, the xHC shall not support this command.  

Note: If LTC = 0, then this xHC implementation does not translate LTM messages from 

a device into system LTM messages. However, if enabled in the DNCTRL register 

(N2 = ‘1’), then LTM Device Notification TPs are received by the xHC shall 

generate Device Notification Events. Refer to section 4.13.1. 

This command will complete with a Success Completion Code if the command is 

supported, or a TRB Error Completion Code if the command is not supported. 

The format of the Set Latency Tolerance Value Command TRB  is defined in 

section 6.4.3.13. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

To issue a Set Latency Tolerance Value Command  system software shall perform 

the following operations: 

•  Insert an Set Latency Tolerance Value Command on the Command Ring and initialize 

the following fields: 

•  TRB Type = Set Latency Tolerance Value Command (refer to Table 6-86). 

•  BELT = The Best Effort Latency Tolerance value provided by software. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 
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When a Set Latency Tolerance Value Command  is executed by the xHC it shall 

perform the following operations: 

•  Record the value of the BELT field as the host defined LTV. 

•  If the value of the BELT field is less than the “current” LTV maintained by the xHC: 

•  Set the value of the BELT field as the “current” xHC LTV. 

•  Send the host-specific LTM to the host, reporting the new LTV to the system. 

•  Insert a Command Completion Event on the Event Ring of Interrupter 0 and initialize 

the following fields: 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Set Latency Tolerance Value 

Command TRB. 

•  Completion Code = Success (refer to Table 6-85). 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

4.6.15 Get Port Bandwidth 

The Get Port Bandwidth Command is issued by software to retrieve the 

percentage of Total Available Bandwidth  on each Root Hub Port of the xHC or 

on the downstream facing ports of a external USB hub. This information can be 

used by system software to recommend topology changes to the user if they 

were unable to enumerate a device due to a Bandwidth Error (Root Hub) or 

Secondary Bandwidth Error (external hub). 

An xHC may support multiple USB Bus Instances (BI), where each BI represents a 

“unit” bandwidth at the speed that the BI supports. Also note that multiple Root 

Hub ports may be assigned to a single BI.  

For instance, an xHCI implementation that supports 8 ports may provide 1 SS BI, 

2 HS BIs, and 4 LS/FS BIs. So in this example there are 7 USB BIs, 1 SS (5Gb/s), 2 

HS (480 Mb/s) and 4 LS/FS (12Mb/s). Any SS device attached to a root hub port 

shares the SS BI bandwidth. If the 2 HS BIs are mapped to ports 0 to 3 and 4 to 

7, and the 4 LS/FS BIs are mapped to ports 0 and 1, 2 and 3, 4 and 5, and 6 and 

7, respectively, then an LS/FS device attached to port 5 shares the BW available 

on port 4 provided by one the LS/FS BIs, but not with any other ports. A more 

sophisticated xHC implementation may have the ability to dynamically map 

ports to BIs as function a device’s bandwidth requirements.  

A USB2 hub may support a single or multiple Transaction Translators (TT), 

where a single TT is capable of providing the equivalent of a LS/FS BI’s 

bandwidth. If a USB2 Hub supports a single TT, then all of its downstream facing 

ports attached to LS or FS devices shall share the bandwidth of the single TT 

(i.e. a LS/FS BI). If a USB2 Hub supports a multi-TT capability, then a separate TT 
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exists for each of its downstream facing ports and each port is capable of 

providing the bandwidth of a LS/FS BI.  

When software issues a Get Port Bandwidth Command it is trying to 

accommodate the bandwidth requirements of a particular device. By providing a 

Device Speed parameter in the Get Port Bandwidth Command, the xHC can 

supply software with Total Available Bandwidth on each port of the Root Hub or 

USB2 hub, at a particular speed, without exposing its BI or TT to Port mapping 

scheme. 

Software, knowing the percentage of Total Available Bandwidth  on a hub port, 

the speed that the device in question is operating at, and the device’s bandwidth 

requirement, may determine if a particular port will meet the device’s bandwidth 

needs. 

The xHC uses the Device Speed parameter to identify which Bus Instance(s) to 

use when it calculates the Total Available Bandwidth  on that port. 

The Get Port Bandwidth Command passes a pointer to a Port Bandwidth Context 

data structure to the xHC. The xHC updates this context with the percentage of 

Total Available Bandwidth on each port. If a hub is attached to a Root Hub port 

then the reported bandwidth is available on any unused port of the hub or any 

port of the hub that is operating at the Device Speed. 

For the Root Hub the Port Bandwidth Context shall be at least NumPorts+1 bytes 

in size or for an external hub the Port Bandwidth Context shall be at least 

bNbrPorts25+1 bytes in size, rounded up to the nearest Dword boundary. 

The xHC overwrites the Port Bandwidth Context when it executes the Get Port 

Bandwidth Command, so software does not need to initialize the context data 

structure before passing it to the xHC. 

•  A Root Hub port assigned to the Debug Capability shall report ‘0’ bandwidth 

available. 

•  If the Device Speed parameter is LS, FS, or HS, then USB3 (SS) Root Hub ports shall 

report ‘0’ bandwidth available. 

•  If the Device Speed parameter is SS, then USB2 Root Hub ports shall report ‘0’ 

bandwidth available. 

Note: Software shall consider any port that reports ‘0’ bandwidth available as being 

unusable. A port that, as far as software is concerned, does not have a device 

attached may report ‘0’ bandwidth available. e.g. a VMM shall report ‘0’ 

bandwidth for a port if the device attached to it is assigned to another VF. 

                                                   

25Refer to section 11.23.2.1 in the USB2 spec for the definition Hub Descriptor bNbrPorts field. 
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Consider a physical connector that is “USB3 compatible” and has a SS device 

attached it. The connector will be wired to a USB2 and a USB3 Root Hub Port. 

When the USB2 Root Hub Port is queried for its HS bandwidth availability, it will 

not know that a SS device is attached to physical connector and report a non-

zero HS bandwidth availability, when in reality the USB2 Root Hub port is not 

available because it is associated with a physical connector that is attached to 

SS device. The same problem will occur with a USB3 Root Hub port if a USB2 

device or hub is attached to the physical connector. Note that the problem does 

not occur if a USB3 hub is attached because both Root Hub Ports see a hub 

attached. Software, knowing the Root Hub Port to physical USB connector 

mapping (refer to section 4.19.7) and whether the attached device is a USB2 or 

USB3 hub, shall be responsible for correcting the reported Port Bandwidth 

Values. 

The format of the Get Port Bandwidth Command TRB is defined in section 

6.4.3.14. 

The Get Port Bandwidth Command  utilizes the Port Bandwidth Context data 

structure defined in section 6.2.6. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 

To issue a Get Port Bandwidth Command, system software shall perform the 

following operations: 

•  Allocate and initialize an Port Bandwidth Context data structure. 

•  Insert a Get Port Bandwidth Command TRB on the Command Ring 

•  TRB Type = Get Port Bandwidth Command (refer to Table 6-86). 

•  Dev Speed = The bus speed of the target device. Refer to the Dev Speed field in 

Table 6-76 for the encoding. 

•  Hub Slot ID = ‘0’ if referencing Root Hub ports (i.e. the Primary Bandwidth 

Domain) or the value of the respective hub’s Slot ID if referencing the ports of a 

USB2 hub (i.e. a Secondary Bandwidth Domain). Refer to section 4.16.2 for more 

information on Bandwidth Domains. 

•  Port Bandwidth Context Pointer = The base address of the Port Bandwidth 

Context data structure. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When a Get Port Bandwidth Command is executed by the xHC it shall perform 

the following operations: 

•  Insert a Command Completion Event TRB on the Event Ring. 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Get Port Bandwidth Command TRB. 
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•  Slot ID = ‘0’. 

•  If the Dev Speed field is valid (i.e. not equal to Undefined or Reserved): 

•  If the Hub Slot ID field = ‘0’: 

•  Compute Percentage of Total Available Bandwidth for each Root Hub 

port based on its Speed. Use the value of the Dev Speed field for ports 

that do not have devices attached. 

•  else 

•  Compute the percentage of Total Available Bandwidth for the ports of 

the hub specified by the Hub Slot ID based on their Speed. Use the value 

of the Dev Speed field for ports that do not have devices attached. 

•  Copy the results to the Port Bandwidth Context. 

•  Completion Code = Success (refer to Table 6-85). 

•  else // The Dev Speed field is not valid 

•  Completion Code = TRB Error. 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

Note: If a non-zero Hub Slot ID references a Device Slot whose Slot Context Hub field 

= ‘0’ or Speed field is not equal to High-speed, may result in undefined behavior 

by the xHC. 

4.6.16 Force Header 

The Force Header Command is issued by software to send a Link Management 

(LMP) or Transaction Packet (TP) to a USB device, through a selected Root Hub 

Port. For instance, it may be used to send a PING TP or a Vendor Device Test 

LMP. 

Note: Inappropriate or incorrect use of this command may cause the xHC link state 

machines to get out of sync with those on an attached device. Software shall 

comprehend the possible side effects of the specific headers that are forced on 

the USB. If a forced header results in undefined behavior by the device or the 

xHC (e.g. a DPH with no DP), software may have to reset the device, a Root Hub 

port, the xHC, or all of them to restore normal operating conditions. 

 

The xHC is not required to comprehend the content of the header being forced. 

Depending upon the type of header forced, it is possible for various parameters 

in the header (such a Data Packet sequence numbers) to be out of sync with the 

host controller and/or device. In addition, some TPs may result in Device 

responses which will not be comprehended by the xHC. It may be necessary to 

reset the xHC to recover from these conditions. 

The format of the Force Header Command TRB is defined in section 6.4.3.15. 

The format of the Command Completion Event TRB is defined in section 6.4.2.2. 
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To issue a Force Header Command, system software shall perform the following 

operations: 

•  Insert a Force Header Command TRB on the Command Ring 

•  TRB Type = Force Header Command (refer to Table 6-86). 

•  Root Hub Port Number = The number of the Root Hub Port that defines the target 

of the Header packet. 

•  Packet Type = The field identifies the SS packet type. Refer to section 8.3.1.2 in 

the USB3 specification for valid values. 

•  Header Info = The header Type specific data to send to the target device. Refer 

to section 8 in the USB3 specification for the encoding information. 

•  Clear all other fields of the command TRB to ‘0’. 

•  Cycle bit = Command Ring’s PCS flag. 

•  Write the Host Controller Doorbell with DB Target = Host Controller Command. 

When a Force Header Command is executed by the xHC it shall perform the 

following operations: 

•  Insert a Command Completion Event on the Event Ring. 

•  TRB Type = Command Completion Event (refer to Table 6-86). 

•  Command TRB Pointer = The address of the Force Header Command TRB. 

•  Slot ID = 0. 

•  If the value Root Hub Port Number field is in range: 

•  If the Force Header packet was transmitted successfully: 

•  Completion Code = Success (refer to Table 6-85). 

•  else // The Force Header packet was not transmitted successfully 

•  Completion Code = Undefined Error. 

•  else // The value Root Hub Port Number field is not in range 

•  Completion Code = TRB Error. 

•  Clear all other fields of the event TRB to ‘0’. 

•  Cycle bit = Event Ring’s PCS flag. 

4.7 Doorbells 

The xHCI presents an array of up to 256 32-bit Doorbell Registers (refer to 

section 5.6), which reside in MMIO space and are indexed by Device Slot ID. The 

base of the Doorbell Register Array is pointed to by the Doorbell Offset (DBOFF) 

register in the xHCI Capability Registers (refer to section 5.3.7).  

Each Doorbell Register contains a DB Target field, which is used to indicate the 

reason for a software reference to the register. System software “rings” a 
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doorbell by writing a Doorbell Register with the appropriate value in the DB 

Target field. 

Doorbell Register 0 is dedicated to the Host Controller. For this register, there is 

only one valid value for the DB Target field, 0 (Host Controller Command). The 

remaining values (1-255) are reserved. 

Doorbell Registers 1-255 are referred to as the Device Context Doorbell 

registers. There is a 1:1 mapping of Device Context Doorbell registers to Device 

Slots. System software rings a Device Context Doorbell after it has inserted work 

on a Transfer Ring (endpoint/Stream) associated with the respective Device Slot. 

The DB Target and DB Stream ID fields of a Device Context Doorbell register is 

used to identify which Transfer Ring of a device has been modified. Refer to 

Table 5-40 for the encoding of the DB Target field.  

The xHC internally records all Doorbell Register write references and uses the 

information to determine if the Command Ring or a Transfer Ring has newly 

posted work items (TDs). There is no need to “clear” a Doorbell Register. To 

inform the xHC that work has been posted to two separate Transfer Rings of a 

device, system software shall post two writes to the associated Doorbell 

Registers, where the value of the DB Target field identifies the respective 

Transfer Ring. 

Doorbell registers return no information when read. 

Software shall not write to a Doorbell register:  

•  If the associated Device Slot is in the Disabled state. 

•  If the associated Device Slot is not in the Disabled state and the DB Target field is set 

to an endpoint that is in the Disabled state. 

If a doorbell register is written by software with the DB Target value that 

references an endpoint that is in the Disabled state, the xHC should generate a 

Transfer Event TRB with the TRB Pointer, TRB Transfer Length, Event Data (ED) 

fields set to ‘0’, a Completion Code of Endpoint Not Enabled Error , and the Slot 

ID and Endpoint ID fields contain the IDs of device slot/endpoint that the 

doorbell that was rung for. This transfer Event TRB shall be posted to the 

Primary Event Ring. 

An Endpoint Not Enabled Error should be generated for doorbell register writes 

to Device Slots that are in the Disabled state regardless of the DB Target value 

provided. 

The xHC may ignore doorbell references to Device Slots in the Disabled state or 

endpoints in the Disabled state. 

The xHC shall ignore doorbell references to endpoints in the Halted or Error 

state. 
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4.8 Endpoint 

A USB device supports up to 31 endpoints (EPs): e.g.15 IN, 15 OUT, and 1 

Control. The Default Control EP (0) is a bidirectional EP defined for all USB 

devices. 

4.8.1 Endpoint Addressing 

 

Figure 4-4: Endpoint Context Addressing 
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An Endpoint Address defined by a USB Endpoint Descriptor allows up to 31 

possible values, where a 4-bit Endpoint Number is combined with a Direction bit 

(refer to section 9.6.6 in the USB2 spec). The xHCI parallels this organization by 

using the Endpoint Number to select one of 16 Endpoint Context data structure 

pairs, and the Direction bit to select the IN or OUT Endpoint Context of a pair. 

Refer to Figure 4-4 to the right. 

A Control endpoint (e.g. EP Number 0 in Figure 4-4) is a bidirectional endpoint 

and, per the USB specification, the Direction bit is “ignored” when calculating its 

Endpoint Address , i.e. only the Endpoint Number is used to calculate the location 

of a Control Endpoint Context data structure. To accommodate the addressing 

anomaly of USB bidirectional endpoint addressing the xHC shall use the IN (odd) 

Endpoint Context of the pair to manage bidirectional endpoints.  

The USB specification allows a device to define additional Control (bidirectional) 

endpoints, beyond the Default Control Endpoint (EP 0) required by the USB 

Framework. Using the rules defined above, the xHCI is capable of supporting 

additional Control endpoints. 
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For all Endpoint Numbers greater than 0, the xHC shall ignore the OUT (even) 

Endpoint Context of the pair of any endpoint that declares itself as a 

bidirectional. Software shall use the IN (odd) Endpoint Context of a pair for 

managing a Control Endpoint. 

4.8.2 Endpoint Context Initialization 

All fields of an Input Endpoint Context data structure (including the Reserved 

fields) shall be initialized to ‘0’ with the following exceptions:  

4.8.2.1 Default Control Endpoint 0 

•  EP Type = Control. Refer to Table 6-9 for the encoding. 

•  Max Packet Size = For USB2 devices: Device Descriptor:bMaxPacketSize0 or for USB3 

devices” Device Descriptor:2bMaxPacketSize0. May be set to Default Endpoint Max Packet 

Size until USB Device Descriptor is retrieved. An Evaluate Endpoint Command shall 

be used to modify the value of Max Packet Size when the device slot is in the 

Addressed state. 

•  CErr = 3. Enables 3 retries. 

•  TR Dequeue Pointer = Start address of the first segment of the previously allocated 

Transfer Ring. 

•  Dequeue Cycle State (DCS) = 1. Assuming that all TRBs in the segment referenced by 

the TR Dequeue Pointer have been initialized to ‘0’, this field reflects Cycle bit state 

for valid TRBs written by software. 

4.8.2.2 Control Endpoints 

Identical to the Default Control Endpoint except that the Max Packet Size shall 

be set to the value of the associated Endpoint Descriptor:wMaxPacketSize.  

4.8.2.3 Bulk Endpoints 

•  EP Type = Bulk IN or Bulk OUT. Refer to Table 6-9 for the encoding. 

•  Max Packet Size = Endpoint Descriptor:wMaxPacketSize. 

•  Max Burst Size = For USB3 devices: SuperSpeed Endpoint Companion 

Descriptor:bMaxBurst, for USB2 devices: ‘0’. 

•  CErr = 3. Enables 3 retries. 

•  If Streams are enabled (i.e. SuperSpeed Endpoint Companion 

Descriptor:bmAttributes MaxStreams field > 0): 

•  Allocate and clear Primary Stream Array. 

•  MaxPStreams = Size of Primary Stream Array. 

•  TR Dequeue Pointer = Start address of Primary Stream Array. 
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•  HID = Initialize as required to enable or disable Host Initiated Move Data 

operations. 

•  LSA = Initialize as required to enable or disable Linear Stream Array operations. 

•  else 

•  MaxPStreams = ‘0’. 

•  TR Dequeue Pointer = Start address of the first segment of the previously 

allocated Transfer Ring. 

•  Dequeue Cycle State (DCS) = 1. Assuming that all TRBs in the segment referenced 

by the TR Dequeue Pointer have been initialized to ‘0’, this field reflects Cycle bit 

state for valid TRBs written by software. 

Note: The Endpoint Context Dequeue Cycle State (DCS) field is not applicable if the 

Streams are enabled. 

4.8.2.4 Isoch or Interrupt Endpoints 

•  EP Type = Isoch IN, Isoch OUT, Interrupt IN or Interrupt OUT. Refer to Table 6-9 for 

the encoding. 

•  Max Packet Size = Endpoint Descriptor:wMaxPacketSize & 07FFh. 

•  Max Burst Size = SuperSpeed Endpoint Companion Descriptor:bMaxBurst or 

(Endpoint Descriptor: wMaxPacketSize & 1800h) >> 11. 

•  Mult = SuperSpeed Endpoint Companion Descriptor:bmAttributes:Mult field. 

Always ‘0’ for Interrupt endpoints. 

•  CErr = 3 for Interrupt endpoints. Enables 3 retries. 

CErr = 0 for Isoch endpoints. Retries are not performed for Isoch endpoints. 

•  TR Dequeue Pointer = Start address of the first segment of the previously allocated 

Transfer Ring. 

•  Dequeue Cycle State (DCS) = 1. Assuming that all TRBs in the segment referenced 

by the TR Dequeue Pointer have been initialized to ‘0’, this field reflects Cycle bit 

state for valid TRBs written by software. 

•  Max ESIT Payload = Refer to section 4.14.2 for value. 

4.8.3 Endpoint Context State 

The current state of an Endpoint Context is identified by its respective Endpoint 

State (EP State) field. Figure 4-5 defines the Endpoint States. 
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Figure 4-5: Endpoint State Diagram 
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1. The Address Device Command transitions the Default Control Endpoint 

from the Disabled to the Running state. 

2. The Configure Endpoint Command  (Add (A)= ‘1’and Drop (D) = ‘0’) shall 

transition an endpoint, except the Default Control Endpoint, from the 

Disabled to the Running state. 

3. The Configure Endpoint Command (Add (A)= ‘0’ and Drop (D) = ‘1’) or 

Reset Device Command shall transition an endpoint, from any state to 

the Disabled state, except the Default Control Endpoint which shall 

transition from the Stopped to the Running state. 

4. The Disable Slot Command shall transition all endpoints of a Device Slot, 

including the Default Control Endpoint, from any state to the Disabled 

state. 

5. In the Running state, a Set TR Dequeue Pointer Command  should only be 

issued to the non-active Transfer Rings of a Stream endpoint. Refer to 

section 4.12 for active vs. non-active Stream Context information. 

6. The Configure Endpoint Command  (Add (A) = ‘1’ and Drop (D) = ‘1’) shall 

transition an endpoint, except the Default Control Endpoint, from the 

Stopped to the Running state. 

7. In the Stopped state, a Set TR Dequeue Pointer Command  may be used to 

modify the starting TRB of an endpoint or non-active Stream prior to 

ringing the Doorbell. Refer to section 4.12 for active vs. non-active 

Stream Context information. 
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Figure 4-5 illustrates the state transitions presented by an endpoint. The 

Disabled to Running transition for the Default Control Endpoint shall occur due 

to an Address Device Command, and for all other endpoints the transition shall 

be invoked by a Configure Endpoint Command. Refer to Appendix E for state 

machine notation. 

A Halt condition, e.g. a Stall Error, Invalid Stream Type Error, Invalid Stream ID 

Error, Babble Detected Error, Event Lost Error, USB Transaction Error, or a Split 

Transaction Error detected on a USB pipe shall cause a Running Endpoint to 

transition to the Halted state. A Reset Endpoint Command shall be used to clear 

the Halt condition on the endpoint and transition the endpoint to the Stopped 

state. A Stop Endpoint Command received while an endpoint is in the Halted 

state shall have no effect and shall generate a Command Completion Event with 

the Completion Code set to Context State Error. 

Note: A STALL detected on any stage (Setup, Data, or Status) of a Default Control 

Endpoint request shall transition the Endpoint Context to the Halted state. A 

Default Control Endpoint STALL condition is cleared by a Reset Endpoint 

Command which transitions the endpoint from the Halted to the Stopped state. 

The Default Control Endpoint shall return to the Running state when the 

Doorbell is rung for the next Setup Stage TD sent to the endpoint. 

 

Section 8.5.3.4 of the USB2 spec and section 8.12.2.3 of the USB3 spec state of 

Control pipes, “Unlike the case of a functional stall, protocol stall does not 

indicate an error with the device.” The xHC treats a functional stall and protocol 

stall identically, by Halting the endpoint and requiring software to clear the 

condition by issuing a Reset Endpoint Command. 

Note: If the STALL condition is detected on the Setup or Data Stage TD of a request, 

software shall be responsible for removing the Data Stage or Status Stage TDs, 

respectively, associated with the request from the Transfer Ring. 

A TRB Error condition should cause a Running Endpoint to transition to the Error 

state. A Set TR Dequeue Pointer Command  shall be used to transition the 

endpoint to the Stopped state. A Stop Endpoint Command received while an 

endpoint is in the Error state shall have no effect and shall generate a Command 

Completion Event with the Completion Code set to Context State Error. 

Note: An endpoint in the Running state may be Busy (actively processing TRBs on its 

Transfer Ring) or Idle (the endpoint is not processing TRBs and waiting for a 

doorbell ring) sub-state, i.e. an endpoint does not exit the Running state if it 

exhausts its Transfer Ring. 

Note: Some xHC implementations may not handle a TRB Error gracefully, resulting in 

undefined behavior and possibly the assertion of HCE. It is the responsibility of 

software to always present correctly formed TRBs to the xHC. 

A Stop Endpoint Command shall also transition the endpoint to the Stopped 

state. While in the Stopped state, the ownership of the Transfer Ring is 
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relinquished up by the xHC, allowing software to add, delete, or modify any TD 

on the ring. 

If an endpoint is in the Stopped state when the doorbell is rung, it will transition 

to the Running state. A Configure Endpoint Command  shall also transition a 

Stopped endpoint to the Running state. Note that a Configure Endpoint 

Command does not affect the Default Control Endpoint, therefore shall not 

transition the Default Control Endpoint from the Stopped to the Running state. 

A Configure Endpoint “deconfigure” (DC = ‘1’) or Reset Device Command shall 

transition all endpoints, except for the Default Control Endpoint, from the 

Running, Halted, Error, or Stopped states to the Disabled state. 

A Disable Slot Command shall transition all endpoints, including the Default 

Control Endpoint, from the Running, Halted, Error, or Stopped states to the 

Disabled state, as noted by the large bubble. System software is responsible for 

issuing a Disable Slot Command when a device detach event is detected. 

A Set TR Dequeue Pointer Command may be issued to a non-active Stream 

Context of an endpoint to set its Dequeue Pointer while the endpoint is in the 

Running state. Refer to sections 4.6.10 and 4.12. 

An endpoint in the Stopped state shall not generate Transfer Events.  

When an endpoint transitions from the Stopped to the Running state due to a 

doorbell ring, the EP State field of the Output Endpoint Context shall be updated 

by the xHC to running before any Transfer Events are generated.  

Note: If the xHC is reset while an endpoint is not in the Disabled state, the value of the 

Endpoint State (EP State) field shall be invalid. 

Note: An Endpoint is considered “enabled” if it is not in the Disabled state. 

Note: Software shall not write to the Doorbell register with the DB Target field value 

set to an endpoint that is in the Disabled state. 

Note: A control, bulk, or Interrupt endpoint shall transition to the Halted state if a 

tHostTransactionTimeout occurs (refer to Table 8-36 in the USB3 spec). For 

Isoch transactions the host shall not perform any more transactions to the 

endpoint in the current Service Interval. And the host shall not halt the endpoint 

and shall restart transactions to the endpoint in the next Service Interval. And 

retries are not performed for any endpoint type if a tHostTransactionTimeout 

occurs. Note that the tHostTransactionTimeout is an xHC implementation 

specific delay within the range specified in the USB3 spec. 

Note: There are several cases where the EP State field in the Output Endpoint Context 

may not reflect the current state of an endpoint. The xHC should attempt to 

keep EP State as current as possible, however it may defer these updates to 

perform higher priority references to memory, e.g. Isoch data transfers, etc. 

Software should maintain an internal variable that tracks the state of an 
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endpoint and not depend on EP State to represent the instantaneous state of 

an endpoint. 

 

For example, when a Command that affects EP State is issued, the value of EP 

State may be updated anytime between when software rings the Command 

Ring doorbell for a command and when the associated Command Completion 

Event is placed on the Event Ring by the xHC. The update of EP State may also 

be delayed relative to a Doorbell ring or error condition (e.g. TRB Error, STALL, 

or USB Transaction Error) that causes an EP State change not generated by a 

command. 

 

Software should maintain an accurate value for EP State, by tracking it with an 

internal variable that is driven by Events and Doorbell accesses associated with 

an endpoint using the following method: 

•  When a command is issued to an endpoint that affects its state, software 

should use the Command Completion Event to update its image of EP State 

to the appropriate state. 

•  When a Transfer Event reports a TRB Error, software should update its image 

of EP State to Error. 

•  When a Transfer Event reports a Stall Error or USB Transaction Error, 

software should update its image of EP State to Halted. 

•  When software rings the Doorbell of an endpoint to transition it from the 

Stopped to Running state, it should update its image of EP State to Running. 

Refer to section 6.2.3 for more information on the Endpoint Context data 

structure. 

4.9 TRB Ring 

A TRB (Transfer Request Block) Ring defines a queue, which is used to transfer 

Work Items between producer and consumer entities26. 

A TRB Ring is defined as a circular queue of TRB data structures. TRB rings are 

used to pass Work Items from the producer to the consumer. Two pointers 

(Enqueue and Dequeue) associated with each ring identify where the producer 

will Enqueue the next Work Item on the ring and where the consumer will 

Dequeue the next Work Item from the ring. 

A Work Item is comprised of one or more TRB data structures. A Work Item may 

define an operation to perform, or the result of an operation that has been 

performed. 

                                                   

26 Note: The xHCI Producer/Consumer model is not related to the PCI Producer/Consumer model. 
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There are 3 basic types or TRB Rings; Transfer, Event, and Command. Each type 

of ring defines an exclusive set of TRB data structures; however they all employ 

the underlying TRB Ring mechanism to organize their work items and the basic 

TRB template. 

Transfer Rings provide data transport to and from USB devices. There is a 1:1 

mapping between Transfer Rings and USB Pipes. They are defined by an 

Endpoint Context data structure contained in a Device Context, or the Stream 

Context Array pointed to by the Endpoint Context. 

The Event Ring provides the xHC with a means of reporting to system software: 

data transfer and command completion status, Root Hub port status changes, 

and other xHC related events. An Event Ring is defined by the Event Ring 

Segment Table Base Address, Segment Table Size, and Dequeue Pointer 

registers which reside in the Runtime Registers.  

The Command Ring provides system software the ability to issue commands to 

enumerate USB Devices, configure the xHC to support those devices, and to 

coordinate virtualization features. The Command Ring is managed by the 

Command Ring Control Register that resides in the Operational Registers.  

The Enqueue Pointer and Dequeue Pointer are terms used to refer to the 

logical beginning and end of the valid entries in a TRB Ring. The size of a TRB 

ring is determined by the number and size of the segments that comprise the 

ring. 

Note: The Dequeue and Enqueue Pointers for Transfer and Command Rings are NOT 

defined as physical xHC registers. However a facsimile of these pointers are 

maintained internally by the xHC and system software to manage a respective 

ring. 

Note: Only the Dequeue Pointer for an Event Ring is defined as a physical xHC register. 

A facsimile of the Enqueue Pointer is maintained internally by the xHC and 

system software to manage an Event Ring. 

This section describes how these “facsimiles” are maintained. The Enqueue and 

Dequeue Pointers are always advanced starting from the TRB entry pointed to 

by their initial values. 

The Enqueue Pointer is the address of the next TRB in a ring available to the 

producer. The producer constructs new Work Items starting with the TRB at this 

location, and advances the Enqueue Pointer when the construction is complete.  

The Dequeue Pointer is the address of the next TRB to be serviced by the 

consumer. 

If the Dequeue Pointer equals the Enqueue Pointer, then the TRB Ring is empty. 

If the “Enqueue Pointer  + 1” = Dequeue Pointer, then the ring is full. Note that 
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the calculation of the “Enqueue Pointer + 1” value requires comprehending Link 

TRBs. Refer to section 4.11.5.1 for more information on Link TRBs. 

TRBs between the Enqueue Pointer -1 and Dequeue Pointer are owned by the 

consumer of the Work Items. All other TRBs in a ring are owned by the producer 

of the Work Items. TRB ownership is passed to the consumer when the Enqueue 

Pointer is advanced by the producer. TRB ownership is passed to producer when 

the Dequeue Pointer is advanced by the consumer.  

A consumer or producer may modify any TRB that it owns, at any time, and in 

any order. The producer shall never modify a TRB that is owed by the consumer. 

And the consumer shall never modify a TRB that is owed by the producer. 

TRBs shall be executed by the consumer in order, starting at the TRB referenced 

by the Dequeue Pointer. 

All TRB data structures shall be 16 bytes in size.  

TRB Rings may be larger than a Page, however they shall not cross a 64K byte 

boundary. Refer to section 4.11.5.1 for more information on TRB Rings and page 

boundaries. 

Initially when the TRB Ring is created in memory, or if it is ever re-initialized, all 

TRBs in the ring shall be cleared to ‘0’. This state represents an empty queue.  

Note: Refer to Table 6-86 for a definition of the valid TRB types allowed on a specific 

TRB ring type. Table 6-87 defines the allowable Transfer Ring TRB Types as 

function of endpoint type. 

Note: Ownership of TRBs on a Transfer Ring is strictly determined by the location of its 

Enqueue and Dequeue pointers. A Short Packet, error, or other condition 

reported for a TRB that is not the last TRB of a TD shall not be interpreted by the 

producer (software) as indicating that the ownership of the remaining TRBs in 

the TD have also transitioned to the producer. 

4.9.1 Transfer Descriptors 

Transfer Rings support Transfer Descriptors (TDs) that consists of 1 or more 

TRBs. The TRB Chain (C) bit is set in all but the last TRB of a TD. 

The xHC shall schedule Max Packet Size USB transactions for all packets 

associated with a TD, except possibly for the last packet if the TD does not 

define an integer multiple of Max Packet Size data bytes. 

To generate a “zero-length” USB transaction, software shall explicitly define a 

TD with a single Transfer TRB, and its TRB Transfer Length field shall equal ‘0’. 

Note that this TD may include non-Transfer TRBs, e.g. an Event Data or Link TRB. 
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Refer to section 4.14.1 for an Implementation Note that discusses TRBs and 

system bandwidth management. 

There are many conditions described in this specification where the xHC shall 

“advance to the next TD”. However, if the xHC is processing a partially formed 

TD when one of these conditions occurs, then advancing to the next TD is not 

possible and the xHC shall stop advancing when it reaches the Enqueue Pointer 

(i.e. the Cycle bit transition). In this case, the xHC sees the Transfer Ring as 

empty (i.e. the Dequeue Pointer is equal to the Enqueue Pointer), and the next 

time the doorbell is rung for the endpoint, the xHC shall attempt to advance to 

the next TD boundary. Note that the xHC shall always interpret the New TR 

Dequeue Pointer field of a Set TR Dequeue Pointer Command  as a pointer to the 

“next TD”, terminate any effort to “advance to the next TD”.  

A “partially completed TD” is identified by the case where the Chain bit (CH) set 

to ‘1’ in the TRB referenced by the Dequeue Pointer and advancing the Dequeue 

Pointer sets it equal to the Enqueue Pointer. 

Note: Command and Event TRBs do not support a Chain bit (CH), so all Command 

Descriptors (CDs) and Event Descriptors (EDs) only consist of a single TRB. 

Note: If the xHC receives a Short Packet from a device, then it shall retire the current 

TD. If another TD is defined on the Transfer Ring, the xHC shall advance to it and 

begin IN transactions. If the EOB flag was set in a short DP received on a SS IN 

pipe, then the host shall retire the current TD, and wait for an ERDY from the 

device before beginning IN transactions for the next TD (if one exists). Refer to 

section 4.10.1.1 for detailed information on Short Packet handling. 

Note: If an error is detected while processing a multi-TRB TD, the xHC shall generate a 

Transfer Event for the TRB that the error was detected on with the appropriate 

error Condition Code, then may advance to the next TD. If in the process of 

advancing to the next TD, a Transfer TRB is encountered with its IOC flag set, 

then the Condition Code of the Transfer Event generated for that Transfer TRB 

should be Success, because there was no error actually associated with the TRB 

that generated the Event. However, an xHC implementation may redundantly 

assert the original error Condition Code. As a general rule, the Completion Code 

of a Transfer Event represents the status of the buffer referenced by the Transfer 

TRB that generated it, however there may be exceptions. 

4.9.2 Transfer Ring Management 

This section describes the operation of Enqueue and Dequeue Pointers in 

Transfer Rings. The operation of Enqueue and Dequeue Pointers in Command 

Rings is described in section 4.9.3 and Event Rings in section 4.9.4. 

Figure 4-6 shows a graphical representation of a Transfer Ring. The producer 

(host) places items in a Transfer Ring at the Enqueue Pointer, and the consumer 

(xHC) removes items from the Transfer Ring at the Dequeue Pointer. 
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The Cycle bit field in a TRB identifies the location of the Enqueue Pointer in a 

Transfer Ring, eliminating the need to define a physical Enqueue Pointer 

register.  

Software uses and maintains private copies of the Enqueue and Dequeue 

Pointers for each Transfer Ring. The Enqueue and Dequeue Pointers are set to 

the address of the first TRB location in the Transfer Ring and written to the 

Endpoint/Stream Context TR Dequeue Pointer field, when a Transfer Ring is 

initially set up. Software uses the Enqueue Pointer to determine where to place 

the next Work Item on a Transfer Ring. Software advances its copy of the 

Enqueue Pointer, by either incrementing it by the TRB size, or reloading it with 

the value of the Ring Segment Pointer field when it encounters a Link TRB, every 

time it writes a TRB to the Transfer Ring. The position of the Enqueue pointer is 

also marked in the Transfer Ring itself, by a transition of the Cycle bit.  

The xHC also maintains private copies of the Enqueue and Dequeue Pointers for 

each Transfer Ring. When a Transfer Ring is enabled or reset, the xHC initializes 

its copies of the Enqueue and Dequeue Pointers with the value of the 

Endpoint/Stream Context TR Dequeue Pointer field.  

The xHC uses the Dequeue Pointer to determine where to fetch the next Work 

Item from a Transfer Ring. The xHC advances its copy of the Dequeue Pointer, by 

either incrementing it by the TRB size, or reloading it with the value of the Ring 

Segment Pointer field when it encounters a Link TRB, every time it fetches a TRB 

from the Transfer Ring.  

The xHC employs the Event Ring to report the current value of the Dequeue 

Pointer to system software. Each Transfer Event placed on the Event Ring points 

to the Transfer TRB that generated it. Software may interpret the pointer value 

from the latest Transfer Event as the “current value” of the xHC Dequeue 

Pointer.  

The xHC uses the Enqueue Pointer to determine when a Transfer Ring is empty. 

As it fetches TRBs from a Transfer Ring it checks for a Cycle bit transition. If a 

transition detected, the ring is empty. 

Software uses the Dequeue Pointer to determine when a Transfer Ring is full. As 

it processes Transfer Events, it updates its copy of the Dequeue Pointer with the 

value of the Transfer Event TRB Pointer field. If advancing the Enqueue Pointer 

would make it equal to the Dequeue Pointer then the Transfer Ring is full and 

software shall wait for Transfer Events that will advance the Dequeue Pointer.  

The Enqueue Pointer is managed by the producer and the Dequeue Pointer is 

managed by the consumer. The producer maintains a Producer Cycle State 

(PCS) flag which identifies the value that it shall write to the TRB Cycle bit. The 

consumer maintains a Consumer Cycle State (CCS) flag, which it compares to 

the Cycle bit in TRBs that it fetches. If the CCS flag is equal to the value of the 

TRB Cycle bit, then the consumer owns the TRB pointed to by the Dequeue 
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Pointer and may process it. If they are not equal, then the consumer shall stop 

processing TRBs and wait for a notification of more work.  

Figure 4-6: Index Management 
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In Figure 4-6, TRBs are written by the producer setting the Cycle bit to the value 

of PCS. Note that in Figure 4-6, “~PCS” is the inverted version of PCS.  

To form a ring (or circular queue) a Link TRB may be inserted at the end of a ring 

to point to the first TRB in the ring. A ring may contain multiple Link TRBs which 

are used to chain together Transfer Ring Segments.  

In the example of Figure 4-6 the Toggle Cycle flag is set in the Link TRB. If the 

Producer encounters a Toggle Cycle flag set in a Link TRB it shall toggle the 

state of its PCS flag. If the Consumer encounters a Toggle Cycle flag set in a Link 

TRB it shall toggle the state of its CCS flag. The producer sets the TRB Cycle bit 

to the value of the PCS flag when it writes a TRB to set the position of the 

Enqueue Pointer. In Figure 4-6, the next TRB written by the producer after 

encountering the Link TRB will be TRB 0. The assertion of the Toggle Cycle bit in 

the Link TRB will cause the Producer to toggle the state of the PCS flag. The 

Cycle bit in TRB0 will be set to the value of PCS.  

Link TRBs allow Transfer Rings to span Page boundaries and to be dynamically 

sized. 

Note: All TRBs between the Dequeue Pointer and the Enqueue Pointer-1 are owned by 

the Consumer and may not be modified by the Producer. If the Ring is empty 

(Dequeue Pointer = Enqueue Pointer) then no TRBs are owned by the Consumer. 

Any TRBs in a ring not owned by the Consumer are owned by the Producer. 
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Note: If Streams are not enabled for an endpoint, the Transfer Ring CCS flag shall be 

set to the value of the Endpoint Context DCS flag by a Configure Endpoint 

Command if the associated Add Context flag is ‘1’, or by a Set TR Dequeue Pointer 

Command. 

 

If Streams are enabled for an endpoint, then when a Stream is selected, the CCS 

flag shall be set to the value of the DCS flag in the associated Stream Context, 

and when the Stream state is saved, the DCS flag in the associated Stream 

Context shall be set to the value of the CCS flag. 

4.9.2.1 Segmented Rings 

The Link TRB provides support for non-contiguous TRB Rings. For instance, if 

contiguous Pages of memory cannot be allocated by system software to form a 

large TRB Ring, then Link TRBs can be used to tie together multiple memory 

Pages to form a single large Transfer Ring. 

A non-contiguous TRB Ring is composed of Ring Segments. A Ring Segment is a 

contiguous block of physical memory. The Link TRB provides a 64-bit pointer 

which points to the next segment of a ring. If the ring is comprised of only a 

single segment then the only Link TRB points to the beginning of the ring, as 

illustrated in Figure 4-6 above. A multi-segment ring will use a Link TRB to 

delimit the end of one Segment and the start of the next. The last TRB in a Ring 

Segment is always a Link TRB. 
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Figure 4-7: Segmented Ring Example 
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Figure 4-7 illustrates a Segmented Ring that contains two segments. In this 

example both segments are allocated as 4KB contiguous blocks of memory. 

Segment 0 defines 256 TRBs, where the last TRB is a Link TRB that points to the 

beginning of the next segment. Segment 1, which defines 244 TRBs, does not 

fully utilize the 4K buffer that was allocated for it. The two segments together 

define ring size of 500 total TRBs, where 498 of them are available for TDs. Note 

that the Toggle Cycle flag is set only in Segment 1’s Link TRB.  

4.9.2.2 Pointer Advancement 

When a Dequeue Pointer is “advanced”, its value is adjusted to point to the next 

transfer related (Isoch, Setup Stage, Normal, etc.) TRB to be executed. The xHC 

increments the pointer value by 16 bytes to point to the next TRB, however if 

the next TRB is a Link TRB and its Cycle bit indicates that it is a valid TRB, then 

the xHC will automatically set the Dequeue Pointer to the address provided by 

the Link TRB. This operation will point the Dequeue Pointer to the first TRB of 

the next segment. 

Software is responsible for advancing the Enqueue pointer. It does this by 

toggling the Cycle bit each pass through the ring as it writes TRBs.  

Once started (by a doorbell), the xHC processes TRBs until the ring is empty. A 

ring is defined as “empty” if the Dequeue Pointer is equal to the Enqueue 

pointer. The value of the Enqueue Pointer is defined by the Cycle bit transition.  
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To prevent overruns, software shall determine when the Ring is full. The ring is 

defined as “full” if advancing the Enqueue Pointer will make it equal to the 

Dequeue Pointer. Software shall take Link TRBs into account when evaluating 

the full condition. If the Enqueue Pointer is not pointing at a Link TRB, software 

can determine if the Ring is full by adding the size of a TRB (16) to the Enqueue 

Pointer and checking if the result is equal to the value of the Dequeue Pointer. If 

the Enqueue Pointer is pointing at a Link TRB, then software shall compare the 

Ring Segment Pointer value in the Link TRB with the Dequeue Pointer.  

Figure 4-8: Enqueue Pointer Advancement 
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Note: The Producer Cycle State (PCS) and the Consumer Cycle State (CCS) flags are 

maintained internally by the xHC and software to aid in identifying the value of 

the Enqueue pointer. These flags are NOT defined in xHC registers or data 

structures. 

The Pointer Advancement rules: 

•  The Cycle bit shall be initialized by software to ‘0’ in all TRBs of all segments when 

initializing a ring. 

•  The Producer Cycle State (PCS) and the Consumer Cycle State (CCS) bits shall be set 

to ‘1’ when a ring is initialized. 
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Note: The initial state of a Transfer Ring’s CCS flag is determined by the Endpoint 

Context DCS flag. The initial state of the Command Ring’s CCS flag is determined 

by the Command Ring Control Register Ring Cycle State (RCS) flag. The initial 

state of the Event Ring’s CCS flag is always ‘1’. The previous two bullets assume 

that the DCS and RCS flags are initialized to ‘1’ by software. If software chooses 

to initialize a CCS flag (DCS or RCS) to ‘0’, the Cycle bits in the respective ring shall 

be set to ‘1’. 

•  The Cycle bit shall be written by the producer with the current value of the PCS bit. 

•  The Cycle bit shall be treated as Read-Only by the consumer. 

•  The Consumer may execute a TRB referenced by the Dequeue Pointer whose Cycle 

bit equals CCS. 

•  If the Enqueue Pointer references a Link TRB, then the Enqueue Pointer shall be set 

to Link TRB Ring Segment Pointer and if the Toggle Cycle bit is set to ‘1’ in the Link 

TRB, the PCS bit shall be toggled by the Producer. 

•  If the Dequeue Pointer references a Link TRB then the Dequeue Pointer shall be set 

to Link TRB Ring Segment Pointer and if the Toggle Cycle bit is set to ‘1’ in the Link 

TRB, the CCS bit shall be toggled by the Consumer. 

Note: A Cycle bit transition takes place between a Link TRB and the first TRB of the 

segment that the Link TRB Ring Segment Pointer references. 

Note: The TR Dequeue Pointer and Link TRB are not required to point to the beginning 

of a memory page. 

4.9.2.3 Enlarging a Transfer Ring 

To increase the size of a Transfer Ring, software shall allocate and initialize a 

new segment. 

Software then identifies a segment boundary (Link TRB) where it will add the 

new segment. 

Note: Only Link TRBs that are owned by the producer may be modified to point to the 

new segment. 
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Figure 4-9: Initial State of Transfer Ring 
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Figure 4-9 illustrates a two segment Transfer Ring (A and B) where TRBs 5 to n 

of Segment B and TRBs 0 to 3 of Segment A are owned by the consumer (xHC), 

and the remaining TRBs are available to the producer (software) for creating new 

TDs. Note that the Toggle Cycle (TC) bit is set in the Link TRB of segment B and 

not set in the Link TRB of segment A, hence the state of the Cycle bit is toggled 

once each pass through the Transfer Ring. 

Now, consider the case where software needs to grow the ring size of  Figure 4-9. 

Software may pause its insertion of TDs on the Transfer Ring, which temporarily 

stops the Enqueue Pointer from advancing, to insert a new segment. Software 

may only modify Link TRBs that it owns, so the new segment C may only be 

inserted between existing segments A and B as illustrated in  Figure 4-10. 

Note: If a Link TRB is not owned by software and not an “intermediate” TRB of the TD 

currently being executed by the xHCI, software may stop the Transfer Ring to 

modify the Link TRB, then restart it. If the Link TRB is an “intermediate” TRB of 

the TD currently being executed by the xHCI, then software shall use a Set TR 

Dequeue Pointer Command after stopping the Transfer Ring to ensure that the 

xHCI flushes any cached TRBs before restarting it. Refer to section 4.6.9 for more 

information on the requirements of stopping a Transfer Ring. 
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Figure 4-10: Final State of Transfer Ring 
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In this example software initializes the new segment with the following 

operations: 

•  All TRBs in the new segment C to ‘0’, including the Cycle bit. 

•  The TRB Type of the last TRB (n) in segment C shall be set to Link TRB. 

•  And the Ring Segment Pointer field of the segment C Link TRB (n) shall be initialized 

to point to the first TRB (0) of segment B. 

•  The Toggle Cycle (TC) flag of the segment C Link TRB (n) shall be set, to indicate the 

Cycle bit transition between the last TRB in segment C and first TRB in segment B. 

Software then modifies segment A’s Link pointer to point to link the new 

Segment C into the ring. 

•  The Ring Segment Pointer field of the segment A Link TRB (n) shall be initialized to 

point to the first TRB (0) of segment C. 

•  The Toggle Cycle (TC) flag of the segment A Link TRB (n) shall be set to ‘1’, to indicate 

the Cycle bit transition between the consumer owned TRBs in segments A and C. 

Software is required to ensure that the state of the Cycle bits in the new 

segment(s) and the Toggle Cycle flags in the Link TRBs that are used to connect 

the new segment to existing segments, do not cause an inconsistency  in the 

definition of the Enqueue Pointer position. 

Given the initial conditions illustrated in Figure 4-9, to ensure Cycle bit 

consistency when inserting segments software may either: 1) clear all the Cycle 

bits in all TRBs in the new segment(s) to ‘0’ and modify the Link TRB Toggle 

Cycle flags in the segment that points to the new segment and the new segment, 

or 2) set all the Cycle bits in all TRBs in the new segment to ‘1’. Figure 4-10 

illustrates the case 1. 
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4.9.2.4 Shrinking a Transfer Ring 

To decrease the size of a Transfer Ring, software shall identify a segment 

boundary (Link TRB) where it will perform the shrink operation. 

Note: The producer shall not modify Link TRBs that it does not currently own. 

Software may modify the Link TRB Ring Segment Pointer to map out one or 

more intermediate segments and/or set the Link TRB Ring Segment Pointer to a 

TRB location in the segment terminated by the Link TRB.  

Software shall ensure that the state of the Cycle bits in all remaining segments 

do not cause an inconsistency in the definition of the Enqueue Pointer position 

by managing the Link TRB Toggle Cycle bits. 

4.9.3 Command Ring Management 

This section describes the operation of Enqueue and Dequeue Pointers in the 

Command Ring. 

The operation of a Command Ring is identical to Transfer Rings with the 

following exceptions: 

•  If the Command Ring Control Register (CRCR) is written while the Command Ring is 

stopped (CRR = ‘0’) the xHC shall initialize the Command Ring Dequeue Pointer with 

the value of the Command Ring Pointer field (refer to section 5.4.5). 

•  When the Host Controller Doorbell Register (0) is written by system software, the 

xHC will evaluate the Command TRB pointed to by the Command Ring Dequeue 

Pointer. Once started (by a doorbell write), the xHC processes Command TRBs and 

advances the Command Ring Dequeue Pointer until the ring is empty. 

•  The location of the Command Ring Dequeue Pointer is reported on the Event Ring in 

Command Completion Events. 

•  No multi-TRB TDs are allowed on the Command Ring. 

All other aspects of Command Ring management are identical to those 

described for the Transfer Rings. i.e.: 

•  Software is responsible for advancing the Enqueue pointer. It does this by toggling 

the Cycle bit each pass through the Command Ring as it writes Command TRBs. 

•  A Command Ring is defined as “empty” if the Dequeue Pointer is equal to the 

Enqueue pointer. The Enqueue Pointer is defined by a Cycle bit transition. 

Note: Refer to the description of the CRCR RCS bit in Table 5-23 for information on 

Command Ring CCS flag initialization. 

Note: While the Command Ring is in the Running state (CRR = ‘1’), it may be Busy 

(actively processing Command TRBs) or Idle (not processing Command TRBs and 

waiting for a doorbell ring), i.e. CRR is not negated when the Command Ring has 

completed all queued commands. 
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4.9.4 Event Ring Management 

This section describes the operation of Enqueue and Dequeue Pointers in the 

Event Ring. The operation of Enqueue and Dequeue Pointers in Transfer Rings is 

described in section 4.9.2 and Command Rings in section 4.9.3. Note an xHC may 

implement multiple Interrupters, each with its own Event Ring. This section 

describes the operation of a single Event Ring.  

A fundamental difference between an Event Ring and a Transfer or Command 

Ring is that the xHC is the producer and system software is the consumer of 

Event TRBs. The xHC writes Event TRBs to the Event Ring and updates the Cycle 

bit in the TRBs to indicate to software the current position of the Enqueue 

Pointer. 

The xHC maintains an Event Ring Producer Cycle State (PCS) bit, initializing it to 

‘1’ and toggling it every time the Event Ring Enqueue Pointer wraps back to the 

beginning of the Event Ring. The value of the PCS bit is written to the Cycle bit 

when the xHC generates an Event TRB on the Event Ring.  

Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it 

to ‘1’ and toggling it every time the Event Ring Dequeue Pointer wraps back to 

the beginning of the Event Ring. If the Cycle bit of the Event TRB pointed to by 

the Event Ring Dequeue Pointer equals CCS, then the Event TRB is a valid event, 

software processes it and advances the Event Ring Dequeue Pointer. If the Event 

TRB Cycle bit is not equal to CCS, then software stops processing Event TRBs 

and waits for an interrupt from the xHC for the Event Ring. When the interrupt 

occurs, software picks up where it left off, checking the Cycle bit of the Event 

TRB pointed to by the Event Ring Dequeue Pointer against its CCS bit. 

System software shall write the Event Ring Dequeue Pointer (ERDP) register to 

inform the xHC that it has completed the processing of Event TRBs up to and 

including the Event TRB referenced by the ERDP. 

Note: The detection of a Cycle bit mismatch in an Event TRB processed by software 

indicates the location of the xHC Event Ring Enqueue Pointer and that the Event 

Ring is empty. Software shall write the ERDP with the address of this TRB to 

indicate that it has processed all Events in the ring. 

Event Ring segments are defined by an Event Ring Segment Table (ERST). The 

ERST consists of an array of Base Address/Size pairs (ERST.BaseAddress and 

ERST.Size), each defining a single Event Ring segment. The first element in the 

ERST (0) is pointed to by the ERST Base Address Register (ERSTBA section 

5.5.2.3.2). The number of elements in the ERST is defined by the ERST Size 

Register (ERSTSZ section 5.5.2.3.1). When the xHC is initialized, it begins writing 

Event TRBs starting at the address referenced by the 0th ERST entry. The xHC 

maintains a count of the Event TRBs that it has written to a segment. When the 

count exceeds the value of the associated ERST.Size entry, the xHC shall fetch 

the next ERST entry. The ERST entries are treated as a circular queue, wrapping 
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back to the ERST(0) after the ERST(ERSTSZ – 1) is fetched. Refer to section 6.5 

for the definition of an ERST entry. 

Figure 4-11: Segmented Event Ring Example 
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Figure 4-11 illustrates a segmented Event Ring that consists of 3 segments.  

Rules for operation of an Event Ring: 

•  Prior to writing the ERST Base Address (ERSTBA) register system software shall: 

•  Initialize the Event Ring Segments that will be referenced by the Event Ring 

Segment Table (ERST) to ‘0’. 

•  Initialize the ERST by initializing the ERST.BaseAddress and ERST.Size fields of 

each element in the table. The ERST.BaseAddress field shall point to the 

associated Event Ring Segment, and the ERST.Size field shall indicate the 

number of TRBs supported by the segment. 

•  Write the ERST Size (ERSTSZ) Register with the number of valid entries in the 

ERST and Event Ring Dequeue Pointer (ERDP) Register with the value of 

ERST(0).BaseAddress. 

•  Write the ERST Base Address (ERSTBA) register with the value of 

ERST(0).BaseAddress. When the ERSTBA register is written, the Event Ring State 

Machine (Figure 4-12) is set to the Start state. 

•  System software shall advance the Event Ring Dequeue Pointer by writing the 

address of the last processed Event TRB to the Event Ring Dequeue Pointer (ERDP) 

register. Note, the “last processed Event TRB” includes the case where software 

detects a Cycle bit mismatch when evaluating an Event TRB and the ring is empty. 

•  System software is responsible for ensuring valid values for ERST entries in paged 

environments. 

•  System software is responsible for ensuring the Size of every ERST entry (Event Ring 

segment) is at least 16. 
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Figure 4-12: Event Ring State Machine 
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Figure 4-12 describes the algorithm the xHC employs for advancing its internal 

Event Ring Enqueue Pointer (EREP). The left side of the figure describes the EREP 

Advancement algorithm. The right side of the figure describes the algorithm for 

checking if the Event Ring is full.  

Note: The Producer Cycle State (PCS) flag for the Event Ring is toggled only when the 

Event Ring wraps back to the beginning. 

Note: The Event Ring State machine is Stopped if the USBCMD Run/Stop (R/S) flag is 

‘0’. 

Note: A blocked Event Ring may impact forward progress on endpoints whose TDs 

target other Event Rings. 
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Note: It is recommended that software process as many Events as possible before 

writing the ERDP. This approach not only minimizes the number of MMIO writes, 

but is particularly important if the Event Ring is full. If an Event Ring Full condition 

exists, writing the ERDP after processing individual Events may cause no work to 

progress because the Event Ring becomes filled with Event Ring Full Events. 

 

Ideally, software writes the ERDP after processing all Events on an Event Ring. 

Practically, software should maximize the number of Events processed before 

writing the ERDP, e.g. processing a minimum of 4 Events before each ERDP write. 

Note: Section 4.23.2 describes the xHC Restore process. Step 2 in the restore process 

requires software to load all registers (including the ERSTBA) with previously 

saved values. Writing the ERSTBA initializes the Event Ring State Machine 

internal variables and advances it to wait for Run/Stop (R/S) to be asserted or an 

event to be posted. A Restore operation, which always follows the register load 

by software, shall overwrite the Event Ring State Machine internal variables 

(ERSTE, ERST Count, EREP, and TRB Count) with previously saved values, 

allowing the Event Ring State Machine to “pick up where it left off” after a power 

event. 

Note: Software writes to the ERDP register shall always advance the Event Ring 

Dequeue Pointer value, i.e. software shall not write the same value to the ERDP 

register on two consecutive write operations. 

Table 4-3: Event Ring State Machine Definitions 

Name Label Description 

Event Ring Segment 
Table 

ERST Resides in host memory. Contains the addresses and 
lengths of the Event Ring segments. Refer to section 6.5. 

Event Ring Dequeue 

Pointer 

ERDP Resides in Runtime register space. Advanced by software. 

Refer to section 5.5.2.3.3. 

Event Ring Enqueue 

Pointer 

EREP Internal xHC variable. Advanced by Figure 4-12 algorithm 

Event Ring Segment 
Table Count 

ERST Count Internal xHC variable. Identifies the offset into the ERST of 
the segment that is currently being filled with Event TRBs 

by the xHC. 

Event Ring Segment 
Table Entry 

ERSTE Internal xHC variable. A pointer to an ERST entry. 

Event Ring Segment 
Table Base Address 

ERSTE.BaseAddr Ring Segment Base Address field of current ERST entry. 
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Event Ring Segment 

Size 

ERSTE.Size Segment Size field of current ERST entry. 

Event Ring Segment 

Table Size 

ERSTSZ Number of entries in the in the ERST. 

Next Segment 

Pointer 

NSP Base address for next Segment of ERST, based on the 

current EREP. 

TRB Count TRB Count Internal xHC variable. Identifies the number of remaining 
TRBs in the current segment. 

 

The following steps describe the xHC Event Ring Enqueue Pointer (EREP) 

Advancement algorithm (left side of Figure 4-12): 

1. When the ERST Base Address (ERSTBA) register is initially written the 

Event Ring State Machine enters the Start state.  

2. The xHC initializes its internal PCS flag to ‘1’. 

3. The xHC sets its internal ERST Count to ‘0’.  

4. The xHC then fetches the entry in the Event Ring Segment Table 

referenced by the ERST Count (ERSTE = ERST[ERST Count]) and 

initializes its Enqueue Pointer (EREP) with the value of the Ring Segment 

Base Address field (ERSTE.BaseAddr), and the TRB Count with the value 

of the Segment Size field (ERSTE.Size). 

5. If the USBCMD Run/Stop (R/S) flag = ‘0’ the Event Ring State Machine 

shall wait for Run/Stop   (R/S) to return to ‘1’27. When Run/Stop (R/S) flag 

= ‘1’ the xHC shall proceeds to check if an event is posted (step 6., 

otherwise it proceeds immediately to step 6. 

6. When an event is posted for the ring, the xHC shall first check if the ring 

is full. If not, the xHC writes the Event TRB to the location identified by 

the EREP, increments the EREP by 16, and decrements the TRB Count. 

The Cycle bit of the Event TRB is set to the value of the PCS flag. If no 

event is posted, the xHC will return to step 5. 

7. As long as the TRB Count is non-zero, the xHC shall return to step 5, 

continuing to check Run/Stop (R/S) or for new events. 

                                                   

27A Controller Restore State (CRS) operation overwrites the Event Ring State Machine internal variables. This may 
occur while waiting for Run/Stop (RS) to be set to ‘1’ when restoring state from a power event. Refer to section 
4.23.2. 
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8. When the TRB Count reaches ‘0’, the xHC shall increment the ERST Count 

and evaluate it, otherwise it returns to step 5. 

a. If the ERST Count is not equal to the value of the ERSTSZ register, 

then the xHC returns to step 4 to process events starting in the 

next segment of the ERST. 

b. If the ERST Count equals the value of the ERSTSZ register, then 

the xHC sets the ERST Count to ‘0’, toggles the Producer Cycle 

State (PCS) flag, and return to step 3 to process events starting in 

the first segment of the ERST. 

If the Event Ring is full, the xHC shall flag the condition by reporting an Event 

Ring Full Error, which requires placing an Event on the Event Ring. To ensure 

that there is space on the Event Ring for this error, the xHC shall consider the 

Event Ring full when there is still room for one more entry.  

The following steps describe the xHC algorithm for checking if the Event Ring is 

full (right side of Figure 4-12): 

1. If the TRB Count is greater than ‘1’, then the xHC can simply add 16 to 

the EREP and compare it to the ERDP to determine whether the Event 

Ring is full. 

2. If the TRB Count is equal to ‘1’, then the xHC shall check if the ERDP 

points to the first entry in the next segment. To obtain the base address 

for the next segment the xHC retrieves the ERST.BaseAddress entry for 

the ERST Count + 1 modulus the ERSTSZ. Then calculates the address of 

the next Event Ring segment (NSP). 

a. If the NSP does not equal the ERDP, then the Event Ring has room 

and the Event Ring Full Check exits. 

b. If the NSP equals the ERDP, then the Event Ring is full. The xHC 

stops processing the Transfer and Command Rings, writes a Event 

Ring Full Error Event to the EREP, advances the EREP and 

decrements the TRB Count. Refer to Step 2b note below. 

3. If the TRB Count is not equal ‘0’, then there is room in the current 

segment for more events so go to step 6 and wait for the ERDP to 

advance. 

4. If the TRB Count is equal ‘0’, then increment the ERST Count to advance 

the EREP to the next segment. 

a. If the ERST Count is not equal to the value of the ERSTSZ register, 

then the xHC goes to step 5 to initialize the state machine 

parameters for the next segment of the ERST. 
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b. If the ERST Count equals the value of the ERSTSZ register, then 

advance the EREP to the first segment of the ERST by setting the 

ERST Count to ‘0’ and toggling the Producer Cycle State (PCS) 

flag, then go to step 5 to initialize the state machine parameters 

for the first segment of the ERST. 

5. To initialize the state machine parameters, the xHC fetches the entry in 

the Event Ring Segment Table referenced by the ERST Count (ERSTE = 

ERST[ERST Count]) and initializes its Enqueue Pointer (EREP) with the 

value of the Ring Segment Base Address field (ERSTE.BaseAddr) and the 

TRB Count with the value of the Segment Size field (ERSTE.Size). Once 

the EREP has been advanced to the next segment go to step 6 and wait 

for the ERDP to advance. 

6. The Event Ring will remain full until the next time that software writes 

the ERDP. When the ERDP is written, the xHC will determine if the new 

ERDP value has freed space on the Event Ring by returning to step 1).  

Note: The expectation is that the xHC shall gracefully stop execution on the Command 

and Transfer Rings when the Event Ring is full. An “Event Ring Stop” will 

propagate all the way to the USB when all the buffered operations in the xHC are 

exhausted. The xHC is expected to not lose Control, Interrupt, or Bulk data under 

these conditions, however if the condition persists, the xHC will begin to miss 

periodic endpoint Service Opportunities (SOs), resulting in the loss of Isoch data 

and the possible loss of Interrupt data. The Missed Service Error may be used to 

report this condition in an Isoch Transfer Event once the Event Ring Stop 

condition is cleared. The Event Ring Full Error shall be reported whether data is 

lost or not, to inform system software that the Event Ring is under provisioned. 

Note: Step 22.b above states that “the xHC stops processing the Transfer and 

Command Rings” if an Event Ring is full. This action is further qualified with the 

type of Event Ring that has gone full. If the Primary Event Ring is full, then all 

command and transfer rings shall stop processing TRBs. If a Secondary Event 

Ring becomes full, then the xHC may stop all command and transfer ring 

processing, or only stop processing on those transfer rings that target the full 

Event Ring. If virtualization is enabled, an xHC implementation shall ensure that 

a full condition on a Secondary Event Ring does not stop the processing of TRBs 

on the Command Ring, the Primary Event Ring, or other Secondary Event Rings. 

4.9.4.1 Changing the size of an Event Ring 

To increase the size of an Event Ring, software shall allocate and initialize a new 

segment. 

Software then initializes ERST entries, starting at the offset defined by ERSTSZ, 

with the Address and Size of the new Event Ring segment(s) and writes new size 

of the ERST to the ERSTSZ Register. 
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Software may determine when the xHC has started using the new segment by 

evaluating the Completion Code of the first TRB in the new segment for a non -

zero (valid) condition.  

Consider the case were there the 2 segments ‘0’ and ‘1’ (ERSTSZ = 2, ERST(0) 

and ERST(1)) are active, and a new segment ‘2’ is being added. Software 

initializes all TRBs in the new segment to ‘0’. Then sets the ERST(2).BaseAddr 

equal to the base address of the new segment, the ERST(2).Size equal to the 

number of Event TRBs supported by the new segment, and the ERSTSZ to 3. 

If the EREP just passed the end of segment 1 when the ERSTSZ was written, the 

xHC will not start using the new segment until the next pass through the Event 

Ring. If the EREP is positioned at the last TRB of segment ‘1’ when the ERSTSZ 

was written, the xHC will start using the new segment.  

Note that the xHC will write the Cycle bit in the segment 2 TRBs with the same 

value as it had been using for segment 1. Software may determine when the xHC 

started using the new segment as it is evaluating Event TRBs pointed to by the 

Dequeue Pointer. When software evaluates the Event TRB after the last TRB of 

segment 1, it shall check for a Valid (non-zero) Completion Code in the first TRB 

of segment 2 as an indicator that the xHC has started using the new segment. If 

the Completion Code is Valid, then software shall advance the Dequeue Pointer 

to the first TRB of segment 2. If the Completion Code is Invalid (‘0’) value, 

software shall check the state of the Cycle bit in the first TRB of segment 0 to 

see whether it matches the expected state for the next pass through the Event 

Ring. If it does not match, it means that the EREP is pointing at the last TRB of 

segment 1 and the Event Ring is empty. If it does match, then software shall 

advance the Dequeue Pointer to the first TRB of segment ‘0’. If the Event Ring is 

empty, software shall reevaluate direction of the EREP at the segment 1 to 

segment 2 boundary the next time it receives an interrupt.  

The Valid (non-zero) to Invalid (‘0’) transition of the Event TRB Completion Code 

field shall be used by software to determine the position of the Enqueue Pointer 

during the first pass of the Dequeue Pointer through the new segment(s). The 

TRB Cycle bit field shall be treated as invalid during the first pass through the 

new segment(s) and shall not be used by software to determine the position of 

the Enqueue Pointer. 

After the first pass of the Enqueue Pointer through the new segment(s), the xHC 

has initialized the Cycle bit in all newly added Event TRBs.  

After the first pass of the Dequeue Pointer through the new segment(s), software 

shall evaluate the Cycle bit state in segment 2 to determine the Enqueue Pointer 

position. 

Note: ERST entries (Segment Base Address and Size fields) between 0 and ERSTSZ-1 

are not allowed to be modified by software when HCHalted (HCH) = ‘0’. 
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4.9.4.2 Shrinking an Event Ring 

To decrease the size of an Event Ring, software shall decrement value of the 

ERSTSZ Register. 

Software may determine when the xHC has stopped using the segment that is to 

be removed by evaluating the state of the Cycle bit of the first TRB in the 

deleted segment(s). 

Consider the case where there are 3 segments 0, 1, and 2 (ERST Count = 3) and 

segment 2 is being deleted. Software writes the ERSTSZ register, setting it to 2. 

If the EREP is pointing into segment 2 when the ERSTSZ was written, the xHC will 

not stop using the “deleted” segment until the next pass through the Event Ring. 

If the EREP is positioned at the last TRB of segment 1 when the ERSTSZ was 

written, the xHC will stop using the new segment immediately.  

Software may determine when the xHC stopped using the “deleted” segment as 

it is evaluating Event TRBs pointed to by the Dequeue Pointer. When software 

evaluates the Event TRB after the last TRB of segment 1, it may check the Cycle 

bit of the first TRB in segment 2. If the Cycle bit state matches the expected 

state then it shall continue processing the Event TRBs in the deleted segment. If 

the Cycle bit state of the first TRB in segment 2 does not match the expected 

state, then software shall check the state of the first TRB in segment 0. If the 

Cycle bit in the first TRB in segment 0 matches the state of the last TRB in 

segment 1, then the EREP is pointing at the last TRB of segment ‘1’ and the 

Event Ring is empty. If it does not match, then the EREP has advanced to 

segment 0 and the next Event TRB to process is the first TRB of segment 0, and 

the xHC has stopped using the deleted segment. If the Event Ring is empty, 

software shall reevaluate direct ion of the EREP at the segment ‘1’ to segment ‘2’ 

boundary the next time it receives an interrupt.  

4.9.4.3 Primary and Secondary Event Rings 

The number of Interrupters available to software is defined by the MaxIntrs field 

in the HCSPARAMS1 register. If more than one Interrupter is available then the 

0th Interrupter is referred to as the Primary Interrupter and all other 

Interrupters are referred to as the Secondary Interrupters. Each Interrupter 

defines an associated Event Ring. The Event Ring associated with the 0th 

Interrupter is referred to as the Primary Event Ring . The Event Rings associated 

with the other Interrupters are referred to as the Secondary Event Rings. The 

only Event TRB types that may be found on a Secondary Event Ring are:  

•  Transfer Event 

•  Bandwidth Request Event 

•  Device Notification Event 

•  Host Controller Event 
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•  Vendor defined event (optional) 

Transfer Events generated by a Device Slot may be directed to a Secondary 

Event Ring by a non-’0’ value in the Transfer TRB Interrupter Target field. All 

Transfer Events with the TRB Interrupter Target field cleared to ‘0’, shall be 

directed to the Primary Event Ring by the xHC. 

Bandwidth Request and Device Notification Events are targeted at a Device Slot. 

The xHC shall use the Device Slot’s Slot Context Interrupter Target field to 

determine the Event Ring that shall receive the event.  

4.10 Host Controller TRB Handling 

4.10.1 Transfer TRBs 

A fully configured host controller can support 255 USB Devices, where each 

device can declare up to 31 endpoints. 30 of the endpoints may declare up to 

64K Streams each. This means that approximately 500M Transfer Rings may 

exist for a single xHC. Of course this is a worst case value; however the xHC 

architecture shall cope efficiently with reporting the completion status of 

hundreds, or possibly thousands, of Transfer Rings. Transfer Ring completions 

are queued on Event Rings as Transfer Event TRBs for the host. Refer to section 

4.11.3.1 for more information on Transfer Event TRBs. 

When the data transfer associated with a Transfer TRB is completed, the xHC 

will evaluate the completion status of the transfer and the Transfer TRB flags to 

determine whether to generate a Transfer Event TRB for the Transfer TRB. 

If upon transfer completion of a TRB the Interrupt On Completion (IOC) flag is 

set, the xHC shall generate a Transfer Event TRB . Note the generation of an 

Event TRB always generates an interrupt to the host. The Completion Code and 

Length fields of the Transfer Event TRB will reflect the completion status of the 

Transfer TRB that generated the event. 

The detection of a USB Short Packet (i.e. the actual number of bytes received 

was less than the expected number of bytes defined by the Transfer TRB) during 

a transfer does not necessarily generate an Event. A Short Packet will trigger the 

generation of a Transfer Event TRB on the Event Ring if the Interrupt-on-Short 

(ISP) or Interrupt On Completion  (IOC) flags are set in the TRB that the Short 

Packet was detected on. The Completion Code field of the Transfer Event shall 

be set to Short Packet. The Length field of the Transfer Event shall be set to the 

residual number of bytes not written to the Transfer TRBs’ data buffer. A Short 

Packet may occur on an intermediate TRB of a TD. In this case the xHC shall 

advance to the first TRB of the next TD after completing the transfer.  

Note: The xHC shall execute the first Event Data TRB encountered while advancing to 

the end of the Short Packet TD. 
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The detection of an error during a transfer shall always generate a Transfer 

Event, irrespective of whether the Interrupt-on-Short or Interrupt On Completion  

(IOC) flags are set in the Transfer TRB. The Completion Code of the Transfer 

Event shall identify the detected error condition. If a Missed Service Error occurs 

on an intermediate TRB of a TD of an Isoch endpoint the xHC shall advance to 

the first TRB of the next TD or the Enqueue Pointer (i.e.Cycle bit transition ), 

whichever is encountered first, when continuing execution on the Transfer Ring. 

When an error condition is encountered which requires an endpoint to halt; the 

xHC shall stop on the TRB in error, the endpoint shall be halted, and software 

shall use a Set TR Dequeue Pointer Command  to advance the Transfer Ring to 

the next TD. 

Note: If the xHC encounters a Cycle bit transition and is unable to advance to a TD 

boundary when it encounters an error, it shall advance to the next TD boundary 

the next time the doorbell is rung. The only exception is if a Set TR Dequeue 

Pointer Command is issued before the doorbell is rung, modifying the Dequeue 

Pointer. In this case the xHC shall assume that the modified Dequeue Pointer 

references the first TRB of a TD. 

A Transfer Event TRB identifies the location of the TRB that “generated the 

event” (the Device ID, Endpoint ID, and address of the source TRB). The 

Completion Code field of the Transfer Event TRB shall contain the originating 

TRBs’ completion status. The location information in the Transfer Event TRB 

allows system software to identify the device, endpoint, and TRB that generated 

the event. The location information also allows the host to update its copy of 

the Dequeue Pointer for the Transfer Ring that generated the event. 

If interrupts to the host are enabled, Interrupt Moderation (refer to section 4.17) 

is used to gracefully manage bursts of Transfer Events. 

A host controller implementation may delay the generation of Events associated 

with Transfer TRBs. The following conditions should force Transfer Event 

generation to take place immediately:  

•  The completion of a TRB that has its IOC flag set. 

•  The completion of a Short Packet on a TRB that has its ISP flag set. 

•  An error occurs on any Transfer TRB. 

•  An xHC implementation dependent threshold, designed to prevent the TRB Ring 

state from getting too far behind, is reached. 

Note: The TRB Pointer field in a Transfer Event TRBs not only references the TRB that 

generated the event, but it also provides system software with the latest value of 

the xHC Dequeue Pointer for the Transfer Ring. Software may choose to use 

Event Data TRBs exclusively to report TD completions (e.g. never setting an IOC 

flag in the Transfer TRBs of TDs). However, to keep the software copy of the 

Transfer Ring Dequeue Pointer current, software will occasionally have to set the 

IOC flag in a Transfer TRB, except if an Event Data TRB is declared. The frequency 
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with which the IOC flag is set in Transfer TRBs will depend on many system and 

software factors, that are outside the scope of this specification. 

Note: System software should not generate unnecessary Events. Typically there is no 

need to set the IOC flag in more than one Transfer TRB per TD. The only 

exceptions would be for 1) very large TDs (e.g. > 16MB transfers) where 

Intermediate Event Data TRBs are declared, or 2) if the IOC flag is set to refresh 

the software Dequeue Pointer value. 

Note: An Event Lost Error shall be generated for the endpoint if the xHC is unable to 

generate all the Events defined by a TD. An Event Lost Error shall halt the 

endpoint. By following the recommendations in the notes above, this condition 

may be avoided. The conditions that generate this error are xHC implementation 

specific. 

4.10.1.1 Short Transfers 

The TD Transfer Size is defined by the sum of the Length fields in all TRBs that 

comprise the TD. On an IN endpoint the xHC shall schedule ((TD Transfer Size - 

1) / Max Packet Size) + 1 USB packets for each TD. 

If the TD Transfer Size is larger than Max Packet Size, all USB packets shall be 

Max Packet Size except for the last packet, which shall be sized to contain the 

remaining TD data. 

A Short Packet condition shall occur if the number of bytes received for a USB 

packet associated with a TD is less than the number of bytes expected.  

4.10.1.1.1 Short Transfers when using Event Data TRBs 

When a Short Packet condition occurs and Event Data TRBs are being used, the 

xHC shall perform the following operations: 

•  If the Interrupt-on Short Packet (ISP) or if the Interrupt On Completion (IOC) flag is set 

to ‘1’ in the TRB that the Short Packet condition occurred on, a Transfer Event shall 

be generated for that TRB with the Completion Code set to Short Packet. 

•  Automatically advance the Dequeue Pointer for the Transfer Ring to the beginning 

of the next TD. 

•  When an Event Data TRB is encountered in the process of advancing the 

Dequeue Pointer from the Short Packet TRB to the beginning of the next TD, the 

xHC shall parse the Event Data TRB, i.e. if the IOC flag is set in the Event Data TRB, 

an Event Data Transfer Event shall be generated with the Completion Code set 

to Short Packet and the Length field set to the actual number of bytes received 

by the TD. 

•  If subsequent Event Data TRBs are encountered in the process of advancing 

the Dequeue Pointer from the first Event Data TRB encountered to the 

beginning of the next TD, the xHC shall parse them if the Parse All Event Data 

(PAE) flag is set (‘1’), and shall not parse them if the PAE flag is cleared (‘0’). 
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Refer to section 5.3.6 for more information on PAE. 

•  If a Link TRB is encountered, the xHC shall parse the Link TRB and if its IOC flag 

is set (‘1’), then a Transfer Event shall be generated with its Completion Code set 

to Success. All Link TRBs encountered in TD shall be parsed. 

If a Short Packet condition does not occur while receiving the data for a TD, the 

xHC shall parse all TRBs of the TD. i.e. any TRB with its IOC flag shall generate a 

Transfer Event. 

Note: A USB packet may be comprised of the data from many TRBs, or many USB 

packets may be required to transfer a single TRB. 

Note: No relationship is assumed between USB packet boundaries and TRB data buffer 

boundaries. 

When a Short Packet condition occurs and Event Data TRBs are being used, the 

xHC shall perform the following operations:  

Software shall perform the following operations when using Event Data TRBs to 

flag the completion of a TD that may receive a Short Packet, then: 

•  The ISP and IOC flags shall be cleared (‘0’) in all Transfer TRBs. 

•  The IOC shall be set (‘1’) in all Event Data TRB(s). 

Event Data Transfer TRBs encountered prior to the occurrence of a Short Packet 

shall generate an Event Data Transfer Event with its Completion Code = Success 

(assuming no errors) and TRB Transfer Length field equal to the number of bytes 

transferred since the beginning of the TD or the previous Event Data Transfer 

TRB of the TD. 

If a Short Packet occurs and the PAE flag is set (‘1’), then all subsequent Event 

Data Transfer TRBs encountered while advancing to the end of the TD shall 

generate an Event Data Transfer Event with its Completion Code = Short Packet 

and should set the TRB Transfer Length field equal to the number of bytes 

transferred since the beginning of the TD or the previous Event Data Transfer 

TRB of the TD. If a Short Packet occurs and the PAE flag is cleared (‘0’), then 

subsequent Event Data Transfer TRBs encountered while advancing to the end 

of the TD shall not generate Event Data Transfer Events.  

If a Short Packet does not occur, then the last Event Data Transfer TRB shall 

generate an Event Data Transfer Event with its Completion Code = Success 

(assuming no errors) and TRB Transfer Length field equal to the number of bytes 

transferred since the beginning of the TD (i.e. EDTLA) or the previous Event Data 

Transfer TRB of the TD. Refer to section 4.11.5.2 for more information on Event 

Data TRB usage. 

•  If a TD on an IN endpoint is terminated with an Event Data TRB, there is no need to 

set the ISP flag in every TRB of the TD because the length of the transfer (including 
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the terminating Short Packet) shall be reported by the TRB Transfer Length field of 

the Event Data TRB. 

•  Software shall not interpret an Short Packet Event Data Transfer Event as indicating 

that the TD that it is associated with is “complete”, unless the Event Data Transfer 

Event is the last TRB of the TD. 

4.10.1.1.2 Short Transfers when not using Event Data TRBs 

If software is not using Event Data TRBs, but it wants to flag the completion of a 

TD that may receive a Short Packet, then: 

•  The ISP flag shall be set (‘1’) in all Transfer TRBs of the TD, and 

•  The IOC flag shall be set (‘1’) in the last Transfer TRB of the TD. 

 

If a Short Packet occurs, then a Transfer Event shall be generated with the 

Completion Code = Short Packet, its TRB Pointer field pointing to the Transfer 

TRB that the Short Packet occurred on, and its TRB Transfer Length field shall 

indicate the residue bytes in the buffer.  

If a Short Packet does not occur, then the last TRB of the TD shall generate a 

Transfer Event with its Completion Code = Success (assuming there was no 

error), its TRB Pointer field pointing to the last Transfer TRB, and the TRB 

Transfer Length field shall equal 0. 

If the Short Packet occurred while processing a Transfer TRB with only an ISP 

flag set, then two events shall be generated for the transfer; one for the Transfer 

TRB that the Short Packet occurred on, and a second for the last TRB with the 

IOC flag set. In the second event, the Completion Code shall be set to Short 

Packet, and the TRB Transfer Length should be set to the same value that was 

reported by the initial Short Packet Event.  

Software shall not interpret a Short Packet Event as indicating that the TD that it 

is associated with is “complete”, unless the TRB Pointer field of the Transfer 

Event references the last TRB of the TD. 

If Event Data TRBs are not used, then the total number of received bytes for a 

Short Packet TD is the sum of the TRB Transfer Length fields in all Transfer TRBs 

up to and including the one that generated the Short Packet Event, minus the 

residue value of the TRB Transfer Length field in the Short Packet Event. 

Note: Typically an IOC flag is only set in the last TRB of a TD, and the event that is 

generated by the TRB is referred to as the "TD Completion Event", i.e. the Event 

that completes the TD. Also note that due to errors or Short Packet conditions, 

the TD Completion Event may not occur on the last TRB of a TD. And for Transfer 

Ring management or other reasons, software may set the IOC flag in any TRB of 

a TD, including a TD that is configured to handle Short Packets (i.e. with the ISP 

flag set in one or more TRBs). Because of this the xHC must handle the generation 
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of multiple Events for a single TD, and those events may occur before and after 

the "TD Completion Event". 

 

TD Completion Events are generated by few basic conditions: 

•  If the IOC flag = ‘1’ and the TD completes successfully, then a Transfer Event 

shall be generated with its Completion Code = Success and TRB Transfer 

Length identifying the number bytes transferred. 

•  If a Short Packet occurs and the ISP or IOC flags are set, then a Transfer Event 

shall be generated with set its Completion Code = Short Packet and TRB 

Transfer Length identifying the number bytes transferred. 

•  If an error condition is detected while processing any TRB within a TD, an 

Event shall be forced for that TRB (irrespective of whether the IOC or ISP 

flags are set on the TRB) with the Condition Code indicating the error that 

occured and the TRB Transfer Length indicating the number of bytes that 

were successfully transferred. 

Events generated for a TD by TRBs encountered before the TD Completion Event 

shall set their Completion Code to Success. Where Data Transfer Events (ED = 

'0') shall set their TRB Transfer Length to 0 (since the TRB Transfer Length field 

represents the "residue" of a transfer and all the bytes the buffer referenced by 

the TRB were successfully moved), and Event Data Transfer Events (ED = '1') shall 

set their TRB Transfer Length to the current value of the EDTLA and then reset 

the EDTLA to zero. 

After the TD Completion Event, if any subsequent Transfer TRBs are 

encountered with their IOC flag set while advancing to the end of the TD then 

those TRBs shall also generate an Event, where the Completion Code field shall 

return the same value as TD Completion Event and TRB Transfer Length field 

should return the same value as TD Completion Event. There are a couple of 

exceptions to this rule: 

•  If the IOC flag is set in an Event Data TRB then an Event Data Transfer Event 

shall be generated only if PAE = '1'. 

•  If the IOC flag is set in a Link TRB then the Transfer Event shall be generated 

with Completion Code = Success, and the TRB Transfer Count = 0. 

Note: Setting the IOC flag in a TRB always forces an Event for that TRB (whether a Short 

Packet condition occurs or not), therefore also setting the ISP flag in the same 

TRB is redundant (but allowed). 

4.10.2 Errors 

The detection of an error during a USB transfer shall always generate a Transfer 

Event, irrespective of whether the Interrupt-on-Short Packet (ISP) or Interrupt 

On Completion (IOC) flags are set in the Transfer TRB. The Completion Code of 

the Transfer Event shall identify the detected error condition. An error may 

occur on any TRB of a TD. 
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All Transfer Ring error conditions force the state of the associated endpoint to 

Halted and require system software intervention to recover.  

Refer to section 4.11.2.2 for more information on Control Endpoint error 

handling. 

An isoch endpoint never halts because there is no handshake to report a halt 

condition. Errors are reported as a completion code associated with a TRB for an 

isochronous transfer, but an isoch pipe is not halted in an error case. If an error 

is detected, the xHC shall continue to process the data associated with the next 

ESIT of the transfer. Only limited error detection is possible because the 

protocol for isochronous transactions do not provide per-transaction 

handshakes. Refer to section 5.6.5 of the USB2 spec. There is no equivalent text 

in the USB3 spec, however SuperSpeed isoch endpoints are treated the same 

way. 

4.10.2.1 Stall Error 

A STALL PID (USB2) or STALL LMP (USB3) may be returned by a USB function in 

response to an IN token or after the data phase of an OUT or in response to a 

PING transaction. The STALL PID indicates that a function is unable to transmit 

or receive data, or that a control pipe request is not supported. The state of a 

USB device after returning a STALL for any endpoint (except the Default Control 

Endpoint) is undefined. The host controller shall not return a STALL under any 

condition. 

When a STALL PID is received from a USB device by the xHC, it shall stop further 

activity on the associated Transfer Ring by removing it from its Pipe Schedule, 

set the associated Endpoint State (EP State) field to Halted, and generate a 

Transfer Event TRB with a Stall Error. 

Note: If a device responds to a SETUP packet with a STALL28 the endpoint shall 

generate a Stall Error for the Setup TRB and shall be halted. 

A two step process is required to recover a halted endpoint:  

1. System software shall use a Reset Endpoint Command (section 4.11.4.7) 

to remove the Halted condition in the xHC. After the successful 

completion of the Reset Endpoint Command, the Endpoint Context is 

transitioned from the Halted to the Stopped state and the Transfer Ring 

of the endpoint is reenabled. The next write to the Doorbell of the 

                                                   

28Typically control endpoints only return STALL TPs due to a Protocol Stall condition (as described in the USB3 
spec section 8.12.2.3), however section 8.1 of the USB3 spec states “For non-isochronous transfers, an endpoint 
may respond to valid transactions by:... Returning a STALL Transaction Packet if there is an internal endpoint 

error”. This condition describes a “Functional Stall” case, which applies to a SuperSpeed Control Endpoint if an 
internal endpoint error is detected by the device, hence any TP or DP issued to a Control Endpoint may return a 
STALL TP, including a Setup DP. 
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Endpoint will transition the Endpoint Context from the Stopped to the 

Running state. 

Note: The Reset Endpoint Command for the endpoint shall complete successfully and 

the halt condition on the USB device shall be successfully cleared before 

attempting to restart the Transfer Ring by ringing its doorbell. 

2. Software intervention is required to recover the pipe within the USB 

device. 

4.10.2.1.1 Non-Control Endpoints 

Removal of the halt condition on an interrupt or bulk pipe in a USB device is 

achieved via software intervention through a separate control pipe.  

Note: The software intervention required to remove the halt condition on the USB 

device shall be invoked after the pipe has been transitioned to the Stopped state 

by a successful Reset Endpoint Command, but before writing to the Doorbell 

register of the Endpoint to restart activity on the pipe. 

Note: Since an Isoch endpoint does not generate a transaction handshake, they cannot 

generate a Stall Error. 

4.10.2.1.2 Control Endpoints 

Removal of the halt condition on the Control endpoint of a USB device is 

achieved by the device accepting the next SETUP PID. 

For Control endpoints, a reset of the USB device shall be required to clear the 

halt or error condition if the device does not accept the next Setup PID.  

Refer to section 4.11.2.2 for additional Control Endpoint error handling. 

4.10.2.2 TRB Error 

A TRB Error indicates the TRB field values are out of range or that the xHC has 

determined that a TRB is incorrectly formed. 

This error condition may be reported in a Transfer Event or a Command 

Completion Event due to an error detected on a Transfer or Command TRB, 

respectively. This error will not be reported in any other Event TRB types.  

Note: A Transfer Ring TRB Error should transition an endpoint to the Error state (refer 

to section 4.8.3), however an xHC implementation may assert HCE29 due to the 

                                                   

29A TRB Error is generated due to a malformed TRB or a SET_ADDRESS Setup Stage TRB, hence their generation is 

solely due to a xHCI driver error. So as not to burden xHCI implementations with complex error handing logic 
that only applies to the driver debug process, an xHC is allowed to assert HCE when TRB Error conditions are 
detected. 
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detection of TRB Error related error conditions. It is the responsibility of software 

to always present correctly formed TRBs to the xHC. 

4.10.2.3 USB Transaction Error 

A transaction error is any error that causes the host controller to not complete a 

transfer successfully. Table 4-4 lists the events/responses that the xHC can 

observe as a result of a transaction. The effects of the Bus Error Counter and 

interrupt status are summarized in the following paragraphs. Most of  these 

errors set the USB Transaction Error Completion Code in the appropriate 

Transfer Event TRB. 

There is a small set of protocol errors that relate only when executing a Setup 

Stage TRB and fit under the umbrella of a Bad PID error that are significant to 

explicitly identify. When these errors occur, the Bus Error Counter (4.10.2.7) is 

decremented. When the USB PID Code30 indicates a SETUP, the following 

responses are protocol errors and shall result in a USB Transaction Error if not 

resolved after CErr retries. 

•  A high-speed device and returns a NAK handshake to a SETUP. 

•  A high-speed device and returns a NYET handshake to a SETUP. 

•  A low- or full-speed device complete-split receives a NAK handshake. 

•  A SuperSpeed device responds to a SETUP DP with an NRDY TP. 

 

Table 4-4: Summary of USB Transaction Errors  

Event / Result Error Tries TRB Error Status 

USB2 CRC or USB3 DPP Error31 CErr USB Transaction32 

Timeout 
CErr (USB2), 
N/A (USB3)33 

USB Transaction32 

                                                   

30Refer to Table 8-1 in the USB2 spec for a list of the PID Codes (Types). 

31Refer to section 0 for the definition of a DPP Error. Note that the xHCI definition is slightly different than the 

definition of DPP Error in the USB3 spec because it includes the case where an ACK TP is received for a DPP with 
the Retry Data Packet (rty) bit set, 

32If error occurs on a USB transaction, then a USB Transaction Error (XactErr) is asserted immediately on an Isoch 

pipe or after CErr unsuccessful attempts on all other pipe types. In addition non-Isoch Transfer Ring shall be 
halted, refer to section 4.10.2.1. 

33Section 8.13 of the USB3 spec states that if a tHostTransactionTimeout occurs, for control, bulk, and Interrupt 

transactions the host shall assume that the transaction has failed and halt the endpoint. For Isoch transactions 
the host shall not perform any more transactions to the endpoint in the current Service Interval. And the host 
shall not halt the endpoint and shall restart transactions to the endpoint in the next Service Interval. No retries 

are performed for any transaction type if a tHostTransactionTimeout occurs. 



 

 

190    

USB2 Bad PID34 CErr USB Transaction32 

Babble N/A Babble Detected Error 

Buffer Error N/A Data Buffer Error 

 

This error condition shall only be reported in a Transfer Event due to an error 

detected on a Transfer TRB. This error shall not be reported in any other Event 

TRB types. 

Note: No retries shall be performed if the xHC does not see a response to a Data 

Transaction (either IN or OUT) within tHostTransactionTimeout on a 

SuperSpeed or SuperSpeedPlus pipe. The endpoint shall transition to Halted 

state when this condition is detected. 

Note: The USB3 spec defines a range of possible tHostTransactionTimeout values. The 

specific value applied by an xHC implementation may be hardcoded by an xHC 

vendor or programmable through a vendor defined mechanism, e.g. a Vendor 

Defined xHCI Extended Capability. 

4.10.2.4 Babble Detected Error 

When a device transmits more data on the USB than the host controller is 

expecting for a transaction, it is defined to be babbling. In general, this is called 

a Babble Error35. When a device sends more data than the TD Transfer Size 

bytes (TD Babble), unexpected activity that persists beyond a specified point in 

a (micro)frame (Frame Babble), or a packet greater than Max Packet Size (Packet 

Babble), the host controller shall set the Babble Detected Error in the 

Completion Code field of the TRB, generate an Error Event, and halt the 

endpoint (refer to Section 4.10.2.1). The Bus Error Counter is not decremented 

for a Babble Error condition. 

This error condition shall only be reported in a Transfer Event due to an error 

detected on a Transfer TRB. This error shall not be reported in any other Event 

TRB types. 

                                                   

34The xHC received a response from the device, but it could not recognize the PID as a valid PID. Not applicable to 
USB3. 

 

35The USB3 spec describes a (Packet) babble condition as receiving “sDataSymbolsBabble symbols without 
receiving a valid DPPEND ordered set or DPPABORT”.The USB2 spec describes a (Frame) babble condition as 
“unexpected bus activity that persists beyond a specified point in a (micro)frame. Refer to section 8.7.4 in the 

USB2 spec for more details.The EHCI spec describes two (TD and Packet) babble conditions as “the device sends 
more than Transaction X Length or Maximum Packet Size bytes (whichever is less)”. Where Transaction X Length 
is equivalent to TD Transfer Size, i.e. a TD Babble condition. The EHCI spec also states that a babble error “is 

considered a fatal error for the transfer”. 
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Note: When Babble Detected Error is generated, software shall assume that any excess 

received data has been lost and not attempt a Soft Retry. 

Note: If a Babble Error is detected and the received data passes all integrity checks, the 

host controller may write the received data (up to the expected data length) to 

the data buffer, and the value of the TRB Transfer Length field in the Babble 

Detected Error Transfer Event shall be consistent with the number of data bytes 

written to the buffer. 

4.10.2.4.1 USB2 Protocol 

A babble condition also exists if IN transaction is in progress at High -speed 

EOF2 point. This is called a Frame Babble. If a Frame Babble condition is 

detected while a TRB is being processed the xHC shall set the Babble Detected 

Error in the Completion Code field of the TRB, generate an Error Event, and halt 

the endpoint. In addition, the xHC shall disable the Root Hub port to which the 

Frame Babble is detected. The xHC shall never start an OUT transaction that will 

babble across a microframe EOF. 

Note: Frame Babble is also a Port_Error condition which shall transition a port in the 

Enabled state to the Disabled state, assert the PEC flag (‘1’), and generate a Port 

Status Change Event. Refer to section 4.19.1.1.6. 

 IMPLEMENTATION NOTE 

PID Mismatch and Babble Checking 

When a host controller detects a data PID mismatch, it shall either: disable the Packet 

Babble checking for the duration of the bus transaction, or do Packet Babble checking 

based solely on Maximum Packet Size. The USB core specification defines the 

requirements on a data receiver when it receives a data PID mismatch (e.g. expects a 

DATA0 and gets a DATA1 or visa-versa). In summary, the xHC shall ignore the received 

data and respond with an ACK handshake, in order to advance the transmitter's data 

sequence. 

The xHCI allows System software to provide buffers for a Control, Bulk or Interrupt IN 

endpoint that are not an even multiple of the maximum packet size specified by the 

device. Whenever a device misses an ACK for an IN endpoint, the host and device are out 

of synchronization with respect to the progress of the data transfer. The xHC may have 

advanced the transfer to a buffer that is less than maximum packet size. The device will 

re-send its maximum packet size data packet, with the original data PID, in response to 

the next IN token. In order to properly manage the bus protocol, the host controller shall 

disable the Packet Babble check when it observes the data PID mismatch. 

4.10.2.4.2 USB3 Protocol 

A babble condition also exists if on an IN transaction the DPP exceeds the Max 

Packet Size. If a babble condition is detected the xHC shall set the Babble 
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Detected Error in the Completion Code field of the TRB, generate an Error Event, 

and halt the endpoint. 

4.10.2.5 Data Buffer Error 

This event indicates that an overrun of incoming data or an underrun of 

outgoing data has occurred for this Transfer TRB. This would generally be 

caused by the host controller not being able to access required data buffers in 

memory within necessary latency requirements. These conditions are not 

considered transaction errors, and do not effect the Bus Error Count. When 

these errors do occur, a Transfer Event TRB will be generated (pointing to the 

TRB that the error was detected on) with the Completion Status set to Data 

Buffer Error. 

If the Data Buffer Error occurs on a non-isochronous IN, the host controller shall 

not issue a handshake to the endpoint. This will force the endpoint to resend 

the same data (and data toggle) in response to the next IN to the endpoint.  

If the Data Buffer Error occurs on an OUT, the host controller shall corrupt the 

end of the packet so that it cannot be interpreted by the device as a good data 

packet. Simply truncating the packet is not considered acceptable. An 

acceptable implementation option is to 1's complement the CRC bytes and send 

them. There are other options suggested in the Transaction Translator section 

of the USB2 spec. 

This error condition shall only be reported in a Transfer Event due to an error 

detected on a Transfer TRB. This error will not be reported in any other Event 

TRB types. 

Note: A Data Buffer Error may be generated for a USB2 or USB3 transfer. 

4.10.2.6 Host System Errors 

Interrupts are used by xHCI to report Events generated by the controller. The 

reporting requires that the xHC hardware that manages the Event Ring, and the 

host system hardware that the xHCI is communicating over, is operating 

properly. 

If a catastrophic system error occurs, it may prevent the xHC from properly 

completing a TRB in the Event Ring. This means that software could receive an 

interrupt with an inconsistent Event Ring. If in the process of normal Event TRB 

processing software suspects a problem, it may examine the Host System Error 

(HSE) bit in the USBSTS register to determine whether the problem was due to a 

host controller related catastrophic fault condition.  

If a catastrophic error occurs during a host system access involving the Host 

Controller module the Host System Error (HSE) bit in the USBSTS register shall 

be set to ‘1’. (In a PCI system, conditions that set this bit to ‘1’ include PCI Parity 

error, PCI Master Abort, and PCI Target Abort.) When this error occurs, the Host 



 

 

 

  193 

Controller shall clear the Run/Stop (R/S) bit in the USBCMD register to prevent 

further execution of the scheduled TDs. 

The following conditions shall indicate an Event TRB problem:  

•  System software receives an xHC interrupt and a Valid Transfer Event TRB does not 

point to a Valid source TRB. 

•  System software receives an xHC interrupt and a Valid Transfer Event TRB does not 

identify an enabled Device Slot. 

•  System software receives an xHC interrupt and a Valid Transfer Event TRB does not 

identify to an enabled endpoint. 

•  Out of range, incomplete, or inconsistent Event TRB field values. 

It is recommended that system software check for these conditions. 

Note: A Host System Error (HSE = ‘1’) may be generated due to transfer integrity errors 

on the system bus. Some modern system bus interrupt mechanisms (e.g MSI, 

MSI-X) utilize specialized writes to the host address space to generate interrupts. 

These writes require that the address and data paths of the system bus to be 

functioning properly. A catastrophic error condition may prevent these writes 

from completing successfully. It is recommended that an xHC implementation 

uses and “Out-of-Band” mechanism for reporting Host System Errors. This may 

be a hardwired interrupt, bus or system error signal provided by the system bus. 

Host System Error (HSE) may optionally be used to report other internal xHC 

errors that might jeopardize system level operation or data integrity. It should 

be assumed, however, that the assertion of HSE should generate a critical 

system interrupt (e.g., NMI or Machine Check) and is, therefore, fatal. 

Consequently, care should be taken in using HSE to report non-parity or system 

errors. Both the xHC and software shall assume that system integrity has been 

compromised when HSE is asserted. 

Note: Host Controller Error (HCE) should be used to report internal xHC error 

conditions which may be recovered from by software resetting and 

reinitialization of the xHC. Refer to section 4.24.1. 

 IMPLEMENTATION NOTE 

Out-of-Band Error Reporting 

The PCI PERR# (Parity ERRor) and SERR# (System ERRor) error reporting pins are 

required for all PCI implementations. xHC implementations shall assert the PERR# pin if 

a parity error is detected during a PCI transaction (other than Special Cycle). The xHC 

shall assert the SERR# pin if an address parity error, data parity error on the Special 

Cycle command, the Host System Error (HSE) bit in the USBSTS register is set to ‘1’, or 

any other system error is detected by the xHC where the result will be fatal. Assertion of 

the PERR# or SERR# pins shall set the HSE bit in the USBSTS register to ‘1’. 
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If an MSI or MSI-X write transaction is terminated with a Master-Abort or a Target-

Abort, the xHC shall report the error by asserting SERR# (if bit 8 in the PCI 

Configuration Space Command register is set) and to set the appropriate bits in the PCI 

Configuration Space Status register (refer to Section 3.7.4.2 of the PCI specification). An 

MSI or MSI-X memory write transaction is ignored by the target if it is terminated with a 

Master-Abort or Target-Abort. Refer to section 5.2.1 for more information on the PCI 

Configuration Space registers. 

If SERR# is not enabled, software should implement an algorithm for checking the HSE 

flag if the xHC is not responding. 

Non-PCI xHC implementations shall provide an equivalent out-of-band notification 

mechanism for xHC notification of catastrophic errors. 

4.10.2.7 Bus Error Counter 

The Bus Error Counter is an internal 2-bit down counter that the xHC maintains. 

This counter determines the number of consecutive Errors allowed while 

executing a USB Transaction. 

Section 4.10.2.3 describes how when CErr bus errors are encountered on any 

packet of a TD, the TD is aborted, the endpoint is Halted and an Error Event will 

be generated. The xHC is expected to maintain an internal Bus Error Counter for 

each endpoint, which allows retries and differentiating “soft-errors” from “hard-

errors”. 

The xHC initializes this internal Bus Error Counter to the value defined by the 

Endpoint Context Error Count (CErr) field on the first transmission of a packet 

and decrements it when an error is detected, if the Bus Error Counter reaches 0, 

then a hard-error is generated. If a packet transmission successfully completes 

prior to the Bus Error Counter reaching 0, it is considered successful and no 

error will be generated. 

Table 4-5: CErr Management  

Error Decrement 
Counter Comment 

Transaction 

Error 

Yes Refer to section 4.10.2.3. 

Stalled No Detection of Babble or Stall automatically halts the ring. Thus, count is 

not decremented. 
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No Error No If a bus transaction completes and the host controller does not detect a 

transaction error, then the host controller should reset the Bus Error 
Counter to extend the total number of errors for this TD. For example, 
Bus Error Counter should be reset with value of CErr on each successful 

completion of a USB transaction. The xHC shall not reset the Bus Error 
Counter if the value at the start of the transaction is 00b. 

Data Buffer 
Error 

No Data buffer errors are host problems. They don't count against the 
device's retries. 

Babble 
Detected 

No Detection of Babble or Stall automatically halts the ring. Thus, count is 
not decremented. 

 

Note: Software shall not program CErr to a value of ‘0’ when the Slot Context Speed 

field indicates a Full- or Low-speed device. This combination could result in 

undefined behavior. 

4.10.2.8 Isoch Endpoint Error Handling 

CErr does not apply to Isoch Data Transactions because retries are not 

performed on Isoch endpoints. Also an Isoch endpoint shall not halt due to a 

Data Transaction error, but instead shall advance to the next Isoch TD and 

attempt to execute it during the next ESIT. An Isoch Data Transaction error s hall 

force the generation of a Transfer Event, irrespective of whether the Interrupt-

on-Short Packet (ISP) or Interrupt On Completion  (IOC) flags are set in the 

Transfer TRB, where the Transfer Event’s : 

•  TRB Pointer field shall point to the Transfer TRB that the error was detected on, and 

•  TRB Transfer Length field shall indicate the residue of the number of bytes not 

successfully transferred. 

If a Timeout, USB2 CRC Error, USB3 DPP Error, or a USB2 Bad PID was detected 

on an Isoch IN Data Transaction, the Completion Code of the Transfer Event shall 

be set to USB Transaction Error. 

If a Babble condition was detected on an Isoch IN Data Transaction, the 

Completion Code of the Transfer Event shall be set to Babble Error. 

While advancing to the next Isoch TD: 

•  If an Event Data TRB is encountered, the xHC shall parse it, i.e. if the its IOC flag is set, 

an Event Data Transfer Event shall be generated with its Completion Code set to the 

same error value reported by the Transfer Event and TRB Transfer Length field set to 

the number of bytes successfully transferred. The first Event Data TRB encountered 

shall be parsed. 
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•  If subsequent Event Data TRBs are encountered in the process of advancing to 

the next Isoch TD, the xHC shall parse them if the Parse All Event Data (PAE) flag 

is set ('1'), and shall not parse them if the PAE flag is cleared ('0'). Refer to section 

5.3.6 for more information on PAE. 

•  If a Link Data TRB is encountered, the xHC shall parse the Link TRB, i.e. if its IOC flag 

is set, a Transfer Event shall be generated with its Completion Code set to Success. 

All Link TRBs encountered shall be parsed. 

Note: Isoch TD shall follow the TD Fragment rules which define when an IOC flag may 

be set within a TD. 

Note: If a tHostTransactionTimeout occurs a SuperSpeed or SuperSpeed Plus Isoch IN 

endpoint shall not perform any more transactions to the endpoint in the current 

Service Interval. And the host shall not halt the endpoint and shall restart 

transactions to the endpoint in the next Service Interval (refer to Table 8-33 in 

the USB3 spec). Note that the tHostTransactionTimeout is an xHC 

implementation specific delay.  

4.10.3 Events 

Refer to section 4.17.4 for information on Event to Interrupter mapping.  

4.10.3.1 Ring Overrun and Underrun 

If an Isoch endpoint is Running, the xHC periodically schedules the endpoint as a 

function of the ESIT. Each ESIT the xHC shall execute one Isoch TD on the 

endpoint's Transfer Ring. If the Isoch ring is empty when the xHC is ready to 

perform the transfer, it shall generate a Transfer Event on the Event Ring 

indicated by the Slot Context Interrupter Target field. An IN Isoch endpoint shall 

set the Completion Code to Ring Overrun and an OUT Isoch endpoint shall set 

the Completion Code to Ring Underrun. 

When a Ring Overrun or Ring Underrun condition occurs, the TRB referenced by 

the Dequeue Pointer is not valid. Ring Underrun and Ring Overrun Transfer 

Events shall clear the TRB Transfer Length field to ‘0’, and set the TRB Pointer 

field to the address of the invalid TRB ( i.e. the value of the Dequeue Pointer 

where the Overrun or Ring Underrun condition was detected). Refer to section 

4.11.3.1 for a detailed description of the Transfer Event TRB . The functionality 

described in this paragraph shall be mandatory for all xHCI 1.1 compliant xHCs.  

Note: Pre-1.1 xHC implementations clear the TRB Pointer field of a Ring Underrun or 

Ring Overrun Transfer Event TRB to ‘0’. 

After a Ring Overrun or Ring Underrun condition is reported the endpoint shall 

remain in the Running state, and be removed from the Pipe Schedule. The 

endpoint shall be placed back on the Pipe Schedule the next time system 

software rings the doorbell for the endpoint.  
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A Ring Overrun or Ring Underrun condition may occur unintentionally if 

software posts Isoch TDs late, i.e. software does not meet the Isochronous 

Scheduling Threshold (IST) requirement. In this case the xHC detects an empty 

Transfer Ring for the ESIT, generates a Ring Overrun or Ring Underrun Event, 

and removes the endpoint from the Pipe Schedule. However software, not 

knowing that it is late, rings the endpoint’s doorbell, posting an Isoch TD for the 

ESIT that just incurred the Over/Underrun condition. The doorbell ring causes 

the xHC to put the endpoint back on the Pipe Schedule, and in preparation for 

the next ESIT, the xHC may fetch a TD that software had intended for a previous 

ESIT. If the SIA flag is set, then the TD (and all subsequent TDs) will be 

transferred one ESIT late. If the SIA flag is cleared, then the xHC will inspect the 

TD’s Frame ID, recognize that the TD is not within the current Valid Frame 

Window36, and generate a Missed Service Error, because the xHC is unable to 

service the TD within the specified ESIT. After the Missed Service Error the xHC 

will attempt to “resynchronize” the Isoch pipe. If resynchronization is successful, 

then subsequent Isoch TDs will be transferred in their correct ESITs. Refer to 

section 4.10.3.2 for more information on Missed Service Error handling. Refer to 

section 4.11.2.5.2 for more information on Resynchronization. 

Software typically posts multiple Isoch TDs with each doorbell ring. If software 

is very late (e.g. multiple ESITs) when it rings the doorbell after an 

Overrun/Underrun condition, then multiple Isoch TDs may not be within the 

current Valid Frame Window. In this case, a Missed Service Error shall be 

generated for each TD skipped in the process of resynchronizing. Refer to 

section 4.11.2.5 for the definition of Valid Frame Window. 

Note: For Isoch TDs with SIA = '0' that are not scheduled in advance of the Isochronous 

Scheduling Threshold (IST): 

•  If an Isoch endpoint is Running and Busy, then TDs that are not scheduled in 

advance of the IST shall result in an Ring Overrun or Ring Underrun condition, 

because the Transfer Ring appears empty when the xHC goes to fetch the 

next TD (refer to section 4.14.2.1.4 for more information on IST). 

•  If an Isoch endpoint is Running and Idle, then TDs that are not scheduled in 

advance of the IST shall result in a Missed Service Error, because the doorbell 

is rung too late for the xHC to schedule the TD for the ESIT targeted by the 

Frame ID (refer to section 4.10.3.2 for more information). 

Refer to section 4.11.2.5.1 for scheduling ESITs less than 1 ms., i.e. Microframe 

Alignment. 

Note: A late doorbell ring may result in the generation of two Events; a Ring Overrun or 

Ring Underrun condition, being followed immediately by a Missed Service Error. 

                                                   

36If the ESIT is less 1 ms., then subsequent TDs within the same frame report the same Frame ID value and pass the 
"current Valid Frame Window" test, but they may still be late. Refer to section 4.11.2.5.1 for how software may 
ensure that an Isoch TD is transferred within the correct ESIT of a Frame. 

 



 

 

198    

The xHC generates a Ring Overrun or Ring Underrun condition because an Isoch 

Transfer Ring is empty when it tries to move the data for a scheduled Interval. 

The Ring Overrun or Ring Underrun condition also causes the endpoint to 

transition to the Runnung Idle state, i.e. requiring a doorbell ring to restart it. 

When the (late) doorbell ring does occur, assuming it posted data buffers for the 

Interval that generated the Ring Overrun or Ring Underrun condition, the xHC will 

fetch buffer targeted at an Interval that has already passed and generate a Missed 

Service Error because it cannot deliver the data associated with an Isoch TD. 

4.10.3.2 Missed Service Error 

This error only applies to Isochronous endpoints. A Missed Service Error 

Completion Code indicates that the xHC was unable to complete the data 

transfer associated with an Isoch TRB within the ESIT. The cause of the error 

may be due to an Event Ring full condition, excessive DMA latency when 

accessing periodic data causing an internal xHC buffer overrun or underrun, etc. 

The data associated with the TD in error shall be lost, however for the next ESIT 

the xHC shall advance to the next Isoch TD and attempt to execute it.  

A Missed Service Error shall utilize the Transfer Event TRB format. The TRB 

Pointer field of Missed Service Error Transfer Event shall reference the TRB that 

was missed and its TRB Transfer Length the residue data bytes in the buffer. 

Since a Missed Service Error forces a Transfer Event, the Event’s TRB Pointer 

field may not reference a TRB that has its IOC flag set (‘1’) within the skipped 

Isoch TD. 

If the conditions that cause a Missed Service Error persist, multiple consecutive 

Isoch transfers may not be completed. In this case, a Missed Service Error 

Transfer Event shall be generated for every ESIT missed. The only exception to 

this rule is if an Event Ring full condition prevents the posting of Missed Service 

Error Transfer Events. When the Event Ring full condition clears, the xHC shall  

post a Missed Service Error Transfer Event for the last Isoch TD (of each Transfer 

Ring) not completed. 

Note: xHC implementations that do not support the Contiguous Frame ID Capability 

(CFC) may not generate a Missed Service Error Transfer Event for every ESIT 

missed. 

A Missed Service Error shall not be reported if an Isoch transfer was not 

completed due to another error condition, e.g. USB Transaction Error, etc.  

Refer to section 4.10.3.1 for more information on the relationship of Missed 

Service Errors to Ring Overrun and Ring Underrun conditions. 

4.10.3.3 Split Transaction Error 

This error only applies to USB2 protocol endpoints for reporting an error on a 

split transaction, e.g. that the xHC was unable to schedule a required complete -
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split transaction of a HS Split Interrupt IN transaction. If a Split Transaction Error 

is detected, there is the possibility of data loss and the endpoint shall be halted. 

Note: Software shall not attempt a Soft Retry to recover from a Split Transaction Error. 

4.10.3.4 Short Packet 

A Short Packet Completion Code shall be reported if number of bytes received 

was less than the TD Transfer Size and the Interrupt-on Short Packet (ISP) or 

Interrupt on Completion (IOC) flag was set to ‘1’ in the associated Transfer TRB . 

Refer to section 6.4.5 Table 6-85 for the definition of the Short Packet 

completion code. Refer to section 4.10.1.1 for more information in Short Packet 

handling. 

Note: If a Short Packet ends between two TRBs, either TRB may report a Short Packet 

Completion Code. 

4.10.4 IOC Flag 

The general rule for how the xHC should handle the IOC flag is simple: if the IOC 

flag is set, then generate an event. There are some exceptions to this  rule 

described in the spec, e.g. if the Event Ring is full, but normally this rule should 

always be applied. 

If software wants to know when the xHC has completed processing all the TRBs 

associated with a TD, it must set the IOC flag in the last TRB of TD. The event 

that the IOC in the last TRB generates informs software that last TRB of the TD is 

complete, which means that the TD is complete, and that the space on the 

Transfer Ring that the TD consumed may be reclaimed.  

The ISP flag generates an event only if less data was received, than was 

specified by a TRB. The TRB Transfer Length field of the Transfer Event that a 

Short Packet condition generates informs software of the exact number of bytes 

transferred when the condition was detected. Software may also set the BEI flag 

if it is not interested in generating an interrupt due to a Short Packet Event.  

And if the ISP flag is set and IOC flag is not set in the last TRB of TD that may 

received a Short Packet, an event shall not be generated if a Short Packet 

condition does not occur on that TRB, i.e. if the buffer defined by the TRB is 

completely filled. 

In some cases, the xHC response to an error condition may look very similar to a 

Short Packet condition, because after the xHC generates an event for either 

condition, the xHC may automatically advance to the next TD. An example of this 

behavior is when a USB Transaction Error is detected during an Isoch IN transfer, 

where the Isoch pipe does not stall, but advances to the next Isoch TD in 

preparation for the next Interval. The error will generate an event, however if the 

event does not point to last TRB of the Isoch TD and the IOC flag is not set in 
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last TRB of the TD with the error, software will have to wait until the next IOC 

flag is encountered by the endpoint before it can reclaim the Isoch TD that had 

the error. This may take many milliseconds depending on the size of the Interval 

and where software set the IOC flags. 

In summary, software can not only use the IOC flag to report specific TD 

completions, but it can also be used to provide timely updates of the Dequeue 

Pointer position so that TRBs can be reclaimed, to reduce error recovery times, 

or to allow Transfer Rings to grow or shrink as function of system loading or 

resource changes. 

Note: An exception is if the PAE flag is cleared (‘0’). In this case when a Short Packet 

occurs, the IOC flag in the first Event Data TRB encountered generates an Event 

Data Transfer Event and the IOC flag is ignored in subsequent Event Data TRBs 

that are encountered in the process of advancing the Dequeue Pointer to the 

beginning of the next TD. Refer to section 5.3.6 for more information on PAE. 

4.11 TRBs 

This section discusses the properties and uses of TRBs that are outside of the 

scope of the general data structure descriptions that are provided in section 6.4.  

4.11.1 TRB Template 

TRBs adhere to the generalized template illustrated in Figure 4-13. 

Figure 4-13: TRB Template 
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A TRB consist of 3 basic components: Parameter, Status, and Control. The 

following sub-sections identify the properties of each component.  

4.11.1.1 Command and Transfer TRB Components 

Command and Transfer TRB Components adhere to the following general rules, 

where the producer is system software and the consumer is the xHC.  

All components of all Command and Transfer TRBs shall be initialized to ‘0’ by 

the system software when the Command Ring or a Transfer Ring is created.  

All components of all Command and Transfer TRBs shall be treated as read-only 

by the xHC. 
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The format/contents of all Command or Transfer TRB components shall be 

defined by the Control component TRB Type field. TRB Type field shall always 

reside in bits 10-15 of the Control component. 

The Enqueue Pointer of a ring is defined by the transition of the Control 

component Cycle (C) bit in the TRB Ring. Refer to section 4.9 for a detailed 

explanation of Cycle bit operation.  Cycle bit shall always reside in bit 0 of the 

Control component. 

If the xHC does not pre-fetch TRBs the Evaluate Next TRB (ENT) flag forces the 

xHC to evaluate the next TRB of a TD before advancing to the next endpoint in 

the Pipe Schedule. The ENT flag does not span TDs, therefore the ENT flag is 

valid only if the Chain bit (CH) is ‘1’. Refer to section 4.12.3 for more information 

on the ENT flag. 

Note: if all 4 Dwords of a TRB are not written as an atomic memory operation, then it is 

required that the Parameter and Status components of a TRB shall be initialized 

prior to writing the Control Component. Violating this rule shall cause undefined 

xHC behavior. 

How a Transfer Ring is managed is described in section 4.11.2. How a Command 

Ring is managed is described in section 4.11.4. 

 IMPLEMENTATION NOTE 

xHC Bus Mastering 

The xHCI specification is designed around the assumption that hardware will issue a 

single, atomic system bus transaction when reading and writing TRBs and other data 

structures. For example, at least a 16 byte read transaction would be issued as an atomic 

operation to fetch a TRB from memory. Larger read or write transactions may be used to 

minimize the system bus overhead associated with moving data structures to or from 

memory, e.g. an xHC implementation could fetch 4 TRBs with a single 64B atomic 

operation, or use the system bus’s maximum transaction size. Failure to read or write 

TRBs as atomic operations may result in undefined behavior. 

4.11.1.2 Event TRB Components 

Event TRB Components adhere to the following general rules, where the 

consumer is system software and the producer is the xHC.  

All components of all Event TRBs shall be initialized to ‘0’ by the system 

software when the Event Ring is created. 

After Event Ring initialization, all components of Event TRBs shall be treated as 

read-only by system software. 
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The format/contents of all Event TRB components shall be defined by the 

Control component TRB Type field. TRB Type field shall always reside in bits 10-

15 of the Control component. 

The Enqueue Pointer of a ring is defined by the transition of the Control 

component Cycle (C) bit in the Event TRB Ring. Refer to section 4.9 for a detailed 

explanation of Cycle bit operation. 

How an Event Ring is managed is described in section 4.11.3. 

4.11.2 Transfer TRBs 

Transfer TRBs shall be found on a Transfer Ring. A Work Item on a Transfer Ring 

is called a Transfer Descriptor (TD) and is comprised of one or more Transfer 

TRB data structures. This section describes the transfer related TRBs.  

System software is the producer of all Transfer TRBs and the xHC is the 

consumer. 

Upon completion of a Transfer TRB one of 4 conditions shall cause an 

associated Transfer Event to be generated on the Event Ring:  

1. The Interrupt On Completion (IOC) flag is set. 

2. A Short Packet has been received and the Interrupt-on Short Packet (ISP) 

flag is set. 

3. An error occurred while executing a Transfer TRB. 

In each case, the Completion code will indicate either Success or the cause of 

the Transfer Event generation. 

The IOC flag will typically only be set (‘1’) in the last TRB of Transaction 

Descriptor (TD) to minimize Event TRB generation and system interrupts. 

Each Endpoint Context defines one Transfer Ring if the MaxPStreams field = '0' 

or multiple Transfer Rings if the MaxPStreams field > '0'. 

Table 6-86 defines the TRB Types found on a Transfer Ring. Table 6-87 defines 

the allowable Transfer Ring TRB Types as function of endpoint type.  

Note: Software shall only utilize Transfer Events to determine TRB completions. 

Software shall not infer TRB completions based on Frame ID, MFINDEX, or other 

information. 

Refer to section 4.11.7 for more information on TRB requirements. 
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4.11.2.1 Normal TRB 

A Normal TRB is used in several ways; exclusively on Bulk and Interrupt Transfer 

Rings for normal and Scatter/Gather operations, to define additional data 

buffers for Scatter/Gather operations in Isoch and for Data stage TDs.  

The direction of a data transfer associated with a Normal TRB depends on the 

direction defined by the Endpoint Context that it is associated with, or the 

preceding Data Stage TRB in the TRB Ring associated with a Control endpoint.  

The Chain bit (CH field in Figure 6-8) may be set to ‘1’ in Normal, Data Stage, 

Status Stage, and Isoch TRBs to form multi-TRB Transfer Descriptors. Chaining 

allows scatter/gather operations. Chaining can be used by system software to 

concatenate Pages of virtual memory, or to concatenate byte aligned data.  

Refer to section 6.4.1.1 for the definition of a Normal TRB. 

4.11.2.2 Setup Stage, Data Stage, and Status Stage TRBs 

All USB devices respond to requests from the host on the device’s De fault 

Control Pipe. These requests are made using Control Transfers. At the USB 

packet level, a Control Transfer consists of multiple transactions partitioned into 

stages: a setup stage, an optional data stage, and a terminating status stage. 

The xHCI defines the Setup Stage TRB, Data Stage TRB, and Status Stage TRB to 

provide a 1:1 mapping to the respective USB Control transfer stages. Refer to 

section 3.2.9 for an overview of xHCI Control transfer support.  

Refer to sections 6.4.1.2.1, 6.4.1.2.2, and 6.4.1.2.3 for detailed definitions of a 

Setup Stage TRB , Data Stage TRB, and Status Stage TRB, respectively. Also see 

section 8.5.3 in the USB2 spec. or section 8.12.2 in the USB3 spec. for a 

description of “Control Transfers”.  

Table 9-2 of the USB2 or USB3 specification defines the format of the USB 

SETUP Data. The host is responsible for establishing the values passed in the 

USB SETUP Data fields. Every USB Setup packet is comprised of an eight byte 

USB SETUP Data structure. 

Figure 4-14: SETUP Data, the Parameter Component of Setup Stage TRB 

wLength wIndex

bmRequestTypebRequestwValue

31 16 15 8 7 0

00H

04H

DTD Type Recipient

7 6 5 4 0

bmRequestType  

Figure 4-14 illustrates the mapping of the USB SETUP Data defined in section 

9.3 (Table 9-2) of the USB2 or USB3 spec. to the Setup Stage TRB Parameter 

component. 
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The Transfer Ring associated with a Control Endpoint adheres to the following 

rules: 

•  The Control Transfer Ring may contain Setup Stage and Status Stage TDs, and 

optionally Data Stage TDs. 

•  Each Setup Stage TD shall contain a single Setup Stage TRB. 

•  A Data Stage TD shall consist of a Data Stage TRB chained to zero or more Normal 

TRBs, or Event Data TRBs. 

•  A Status Stage TD shall contain of a single Status Stage TRB, optionally chained to 

an Event Data TRB. 

•  All Control transfers require a Setup Stage TD followed by a Status Stage TD. If a 

data stage is required for the transfer, then system software is responsible for 

ensuring that a Data Stage TD is inserted between the Setup Stage TD and the Status 

Stage TD. “No-data” Control transfers do not require a Data Stage TD. 

•  A No-data Control transfer is generated by software if a Data Stage TD does not exist 

between the Setup Stage and Status Stage TDs. 

•  A Setup Stage TRB shall contain immediate data (IDT flag = ‘1’), its Parameter fields 

shall contain the 8-byte USB SETUP Data, which defines the request and the 

request’s parameters that will be sent to the device in the USB Setup stage 

transaction, and its Length field shall be set to ‘8’. 

•  System software is responsible for setting the values passed in the USB SETUP Data 

fields as function of the desired USB Control Endpoint request. Refer to section 9.3 

in the USB2 or section 9.3 in the USB3 spec. for the format of the USB Setup Data. 

•  System software is responsible for ensuring that the Direction (DIR) flag of the Data 

Stage and Status Stage TRBs are consistent with the USB SETUP Data defined 

bmRequestType:Data Transfer Direction (DTD) flag and wLength field. Refer to Table 

4-6 for mapping. 

•  No more than one Data Stage TD may be defined between a pair of Setup and Status 

Stage TDs. 

 

Table 4-6: USB SETUP Data to Data Stage TRB and Status Stage TRB mapping  

USB SETUP Data 

Transfer Type flag 
(TRT) 

Status Stage TRB 

Direction flag (DIR) 

Data transfer direction 
(DTD) wLength Data Stage TRB 

Status Stage 
TRB 

Host-to-device 
0 No Data Stage No Data Stage TD 

defined 
IN 



 

 

 

  205 

>0 OUT Data Stage OUT IN 

Device-to-host 

0 No Data Stage No Data Stage TD 
defined 

IN 

>0 IN Data Stage IN OUT 

 

Note: The Direction (DIR) flag in the Status Stage TRB indicates the direction of the 

control transfer acknowledgement. For USB2 devices, DIR directly determines 

the PID that shall be used for the associated USB2 transaction. For USB3 devices, 

a Status TP is defined which is used for the status stage of all SuperSpeed (SS) 

control transfers. Refer to section 8.5 of the USB3 spec for the definition of the 

SS Status TP Direction flag. 

Note: The Direction (DIR) flag in the Data Stage TRB defines the transfer direction for 

all TRBs in the Data Stage TD. For USB2 devices, DIR directly determines the PID 

that shall be used for the Data Stage transaction. For USB3 devices, if DIR = OUT 

a DP is generated with write data, if DIR = IN an ACK TP is generated to request 

read data from the device. 

•  If the data associated with a Data Stage TD is not contiguous, then additional Normal 

TRBs shall be chained in a Data Stage TD. 

•  System software is responsible for ensuring that the total data length defined by a 

Data Stage TD (i.e. the sum of the Length fields of the Data Stage TRB and all Normal 

TRBs) is equal to wLength. Note that communicating with some non-compliant 

devices may require violating this rule. The transfer lengths managed by the xHC 

depend strictly on the TRB Length fields. 

•  The Transfer Event generated by a Status Stage TRB shall report a Success, Stall 

Error, or other error Completion Code. 

•  Success indicates that the USB device has completed the command and is ready to 

accept a new command. Refer to “Function completes” row in Table 8-7 of the USB2 

spec. Refer to “Request completes” row in Table 8-27 of the USB3 spec. 

•  Stall Error indicates that the USB device has an error that prevents it from 

completing the command. Refer to “Function has an error” row in Table 8-7 of the 

USB2 spec. Refer to “Request has an error” row in Table 8-27 of the USB3 spec. 

Software shall provide a timeout for all control operations and abort them using a 

Stop Endpoint Command if the operation times out. 
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Note: If a USB device is still processing the command when the Status Stage TD is 

executed, the device will return a Busy37 response. The xHC shall wait indefinitely 

for a Success, Stall Error or other error response from device for the Status stage. 

•  The xHC shall NOT check for the following Control transfer error conditions. 

 

Note: Some (non-compliant) USB devices use the SETUP Data wLength field as a 

custom parameter for non-data control transfers. xHCI implementations should 

not tie a non-zero wLength value to the existence of a Data Stage TD in a control 

transfer to ensure compatibility with those devices. 

•  If a Data Stage TD follows a Setup Stage TD, where wLength = ‘0’. 

•  If a Status Stage TD does not follow a Setup Stage TD, where wLength = ‘0’. 

•  If a Data Stage TD does not follow a Setup Stage TD, where wLength > ‘0’38. 

•  If the total size of the Data Stage TD is not equal to wLength. 

•  If the Data Stage TRB Direction (DIR) flag does not correspond to the definition 

in Table 4-6. 

•  If the Status Stage TRB Direction (DIR) flag does not correspond to the definition 

in Table 4-6. 

•  The xHC is NOT required to check for the following Control transfer error conditions. 

If system software is properly designed these error conditions will never occur. 

However if the xHC does check for these conditions it shall generate a Transfer Event 

for the TRB that the error was detected on with the Completion Code set to TRB Error.  

•  If a Status Stage TD does not follow a Data Stage TD. 

•  If the Setup Stage TRB defines a Length not = 8. 

•  The xHC shall inspect the bRequest field in Setup Stage TRBs for a SET_ADDRESS 

request code and the bmRequestType field for Data Transfer Direction (DTD) = Host-

to-device, Type = Standard, and Recipient = Device. If these values are detected for 

bRequest and bmRequestType, no Control transfer shall be issued to the USB, and 

the Transfer Event associated with the Setup Stage TRB shall return a TRB Error 

completion code. The SET_ADDRESS request is the ONLY Standard Device Request 

trapped by the xHC. This error shall not generate a stall condition on the Default 

Control Endpoint. 

                                                   

37Refer to “Function is busy” row in Table 8-7 of the USB 2 spec. Refer to “Device is busy” row in Table 8-27 of the 
USB 3 spec. 

38This condition violates the definition of a USB Control Transfer, however this condition should be ignored by the 

xHC to ensure legacy device compatibility. The Setup Stage Transfer Type (TRT) field strictly indicates the 
presence and the Direction of the Data Stage TD, and determines the direction of the Status Stage TD so the 
wLength field should be ignored by the xHC. 
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•  On a SS endpoint, if a STALL TP is received for a Setup, Data, or Status Stage TD, the 

xHC shall generate a Transfer Event pointing to the TRB that the error occurred on, 

with the Completion Code set to Stall Error. 

•  On a USB2 endpoint, if an error is detected on a Setup, Data or Status Stage TD, the 

xHC shall generate a Transfer Event pointing to the TRB that the error occurred on, 

with the Completion Code set to USB Transaction Error. 

•  All Control transfers begin with a Setup Stage TD and end with a Status Stage TD. A 

Control transfer may be aborted prior to executing its Data Stage or Status Stage TDs 

using a Stop Endpoint Command. Software is responsible for cleaning up the 

Transfer Ring after issuing a Stop Endpoint Command. And this is the only case 

where the xHC may expect to see a Setup Stage TD not follow a Status Stage TD. 

Note: Undefined behavior may occur if software does not schedule a Status Stage TD 

to terminate a control transfer. 

 IMPLEMENTATION NOTE 

Control Endpoint Recommendations 

The USB2 specification section 8.5.3 is silent about what to do if a STALL is returned for 

a Setup Transaction handshake. The EHCI spec (e.g. section 4.12.1) treats a STALL 

generically, retrying the transaction indefinitely. Receiving a STALL for any Transaction 

handshake (including a Setup) halts the endpoint. The EHCI treats a NAK to a Setup 

Transaction as a USB Transaction Error (i.e. decrements CErr). It is recommended that 

xHCI provides the same response. 

The USB3 specification section 8.12.2 is silent about what to do if an NRDY or STALL is 

returned for a Setup TP. xHCI implementations should treat these NRDYs like a USB 

Transaction Error, retrying the transaction CErr times (refer to section 4.10.2.3), and if a 

STALL is received for a Setup TP the xHC should halt the endpoint (refer to section 

4.10.2.3). 

4.11.2.3 Isoch TRB 

An Isoch Transfer Descriptor (TD) shall consist of an Isoch TRB chained to zero or 

more Normal TRBs.  

The direction of a data transfer associated with an Isoch Transfer Ring (and the 

Isoch TD that it defines) depends on the direction defined by the Endpoint 

Context that it is associated with. Refer to the EP Type field definition in Table 

6-9 for the direction encoding. 

The USB Endpoint Descriptor bInterval and wMaxPacketSize, and USB 

SuperSpeed Endpoint Companion Descriptor bMaxBurst and bmAttributes:Mult 

parameters define the bandwidth requirements of an isochronous pipe. These 

parameters specify a Quality of Service contract between the device and the 

host. This contract ensures that during an Interval, up to Max ESIT Payload bytes 

may be transferred between the host and the device. Another way of looking at 
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it is; the USB Descriptor fields; bInterval, wMaxPacketSize, bMaxBurst, Mult, 

define a bandwidth that is guaranteed to be available on the USB for moving the 

data associated with this endpoint. The xHCI defines more generic versions of 

these parameters in the Endpoint Context; Interval, Max Packet Size , Max Burst 

Size, and Mult fields. System software is responsible for converting the 

endpoint type and speed dependent values defined in the USB Endpoint and 

SuperSpeed Endpoint Companion Descriptors to the generic values utilized by 

the xHCI. Refer to section 6.2.3 for more information on the Endpoint Context 

fields and their relationship to the USB Descriptor fields.  

An Isoch TD defines an isochronous data transfer that will occur during a single 

Interval. An Isoch TD consists of one or more TRBs, where the first TRB of TD is 

always an Isoch TRB. If the data associated with an Isoch TD is not contiguous or 

larger than 64K bytes, then additional Normal TRBs may be chained to the initial 

Isoch TRB, forming a multi-TRB Isoch TD. 

The xHC shall consume one Isoch TD each Interval on an Isoch Transfer Ring. To 

ensure streaming data, system software is required to place at least one Isoch 

TD on the Transfer Ring each Interval, prior to the Isochronous Scheduling 

Threshold (refer to IST, section 4.14.2.1). 

For Isoch OUT endpoints, if the associated Transfer Ring is empty, then no Isoch 

transfers shall be scheduled over the USB during the intervening Intervals, the 

endpoint shall be removed from the xHC’s Pipe Schedule, and a Ring Underrun 

Event shall be generated for the EPs’ Transfer Ring to flag the condition.  

For Isoch IN endpoints, if the Transfer Ring is empty, then any Isoch data that 

may have been transferred during the intervening Interval(s) shall be lost, the 

endpoint shall be removed from the xHC’s Pipe Schedule, and a Ring Overrun 

Event shall be generated for the EPs’ Transfer Ring. In either case, the endpoint 

shall remain in the Running state. The xHC shall remove the endpoint from the 

Isoch Pipe Schedule and restart the Isochronous transfers the next time the 

endpoint’s doorbell is rung.  

Note: A Ring Underrun or Ring Overrun Event is only generated the first Interval that an 

empty Transfer Ring is detected. 

Note: Refer to section 4.10.3.1 for a description of Ring Underrun or Ring Overrun 

Transfer Events. 

An Isoch Transfer Ring will be reinstated on the xHC’s Pipe Schedule the next 

time its doorbell is rung. 

If the xHC is unable meet an Isochronous deadline, a Missed Service Error Event  

shall be generated for the endpoint. 

Note: The xHC may not generate a Missed Service Error for each Isochronous deadline 

missed, e.g. if the Event Ring is full. 
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The Ring Underrun, Ring Overrun, and Missed Service Error Events shall utilize a 

Transfer Event TRB format. 

The Isoch TRB Frame ID field may be used to specify the Service Interval 

Boundary that an Isoch transfer may start on. If the Start Isoch ASAP (SIA) flag is 

cleared to ‘0’ in the Isoch TRB, the xHC shall schedule the Isoch TD within one 

Service Interval of the next match of the Frame ID field with the Frame Index 

portion (bits 13:3) of the Microframe Index (MFINDEX) register. Refer to Figure 

4-21. The range of possible values for the Frame ID field are 0 to 2047, with the 

constraints defined in section 4.11.2.5. If the Start Isoch ASAP (SIA) flag is set to 

‘1’ in the Isoch TRB, the Frame ID field is ignored and the Isoch TD is scheduled 

as soon as possible. 

Service Interval Boundaries are aligned. I.e. if Interval = ‘1’, then the Service 

Interval is 2 microframes long and begins when the low order bit of the 

MFINDEX register = 0. If Interval = ‘2’, then the Service Interval is 4 microframes 

long and begins when the low order two bits of the MFINDEX register = 0, and so 

on. 

The Isoch TRB Transfer Burst Count (TBC) and Transfer Last  Burst Packet Count 

(TLBPC) fields may be used by the xHC to identify the exact number of packets 

that will comprise an Isoch TD without having to read in the complete TD. The 

xHC may use this information to better manage its periodic schedules. If 

Extended TBC Capability (ETC) and Extended TBC Enable (ETE) = ‘1’ then TBC 

field supports the definition of Burst Counts up to 32 (and the TD Size field is 

deprecated in an Isoch TRB), otherwise the TBC field supports the definition of 

Burst Counts up to 4 (and the TD Size field is valid). Refer to section 6.4.1.3 for 

more information. 

The TBC field (Table 6-34) shall be initialized by software. The following method 

shall be used to compute TBC, where TDPC is the Transfer Descriptor Packet 

Count described in section 4.14.1. 

TBC = ROUNDUP ( TDPC / ( Max Burst Size + 1 ) ) - 1 

The TLBPC field (Table 6-34) shall be initialized by software. The following 

method shall be used to compute TLBPC, where TDPC is the Transfer Descriptor 

Packet Count described in section 4.14.1. 

IsochBurstResiduePackets = TDPC MODULUS ( Max Burst Size + 1 ) 

TLBPC = IF ( IsochBurstResiduePackets == 0 ) 

THEN Max Burst Size 

ELSE IsochBurstResiduePackets - 1  

Refer to section 6.4.1.3 for the detailed definition of an Isoch TRB. 

Note: The ETC shall not be enabled by an xHC implementation if the Large ESIT 

Payload Capability (LEC = ‘1’) is not supported. 
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Note: If LEC = ‘1’ and ETC = ‘0’, then the largest Isoch Transfer that the TBC and TLBPC 

fields can describe is 64 KB. If the Max ESIT Payload indicates a value greater 

than 64 KB, then the TBC and TLBPC fields shall be used as a hint, rather than to 

compute an explicit Isoch TD packet count. 

4.11.2.4 TD Size 

The TD Size field of a TRB defines a number of packets that remain to be 

transferred for a TD after processing all Max Packet Sized packets in the current 

TRB and all previous TRBs. This field may be used by the xHC to estimate the 

size of a TD without requiring it to read ahead TRBs to the end of the TD. The TD 

Size field shall be initialized by software in Transfer TRBs, with a value 

calculated for a TRB using the following method:  

TD Packet Count defines the number of packets that must be transferred to 

complete a TD. 

TD Packet count = ROUNDUP( TD Transfer Size / Max Packet Size ) 

where, ROUNDUP (x) rounds fractional x up, away from 0 (zero), to the nearest 

integer value. 

x is the number of Transfer TRBs in a TD. 

n is the index of a Transfer TRB in a TD, where n = 1 for the first Transfer TRB of 

a TD. 

TRB Transfer Length Sum (n)  is the sum of the TRB Transfer Length fields in 

TRBs 1 through n. 

Packets Transferred (n)  defines the number of Max Packet Sized packets that 

have been transferred for the TD, up to and including the data described by TRB 

(n). 

Packets Transferred (n) = ROUNDDOWN( TRB Transfer Length Sum (n) / Max Packet 

Size ) 

TRB Residue (n) defines the number of bytes remaining in TRB (n)'s buffer after 

processing all Max Packet Sized packets in the current TRB and all previous 

TRBs of a TD. 

TRB Residue (n) = TRB Transfer Length Sum (n) - (Max Packet Size * Packets Transferred 

(n) ) 

TD Size (n), For all Transfer TRBs except the last in a TD, TD Size identifies the 

number of packets that still need to be scheduled to complete this TD after 

sending TRB Residue (n) + the data for TRBs n+1 through x. The value of the TD 

Size in the last Transfer TRB of a TD (TD Size (x)) shall be cleared to '0' to 

explicitly indicate that it is the last Transfer TRB of the TD. Since the TD Size 
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field is only 5 bits, its value shall be forced to 31 if the number of packets to be 

scheduled is greater than 31. 

For all Transfer TRBs of a TD except the last (n = 1 through x-1):  

TD Size (n) = IF ( TD Packet Count - Packets Transferred (n) > 31, then 31, 

else TD Packet Count - Packets Transferred (n) ) 

For the last Transfer TRB of a TD: 

TD Size (x) = 0. 

Note: If the TRB Residue for the last Transfer TRB (TRB Residue (x)) is greater than 0, 

then a terminating Short Packet shall be generated for the TD. Also note that the 

TRB Residue value is always less than Max Packet Size. 

Note: If ETE = ‘1’, then the TD Size is not available in Isoch TRBs. Refer to section 6.4.1.3. 

Refer to section 6.4.1 for more information on the TD Size field. 

4.11.2.5 Frame ID 

The Frame ID field of an Isoch TD identifies the target frame that the Interval 

associated with this Isochronous Transfer Descriptor will start on. The Frame ID 

is valid only if the Start Isoch ASAP (SIA) field of an Isoch TRB equals ‘0’.  

Software shall not schedule an Isoch TD with a Frame ID value that is greater 

than the End Frame ID , where: 

End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 

This limitation allows the xHC to properly manage Isoch TDs when a Missed 

Service Error occurs. 

Note: When a Missed Service Error occurs, the Isoch TD that was supposed to be 

transferred during the missed service interval is dropped, and the xHC is 

expected resynchronize the Isoch pipe by advancing to the next Isoch TD for the 

next Interval. If the Frame ID of an Isoch TD is used to identify the specific Frame 

associated with a TRB of an Isoch TD, then the scheduling limit on the Frame ID 

(i.e. the Valid Frame Window) allows the xHC to unambiguously determine if an 

Isoch TD should be skipped or executed. 

Software should not schedule an Isoch TD with a Frame ID value that is less than 

the Start Frame ID, where: 

Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 

This limitation allows the xHC sufficient time to fetch and schedule Isoch TDs. 

For more information on the Isochronous Scheduling Threshold  (IST), refer to 

section 4.14.2.1.4. 

Note: The Frame ID value is calculated as the modulus of 2048, i.e. the size of the Frame 

Index portion of the MFINDEX register (refer to Figure 4-21). 
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If the Contiguous Frame ID Capability is supported (CFC = '1'), then the xHC shall 

match the Frame ID in every Isoch TD with SIA = ‘1’ against the Frame Index of 

the MFINDEX register. This rule ensures resynchronization of Isoch TDs even if 

some are dropped due to Missed Service Errors  or Stopping the endpoint. Note 

that the xHC may advance through Isoch TDs faster than the Service  Interval 

rate to resynchronize the Isoch data flow. Refer to section 4.11.2.5.2 for more 

information. 

Note: If the Contiguous Frame ID Capability is supported (CFC = '1') by the xHC, then 

software should set the Frame IDs (i.e. SIA = '0') in all Isoch TDs. To induce a gap 

in the data stream of a Running Isoch endpoint, software simply specifies a gap 

in the Frame IDs assigned to the TDs of the data stream, and the xHC will pause 

the data stream until the Frame ID matches the Frame Index of the MFINDEX 

register. 

Contiguous Frame ID Capability support (CFC = '1') is mandatory for all xHCI 1.1 

compliant xHCI implementations. 

A Valid Frame Window is defined by a Start Frame ID and an End Frame ID. 

If the Contiguous Frame ID Capability is not supported (CFC = '0'), then the xHC 

may start the Isoch data flow when the MFINDEX Frame Index matches the 

Frame ID value specified in the first Isoch TD and ignore the Frame ID fields in 

subsequent Isoch TDs until the data flow is terminated, e.g. due to an Overrun or 

Underrun condition. A Missed Service Error does not terminate an Isoch data 

flow, therefore if a Missed Service Error occurs (i.e. one or more Isoch TDs are 

dropped), the xHCI will not be able to determine whether the subsequent Isoch 

TDs are within a Valid Frame Window and properly resynchronize the Isoch data 

flow. 

Note: If the Contiguous Frame ID Capability is not supported (CFC = '0') by the xHC, 

then software may set the Frame ID (i.e. SIA = '0') only in the first Isoch TD of an 

Isoch data flow, and shall set SIA = '1' in all subsequent Isoch TDs of the data 

flow. To induce a gap in the data flow of a Running Isoch endpoint, software must 

force a Ring Overrun or Ring Underrun condition (by letting the Transfer Ring go 

empty), then specify the starting Frame ID in the first Isoch TD of the next data 

flow, and ring the doorbell. 

4.11.2.5.1 Frame ID ESIT Rules 

The ESIT of an endpoint may be smaller, equal to, or larger than the 1 ms. Frame 

period that may be specified by the Frame ID field of an Isoch TD. This section 

defines how to defined Frame ID values as a function of the ESIT value.  

For endpoints with an ESIT greater than or equal to 1 ms.  

•  Software shall specify a Frame ID value that begins on an ESIT Boundary. E.g. if the 

Interval of an endpoint is 4 ms. (32 microframes) the valid Frame ID values for the 

endpoint are 0, 4, 8, 12, and so on. 
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•  The xHC shall transfer an Isoch TD during the ESIT that starts on Frame boundary 

specified by the Frame ID. E.g. the TD in the example above with the Frame ID value 

of 4, may be transferred over the USB any time during Frames 4, 5, 6, or 7, where the 

xHC ensures that the data transfer will not take place before Frame 4 begins or after 

Frame 7 ends. 

For endpoints with an ESIT less than 1 ms.:  

•  All Isoch TDs transferred within the same Frame (1 ms.) period shall have the same 

Frame ID value. So depending upon the value of the Interval field, up to 8 consecutive 

Isoch TDs may have the same Frame ID value. E.g. if the ESIT of an endpoint is 250 

µs. (2 microframes) then groups of 4 consecutive Isoch TD shall have the same Frame 

ID value; 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, and so on. 

•  To ensure proper Microframe Alignment of Isoch TDs for ESITs less than 1 ms., the 

xHC shall assume that the Frame ID of the first TD posted to a Transfer Ring shall 

begin transferring during the first ESIT of a Frame (1 ms.) period. The xHC shall also 

assume that when a transition in Frame ID values is detected (e.g. between the 4th 

and 5th TDs in the example above), the TD where the transition occurred (i.e. the 5th 

TD) should be transferred during the first ESIT of the next Frame period. E.g. in the 

above example, 4 Isoch TDs are transmitted each Frame period, where the first TD is 

transmitted during Frame 0/microframe 0 or 1, the second TD is transmitted during 

Frame 0/microframe 2 or 3, the third TD is transmitted during Frame 0/microframe 

4 or 5, etc. 

Note: Starting an IN or OUT Isoch data transfer at an ESIT that is not the first ESIT of a 

Frame period is currently not supported by this specification. 

4.11.2.5.2 Resynchronization 

An Isoch Transfer Ring is “synchronized” when the xHC is able to successfully 

transfer the data associated with an Isoch TD during the correct ESIT. If the 

Frame ID value of an Isoch TD is not valid for a target ESIT, then synchronization 

is lost. The rules defining the valid Frame ID values for a specific ESIT are 

identified in section 4.11.2.5.1. 

If a Missed Service Error occurs then the xHC is required to advance through a 

Transfer Ring until it is “resynchronized” or the ring is exhausted. The data 

associated with Isoch TDs that are skipped over while attempting to 

resynchronize a pipe is not moved, however a Missed Service Error should be 

generated for every skipped Isoch TD. 

The xHC shall not drop Events associated with TRBs as it attempts to 

resynchronize an Isoch pipe, e.g. if IOC = ‘1’ in a Link TRB then it returns 

Success, if IOC = ‘1’ in an Event Data or Normal TRB  then it returns Missed 

Service Error, etc. 
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4.11.3 Event TRBs 

Event TRBs shall be found on an Event Ring. A Work Item on an Event Ring is 

called an Event Descriptor (ED). An ED shall be comprised of only one Event 

TRB data structure. This section describes the operational characteristics of the 

event related TRBs. 

The xHC is the producer of all Event TRBs and system software is the consumer.  

Event TRBs are used to report events associated with the Command Ring and 

Transfer Rings, as well as a variety of other host controller related events (Port 

Status Change, Bandwidth Requests, etc.).  

The field definitions of the Parameter, Length, and the high word of the Control 

components of Event TRBs are all Event Type Dependent. Refer to the specific 

Event definitions below for more information on these definitions. The Event 

Type field shall define the contents of the Event Type Dependent fields. 

The Event Type field shall indicate Event Ring TRB Types as defined in Table 

6-86. Any Event Type may be found on the Primary Event Ring. Only Transfer, 

Bandwidth Request, and Device Notification Events may be found on a 

secondary Event Ring. Refer to section 4.9.4.3 for a discussion of Primary and 

Secondary Event Rings. 

 IMPLEMENTATION NOTE 

Event TRB Updating 

The xHC shall ensure that all Dwords in an Event TRB are updated before it toggles the 

Cycle (C) bit in Dword 3. An xHC implementation may update all 4 Dwords of the Event 

TRB as an atomic (single DMA) operation, or if it updates the Event TRB Dwords as 

discrete operations, then it shall update Dword 3 (toggling the Cycle bit) last. 

4.11.3.1 Transfer Event TRB 

Transfer Event TRB generation shall only occur under the following conditions: 

•  If the Interrupt On Completion (IOC) flag is set. 

•  When a short transfer occurs during the execution of a Transfer TRB and the 

Interrupt-on-Short Packet (ISP) flag is set. 

•  If an error occurs during the execution of a Transfer TRB. 

Several transfer related errors may be detected that cannot be attributed to a 

specific TRB, e.g. Ring Overrun, Ring Underrun, etc. In these cases, the xHC shall 

set the TRB Pointer to ‘0’ and software shall treat it as invalid.  

When the data transfer associated with a Transfer TRB completes, a Transfer 

Event shall be generated by the xHC if the TRB IOC or ISP flags are set to ‘1’, or if 

an error occurs on the transfer associated with the TRB. And while advancing to 
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the end the current TD after generating this event, each Transfer  TRB 

encountered with its IOC flag set to ‘1’ shall generate a Transfer Event. The 

Condition Code of the “current” Transfer Event shall be set to the value of the 

Condition Code in the original Transfer Event, and the TRB Transfer Length of 

the current Transfer Event should be set to value of the TRB Transfer Length 

field in the original Transfer Event.  

4.11.4 Command TRBs 

The Parameter, Status and Length TRB components shall be cleared to ‘0’ by 

system software unless otherwise noted by a specific command.  

The TRB Type field of the Control component shall indicate the Command Type. 

Table 6-86 defines the available Command TRBs, i.e. TRB Types allowed on a 

Command Ring. 

For every command, the xHC notifies system software of its completion by 

placing a Command Completion Event TRB on the Event ring.  

When a Command TRB is initialized on the Command ring, the Cycle bit will be 

set to the value of the Command Ring’s Producer Cycle State (PCS) flag.  

If an endpoint defines Streams, then commands that affect Endpoint Contexts 

may also affect the associated Stream Contexts. In cases where both contexts 

may be affected, the combined contexts are referred to as the 

“Endpoint/Stream” Context. 

The remaining fields shall be managed by system software as a function of the 

command type, and are described below. 

Note: The Address Device, Configure Endpoint, and Evaluate Context Commands 

utilize an Input Context data structure. 

4.11.4.1 No Op Command TRB 

The No Op Command TRB provides a simple means for verifying the operation of 

the basic TRB Ring mechanisms offered by the xHC, or to report the current 

value of the Command Ring Dequeue Pointer. 

The format of the No Op Command TRB is defined in section 6.4.3.1. 

Refer to section 4.6.2 for more information on the No Op Command. 

4.11.4.2 Enable Slot Command TRB 

The Enable Slot Command TRB causes the xHC to select an available Device Slot 

and return the ID of the selected slot to the host in a Command Completion 

Event. 
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The Enable Slot Command utilizes the same format as the No Op Command TRB, 

described in section 6.4.3.1. 

Refer to section 4.6.3 for more information on the Enable Slot Command. 

4.11.4.3 Disable Slot Command TRB 

The Disable Slot Command TRB releases any bandwidth assigned to the 

disabled slot, frees any internal xHC resources assigned to the slot, and sets the 

Slot State field of the associated Slot Context to Disabled. 

The format of the Disable Slot Command TRB is defined in section 6.4.3.3. 

Refer to section 4.6.4 for more information on the Disable Slot command. 

4.11.4.4 Address Device Command TRB 

The Address Device Command TRB  transitions the selected Slot Context from 

the Default to the Addressed state. It also causes the xHC to select an address 

for the USB device and issue a SET_ADDRESS request to the USB device.  

The format of the Address Device Command TRB is defined in section 6.4.3.4. 

Refer to section 3.3.4 for more information on the Address Device Command. 

4.11.4.5 Configure Endpoint Command TRB 

The Configure Endpoint Command TRB  is used to enabled and/or disable 

selected endpoints of a Device Slot. When enabling endpoints the xHC evaluates 

the host controller resource and USB bandwidth requirements identified by the 

selected Endpoint Contexts in the command. If the requirements can be met, 

then the endpoints are enabled. 

The format of the Configure Endpoint Command TRB is defined in section 

6.4.3.5. 

Refer to section 3.3.5 for more information on the Configure Endpoint 

Command. 

4.11.4.6 Evaluate Context Command TRB 

The Evaluate Context Command TRB  is used by system software to notify the 

xHC that parameters associated with selected contexts have been modified. The 

current state of a context is not changed by the execution of an Evaluate 

Context Command. Refer to section 4.3 for more information on the use of this 

command. 

Note: Refer to the Slot and Endpoint Context data structure descriptions (sections 6.2.2 

and 6.2.3, respectively) for information on the specific Context fields that are 

evaluated by this command. A typical use of this command is immediately after 
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an Address Device Command to inform that xHC that software has updated the 

Max Packet Size field of the Control endpoint. Refer to section 4.3 for more 

information on this usage. 

The format of the Evaluate Context Command TRB is defined in section 6.4.3.6. 

Refer to section 4.6.6 for more information on the Evaluate Context Command. 

4.11.4.7 Reset Endpoint Command TRB 

The Reset Endpoint Command TRB  command is used by system software to reset 

an individual endpoint. This command may be used to restart a Halted endpoint.  

The format of the Reset Endpoint Command TRB  is defined in section 6.4.3.7. 

Refer to section 4.6.8 for more information on the Reset Endpoint Command. 

4.11.4.8 Stop Endpoint Command TRB 

The Stop Endpoint Command TRB  command is used by system software to stop 

the packet stream of an individual endpoint and transfer ownership of all the 

TDs on the associated Transfer Ring to software. 

The format of the Stop Endpoint Command TRB is defined in section 6.4.3.8. 

Refer to section 4.6.9 for more information on the Stop Endpoint Command. 

4.11.4.9 Set TR Dequeue Pointer Command TRB 

The Set TR Dequeue Pointer Command TRB  command is used by system 

software to set the TR Dequeue Pointer field of an individual endpoint to a new 

value. 

The format of the Set TR Dequeue Pointer Command TRB is defined in section 

6.4.3.9. 

Refer to section 4.6.10 for more information on the Set TR Dequeue Pointer 

Command. 

4.11.4.10 Reset Device Command TRB 

The Reset Device Command TRB command is used by system software to inform 

the xHC that it has reset a USB Device. 

The format of the Reset Device Command TRB  is defined in section 6.4.3.10. 

Refer to section 4.6.11 for more information on the Reset Device Command. 
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4.11.4.11 Force Event Command TRB (Optional Normative) 

The Force Event Command TRB allows a VMM to inject an Event TRB on the 

Event Ring of a selected Virtual Function. VMMs utilize this command when 

emulating a USB device to a VM. Refer to section 8 for more information on 

virtualization. 

The format of the Force Event Command TRB  is defined in section 6.4.3.11. 

Refer to section 4.6.12 for more information on the Force Event Command. 

4.11.4.12 Negotiate Bandwidth Command TRB (Optional Normative) 

The Negotiate Bandwidth Command TRB is used by system software to initiate 

Bandwidth Request Events for periodic endpoints. This command may be used 

to recover unused USB bandwidth from the system. 

If the BW Negotiation Capability (BNC) bit in the HCCPARAMS1 register is ‘1’, 

then the xHC shall support this command. 

The format of the Negotiate Bandwidth Command TRB is defined in section 

6.4.3.12. 

Refer to section 4.16 for more information on Bandwidth Negotiation. 

Refer to section 4.6.13 for more information on the Negotiate Bandwidth 

Command. 

4.11.4.13 Set Latency Tolerance Value Command TRB (Optional Normative) 

The Set Latency Tolerance Value Command TRB  is used by system software to 

provide a Best Effort Latency Tolerance (BELT) value to the xHC. This command 

is optional normative, however it shall be supported if the xHC also supports a 

corresponding host interconnect LTM mechanism. 

If the Latency Tolerance Messaging Capability (LTC) bit in the HCCPARAMS1 

register is ‘1’, then the xHC shall support this command.  

The format of the Set Latency Tolerance Value Command TRB  is defined in 

section 6.4.3.13. 

Refer to section 4.6.14 for more information on the Set Latency Tolerance Value  

Command. 

4.11.4.14 Get Port Bandwidth Command TRB 

The Get Port Bandwidth Command TRB is issued by software to retrieve the 

percentage of periodic bandwidth available on each Root Hub Port of the xHC. 

This information can be used by system software to recommend topology 
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changes to the user if they were unable to enumerate a device due to a 

Bandwidth Error or a Secondary Bandwidth Error. 

The format of the Get Port Bandwidth Command TRB is defined in section 

6.4.3.14. 

Refer to section 4.6.15 for more information on the Get Port Bandwidth 

Command. 

4.11.4.15 Force Header Command TRB 

The Force Header Command TRB is issued by software to send a Link 

Management or Transaction Packet to a USB device. For instance, it may be used 

to send a Vendor Device Test LMP. 

The format of the Force Header Command TRB is defined in section 6.4.3.15. 

Refer to section 4.6.16 for more information on the Force Header Command. 

4.11.5 Other TRBs 

4.11.5.1 Link TRB 

The Link TRB provides support for sizing and non-contiguous Transfer and 

Command Rings. A Link TRB indicates the end of a ring by providing a pointer to 

the beginning of the ring. 

If contiguous Pages cannot be allocated by system software to form a large 

Transfer Ring, then Link TRBs may also be used to link together multiple 

memory Pages to form a single Transfer Ring.  

A non-contiguous TRB Ring is composed of Ring Segments. 

Software shall invoke the following rules when constructing a TRB Ring: 

•  All Transfer Ring Segments shall be aligned to 16-byte (TRB) boundaries. 

•  All Command Ring Segments shall be aligned to 64-byte boundaries. 

•  All Transfer and Command Ring Segments are multiples of 16 bytes in size. 

•  A Link TRB shall be the last TRB of each Transfer or Command Ring Segment 

•  The Ring Segment Pointer field of a Link TRB shall point to the next Segment of a 

multi-segment TRB Ring, or to first segment in a single Segment ring. 

•  The Link TRB of the last Ring Segment in a ring shall point to the beginning of the 

first segment of the ring. 

•  The Toggle Cycle flag should be set in at least one Link TRB of a ring. 
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Note: The Ring Segment Pointer field in a Link TRB is not required to point to the 

beginning of a physical memory page. 

Note: A Link TRB may be found on Transfer or Command Rings. 

Refer to Figure 4-15 for an illustration of TRB Ring Segments and Link TRBs.  

Figure 4-15: Link TRB Example 
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Transfer Descriptors (Chained TRBs) may cross Segment boundaries.  

Refer to section 4.11.7 for how the Chain (CH) flag shall be set in a Link TRB. In a 

Transfer Ring a Link TRB is always assumed to be linked to the first TRB of the 

next segment. If the Chain bit (CH) of the previous TRB is ‘1’, then the multi-TRB 

TD that it defines spans segments and shall continue with the first TRB of the 

next segment. In a Command Ring the Link TRB Chain bit (CH) is ignored by the 

xHC. 

As software advances its Enqueue Pointer and advances over a Link TRB, the 

Cycle (C) bit shall be updated with the value of the PCS flag.  

The Interrupt On Completion (IOC) flag of a Link TRB may be used by system 

software to generate an event indicating the Dequeue Pointer has reached the 

Link TRB. This feature provides software with the ability to track the Dequeue 

Pointer as a function of segment boundary crossings.  
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Note: A TD Fragment shall not span segments. Refer to section 4.11.7.1. 

When the Link TRB resides on a Transfer Ring the Interrupt On Completion  (IOC) 

flag of a Link TRB may be used by system software to generate a Transfer Event, 

where the Transfer Event Slot ID and Endpoint ID shall reflect the slot and 

endpoint that the Transfer Ring is associated with, the Length = ‘0’, the TRB 

Pointer field shall point to Link TRB, and the Completion Code = Success. 

When the Link TRB resides on a Command Ring the Interrupt On Completion 

(IOC) flag of a Link TRB may be used by system software to generate a Command 

Completion Event , where the Command Completion Event Slot ID = ‘0’, VF ID = 

‘0’, the Command TRB Pointer field shall point to Link TRB, and the Completion 

Code = Success. 

Note: The Primary Interrupter (‘0’) is the target of all Command Completion Events. The 

Interrupter Target field shall be ignored by the xHC in Link TRBs found on the 

Command Ring. 

 IMPLEMENTATION NOTE 

xHC TRB Fetching 

All TRBs between the Enqueue and Dequeue Pointers of a TRB Ring are owned by the 

xHC. No constraints are placed on how many TRBs an xHC implementation may fetch in 

a single DMA operation or the order that the xHC may fetch them in. System software 

shall not modify a TRB owed by the xHC. 

4.11.5.2 Event Data TRB 

The Event Data TRB allows system software to generate a software defined 

event, and fully specify the Parameter Component of a generated event.  

The Event Data TRB has the unique properties of inheriting the Completion Code 

of the previous (non-Event Data) TRB executed on a ring, and accumulating the 

transfer Lengths of preceding TRBs. 

A typical use of the Event Data TRB would be to provide a 64-bit software 

defined identifier (or address) upon the completion of a TD. To accomplish this 

the Event Data TRB would be chained as the last TRB of the TD, and the IOC flag 

would be set only in the Event Data TRB. When the TD completes, an event is 

generated where the Completion Code is supplied by the previous TRB 

executed, and the Parameter Component of the event is loaded with the value 

supplied by the Event Data TRB. 

The Event Data (ED) field of a Transfer Event indicates whether the event was 

generated by a Transfer TRB or an Event Data TRB. A Transfer Event with its ED 

flag equal ‘1’ is referred to  as a Event Data Transfer Event. 
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A key feature of a Event Data Transfer Event  is its ability to report the number of 

bytes transferred by a TD, rather than that of an individual TRB. To accomplish 

this the xHC maintains an internal 24-bit Event Data Transfer Length 

Accumulator (EDTLA) for each endpoint. The rules for EDTLA management are:  

•  The EDTLA shall be cleared to ‘0’ immediately prior to executing the first Transfer 

TRB of a TD or when a Set TR Dequeue Pointer Command is executed. 

•  When a Transfer TRB is completed, the number of bytes transferred by the TRB shall 

be added to the EDTLA. The EDTLA shall wrap, if the total number of bytes 

transferred is greater than 16,777,215 (16MB-1). 

•  When an Event Data TRB is encountered an Event Data Transfer Event shall be 

generated, where the TRB Transfer Length field shall contain the value of the EDTLA. 

The EDTLA shall then be cleared to ‘0’ and begin accumulating again. 

•  If a Stopped Transfer Event is generated and the Condition Code = Stopped - Short 

Transfer, then the TRB Transfer Length field of the Transfer Event shall contain the 

value of the EDTLA. 

Note that for TDs greater than or equal to 16MBytes the EDTLA will roll -over. It 

is system software’s responsibility to insert “ Intermediate” Event Data TRBs 

periodically within a TD to report transfer lengths before the rollover condition 

occurs. Software is also responsible for accumulating the Length fields of Event 

Data Transfer Events to determine the total number of bytes transferred by a TD 

that declares multiple Event Data TRBs. 

Note: Software shall set the IOC flag in all Event Data TRBs. Because the IOC flag must 

be set in an Event Data TRB, the possible locations of an Event Data TRBs within 

a TD are constrained by the TD Fragment rules described in section 4.11.7.1. 

If a Short Packet is detected during the execution of a multi -TRB TD, the xHC 

shall advance to the first TRB of the next TD or the Enqueue Pointer (i.e.Cycle bit 

transition), whichever is encountered first. If the TD that incurred the Short 

Packet is terminated by an Event Data TRB (with its IOC flag is set), then the xHC 

shall generate an Event Data Transfer Event , where the Length field shall reflect 

the actual number of bytes transferred. 

The following rules apply to Event Data TRBs on a Transfer Ring unless 

otherwise stated: 

•  An event shall be generated by an Event Data TRB if its IOC flag is set to ‘1’. 

•  An event generated by an Event Data TRB (Event Data Transfer Event) shall utilize 

the format of the Transfer Event TRB. The Slot ID and Endpoint ID fields shall be set 

appropriately for the Transfer Ring that contained the Event Data TRB, and the Event 

Data (ED) flag shall be set to ‘1’. 

•  The event generated when the IOC flag of an Event Data TRB is set to ‘1’ shall report 

the Completion Code of the previously executed Transfer TRB of a TD, or Success if 

inserted as an Event Data TD (i.e. a TD that consists of just one Event Data TRB) on a 
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ring. The “previously executed Transfer TRB” is either the last Transfer TRB of the TD 

or the Transfer TRB that generated an error which forced a premature completion of 

the TD. Intermediate Event Data TRBs shall report “Success”. 

•  The Parameter Component of the Transfer Event generated by an Event Data TRB 

shall contain the value of the Event Data TRB Parameter Component. 

•  The Length field of a Event Data Transfer Event shall reflect the number of bytes 

transferred from the beginning of a TD or since the last Event TRB encountered in a 

TD. 

Note: The above rules also apply to Intermediate Event Data Transfer Event TRBs. 

Note: The Event Data (ED) flag in the Transfer Event TRB indicates to system software 

whether the Parameter Component of the respective event should be 

interpreted as pointer to system memory or software defined data. 

Note: The IOC flag is treated generically by the xHC. If it is set in a TRB, then the xHC 

shall generate an Event for that TRB. If the IOC flag is not set in an Event Data 

TRB, the xHC will advance past it, clearing the EDTLA in the process. 

Note: An Event Data TRB may only be found on a Transfer Ring. 

Note: An Event Data TRB shall not immediately follow another Event Data TRB. 

Note: Refer to section 4.12.3 for information on how the Evaluate Next TRB (ENT) flag 

should be used to manage Event Data TRBs. 

Note: Refer to section 4.10.1.1 for more information on the handling of Event Data 

TRBs if a Short Packet condition occurs while executing a TD. 

Note: Software shall not define a “stand-alone” Event Data TD (i.e. a TD that only 

contains a single Event Data TRB) on an Isoch Transfer Ring, however Event Data 

TRBs may be included in Isoch TDs. 

4.11.6 Vendor Defined TRB Types 

xHC vendors may define proprietary TRB Types using the Vendor Defined TRB 

Type codes identified in Table 6-86. The Vendor Defined TRB Types may be 

used to define Command, Event, or Transfer TRBs.  

A vendor shall define proprietary xHCI Extended Capability structures using the 

xHCI Extended Capability Codes identified in Table 7-3 to enumerate any vendor 

defined TRB types or xHC capabilities. 

If an unrecognized Vendor Defined TRB is encountered by the xHC:  

•  On a Transfer Ring, if a Vendor Defined TRB is preceded by a Transfer TRB and the 

Chain bit (CH) of the Transfer TRB is set (‘1’), then the Vendor Defined TRB is also 

required to support a valid Chain bit, which the xHC shall evaluate to determine if the 

end of the TD has been reached. Otherwise, the xHC shall advance past an 

unrecognized Vendor Defined TRB on a Transfer Ring and shall ignore it. 
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•  The xHC shall treat Vendor Defined TRBs encountered on a Command Ring like a No 

Op Command TRB. 

•  Software shall advance past and ignore Vendor Defined TRBs encountered on an 

Event Ring. 

Note: All vendor defined TRBs shall define a Cycle (C) bit at the same bit position as 

defined in all xHCI TRBs and manage it as defined in section 4.9 for the respective 

ring type. 

Note: All vendor defined Event TRBs shall define a Completion Code field at the same 

bit position as defined in all xHCI Event TRBs and manage it as defined in section 

4.9.4. 

Note: Any vendor defined Transfer TRBs that may be included in a multi-TRB TD, shall 

define a Chain bit (CH) field at the same bit position as defined in a Normal TRB 

and manage it as defined in section 4.9.1. 

xHC vendors may use the Vendor Defined TRB Type codes to define proprietary 

xHCI commands. All vendor defined commands shall utilize the Command 

Completion Event TRB to report completions. 

Multiple vendors may define the same xHCI Extended Capability code or Vendor 

Defined TRB code to perform different operations. All vendor defined xHCI 

Extended Capability codes and TRB Types shall be qualified by system software 

with the PCI Configuration Space Header Vendor ID and Subsystem Vendor ID. 

Vendors may also define Completion Codes. The Vendor Defined completion 

codes are separated into two groups: error and information. This partitioning 

allows software to infer the purpose of a Vendor Defined completion code even 

if it does not have vendor specific knowledge. Refer to Table 6-85. 

If software does not have vendor specific knowledge, completion codes in the 

range defined by Vendor Defined Info codes shall be interpreted identically to a 

Success completion code. 

If software does not have vendor specific knowledge, completion codes in the 

range defined by Vendor Defined Error codes shall be interpreted as an 

Undefined Error completion code, e.g if a Vendor Defined Error code is reported 

in a Command Completion Event software shall assume that the associated 

command did not complete successfully.  

4.11.7 TD Usage Rules 

A Transfer Descriptor (TD) may be composed of 1 or  more TRBs. The TRB Chain 

flag is used identify the TRBs of a TD, where the Chain flag is set in all the TRBs 

of a TD except the last. In the simplest case, a TD consists of a single TRB. Larger 

transfers may require TDs that are comprised of many TRBs. If  a TD crosses a 

TRB Ring Segment boundary it may include one or more Link TRBs. 
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Setting the TRB Interrupt On Completion (IOC) flag allows the completion of a 

TRB to generate an event. An IOC flag may be set in the TRBs of a TD identified 

in section 4.11.7.1. 

Note: A “Transfer TRB” is any TRB defined in section 6.4.1. Link and Event Data TRBs 

are not “Transfer TRBs”. 

On an IN endpoint, if the device class allows a device to supply less data than 

the host has provided buffer space for, software has two options in forming a 

TD. 

1. Set the Interrupt-on Short Packet (ISP) flag in all TRBs of a TD, and set 

the IOC flag in the last TRB. This action shall cause the xHC to generate a 

Transfer Event if a Short Packet condition is detected while executing 

any TRB in the TD, or generate a Transfer Event if the device completely 

fills the buffer. 

 

To determine the number of bytes actually transferred, software shall 

add the TRB Transfer Length fields of all TRBs up to and including the 

TRB that generated the Transfer Event, and subtract the Transfer Event 

TRB Transfer Length field. 

2. Terminate the TD with an Event Data TRB that has its IOC flag set, and 

not set the ISP or IOC flag in any Transfer TRB of the TD. This action shall 

cause the xHC to generate an Event Data Transfer Event if a Short Packet 

condition is detected while executing any TRB in the TD or if the device 

completely fills the buffer. 

 

The TRB Transfer Length field of the Event Data Transfer Event identifies 

the number of bytes actually transferred, from the beginning of the TD or 

since the last Event Data Transfer Event. The TRB Transfer Length field of 

the Event Data Transfer Event may define up to a 16,777,215 byte 

transfer. 

More than one Event Data TRB may be defined within a TD. 

If Event Data TRBs are defined within a TD, then the IOC or ISP flags shall not be 

set in any Transfer TRB of a TD. i.e. the use of Event Data Transfer Events and 

normal Transfer Events to report a TD completion are mutually exclusive.  

Note: Software may insert an Event Data TD immediately following a TD to provide 

additional information related to the previous TD. An Event Data TD is a TD that 

consists of just one Event Data TRB. 

If the IDT flag is set in one TRB of a TD, then it shall be the only Transfer TRB of 

the TD. An Event Data TRB may be included in the TD.  

Software shall specify the same Interrupter Target value in all TRBs of a TD. If an 

invalid Interrupter Target value is defined in a TRB, the behavior of the xHC is 
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undefined if the TRB generates a Transfer Event. If virtualization is supported, 

an xHC implementation shall ensure that this “undefined behavior” does not 

affect another function (PF0 or VFx).  

The Transfer TRB TD Size field shall be valid in all Transfer TRBs that define it. 

Refer to section 4.11.2.4. 

Software shall not define a No Op Transfer TRB within a multi-TRB TD, i.e. 

software shall never set the Chain bit of a No Op TRB to '1' and a No Op TRB 

shall always be preceded by a TRB whose Chain bit is also set to '0'. 

Software shall not define a Link TRB as the first TRB of a multi-TRB TD. 

Software shall not define a Link TRB as the last TRB of a multi-TRB TD. 

One or more Link TDs may precede or follow a TD. A Link TD is a TD that 

consists of just one Link TRB. 

Software shall not define consecutive Link TRBs within a TD, i.e. software shall 

not set the Chain bit of consecutive Link TRBs to '1'. 

Undefined xHC behavior may occur if the requirements defined in this section 

are not met. 

Note: Besides reporting an error or the completion of a TD, Events may also be used 

by software to periodically update the current value of the Dequeue Pointer, to 

indicate the crossing of a Transfer Ring Segment boundary so it can add or 

remove a segment, etc., so the xHC shall generate an Event every time it 

encounters an IOC flag equal to ‘1’, irrespective of any error events that may be 

forced for earlier TRBs in a TD that did not have their IOC flag set. 

 

For example, software may periodically set IOC flags in TRBs of a large TD so 

that it may update its Dequeue Pointer and reuse the TRBs that have been 

consumed by the xHC (rather than having to expand the Transfer Ring). Unless 

an error is encountered, all the intermediate events shall report Success. If any 

event generated by a TD reports an error, then that Completion Code overrides 

any Successful Completion Codes that other TRBs associated with the TD may 

have asserted, whether they come before or after the error Event. 

Note: Software shall not interpret an error Event as indicating that the TD that it is 

associated with is “complete” (i.e. ownership of all the TRBs of the TD have been 

relinquished by the xHC), unless the TRB Pointer field of the error Transfer Event 

references the last TRB of the TD. 

4.11.7.1 TD Fragments 

The xHCI architecture allows TRBs to reference buffers of any length; however 

hardware works most efficiently when it is dealing with regularly sized buffers, 

e.g. Max Packet Size or Max Burst Size. Also the event generation mechanisms 



 

 

 

  227 

defined for Transfer Rings are extremely flexible, however constraints must be 

imposed to ensure that the hardware gate count and validation requirements are 

minimized for xHC implementations. TD Fragments require software to organize 

the TRBs of a TD in manner that allows the xHC hardware to optimize its internal 

buffer management and operation. 

TD Fragments are designed to: 

•  Maximize burst opportunities for the xHC by ensuring that when software adds TRBs 

to a Transfer Ring, it does so in burst friendly units. 

•  Simplify Event generation by limiting the frequency and locations in a TD where the 

IOC flag may be set. 

The Max Burst Payload (MBP) is the number of bytes moved by a maximum 

sized burst, i.e. Max Burst Size * Max Packet Size bytes. 

A TD is comprised of one or more TD Fragments. If the TD Transfer Size is an 

even multiple of the MBP then all TD Fragments shall define exact multiples of 

MBP data bytes. If not, then the only last TD Fragment shall define less than 

MBP data (or the Residue) bytes. 

Each TD Fragment is comprised of one or more TRBs. The first TRB of a TD 

Fragment is written last, ensuring that all the other TRBs of the TD Fragment are 

complete and reference valid buffers in host memory.  

TD Fragments require software to construct TDs as sequential groups of TRBs. If 

the TD Transfer Size is greater than MBP, then the TD consists of 1 or more TD 

Fragments. 

A TD Fragment may reference more than MBP bytes; if it is the last or only TD 

Fragment of a TD, or if it references an integral multiple of MBP bytes.  

A TD Fragment may reference less than MBP bytes, if it is the last or only TD 

Fragment of a TD. 

Software is allowed to construct a single TD Fragment that is an integral 

multiple of MPB bytes, or that defines a complete TD.  

•  The first TRB of a TD Fragment shall always be a Transfer TRB. 

•  A TD Fragment should not span Transfer Ring Segments. 

•  Link TRB placement in a TD shall follow the rules described in this section and 

section 4.11.7. 

•  Event Data TRB placement in a TD Fragment shall follow the rules described in this 

section and sections 4.11.5.2 and 4.11.7. 

•  A TRB Packet Boundary in a TD immediately precedes a Transfer TRB in which the 

first byte of the buffer referenced by a Transfer TRB is the also the first byte of a USB 

packet. 
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•  The first TRB of a TD Fragment shall be the first TRB of a TD or immediately follow a 

TRB Packet Boundary. 

•  The last TRB of a TD Fragment immediately precedes a TRB Packet Boundary or is 

the last TRB of a TD. 

The IOC flag may be set in only one TRB of a TD Fragment, with the following 

conditions: 

•  The IOC flag may be set in a Transfer TRB that immediately precedes a TRB Packet 

Boundary or the last Transfer TRB of a TD Fragment. 

•  The IOC flag may be set in a non-Transfer TRB (e.g. a Link TRB, Event Data TRB, etc.) 

that resides between two Transfer TRBs that form a TRB Packet Boundary, or follow 

the last Transfer TRB of a TD. 

Figure 4-16: TRB Packet Boundary Example 
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The example of Figure 4-16 illustrates a TD that consists of two TD Fragments. 

TD Fragment 1 ends on boundary that is also a multiple of Max Packet Size 

bytes, while TD Fragment 2 ends at the end of the TD. Both TD Fragments end 

on a TRB Packet Boundary (red lines). An additional TRB Packet Boundary is 

defined in each TD Fragment, i.e. between TRBs 2 and 3 in TD Fragment 1 and 

between TRBs 5 and 6 in TD Fragment 2. Following the rules described above, 

the IOC flag may be set only once in a TD Fragment, i.e. in Transfer TRB 2, 

Transfer TRB 4, or the Link TRB of TD Fragment 1, and in Transfer TRB 5, 

Transfer TRB 7, or the Event Data TRB of TD Fragment 2. The IOC flag cannot be 

set in Transfer TRBs 1, 3 or 6 because they do not immediately precede a TRB 

Packet Boundary. 
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The TD Fragment rules above also ensure that the last Transfer TRB of a TD 

Fragment shall describe a data buffer that ends on a Max Packet Size boundary 

(Transfer TRB 4) or terminates the TD (Transfer TRB 7).  

Figure 4-17: TD Fragment Examples 
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In Figure 4-17 the TDs in all the examples describe the same Virtual Buffer, 

which is 31KB in size, begins at a 3KB offset into the first physical Page, and 

spans 9 Pages. 

Example 1 illustrates the TD Fragments that would be generated for an endpoint 

with a Max Packet Size = 1KB and a Max Burst Size of 16 packets. The first TD 

Fragment describes MBP (16K) bytes of buffer space. The second TD Fragment 

describes the TD Fragment Residue of the TD, or 15K bytes of buffer space. Note 

that two TRBs (5 and 6) are used to split 5th physical memory Page on a MBP 

boundary. 

Example 2 illustrates a case where the single TD Fragment fully describes the 

TD, or 31K bytes of buffer space. In this case the TD is fully formed when TRB 1 

is written, and the xHC will generate the Max Burst Size transactions as 

appropriate for the endpoint. 

Examples 3 and 4 illustrates TD Fragments that may be generated for an 

endpoint with a Max Packet Size = 1KB and a Max Burst Size of 8 packets. Each 

of the first three TD Fragments in Example 3 describe MBP (8K) bytes of buffer 
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space, and the last TD Fragment describes the Residue of the TD, or 7K bytes of 

buffer space. In Example 4 software has decided to use TD Fragment 2 to 

describe 2 x MBP bytes of buffer space. 

In every case, software shall write the first TRB of a respective TD Fragment last. 

For instance the write order in Example 4 would be TRBs: 2->3->1, 

5->6->7->8->4, and 10->11->9. And so on. Note that it really doesn’t matter 

what order the TRBs of a TD Fragment are written in, as long as its first TRB is 

written last. 

Note that in each example of Figure 4-17, the data associated with a single page 

is split between two TRBs to enforce a TD Fragment boundary, e.g. in example 1, 

the 4KB page on the boundary between TD Fragment 1 and 2 is defined by TRB 

5 (3KB) and TRB 6 (1KB), where TRB 5 defines the last 3KB of the 16KB TD 

Fragment 1 and TRB 6 defines the first 1KB of TD Fragment 2.  

Note: Only fully formed TDs may be scheduled on Isoch endpoints, e.g. write the first 

TRB of a multi-TRB TD last, irrespective of the number of TD Fragments that 

comprise it, and the TD Fragment rules for the assertion of IOC in TRBs described 

above apply. 

Figure 4-18: Non-aligned TD Fragment Example 
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In Figure 4-18 the example defines a TD that transfers 30.5KB of data, where the 

packet size (Max Packet Size) = 1KB, the Burst Size = 16 KB, and the initial offs et 

of the data in the first 4KB page is 3.75KB (3840B). An important aspect of this 

example is that due to the initial offset (3.75KB), page boundaries do not land 

on packet boundaries (as they do in Figure 4-17). 

Given the rules defined above for where an IOC flag may be set in a TD 

Fragment: 
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•  In Figure 4-18 the IOC flag only may be set in TRBs 5 and 10. In TRB 5 because TRBs 

5 and 6 split the data in the page that they reference to force a break on a Burst Size 

boundary, hence the buffer described by TRB 5 ends on a packet, boundary. The IOC 

flag may be set in TRB 10 because it is the last packet of a TD, which forces a packet 

boundary. Note that the Link TRB does not land on a packet boundary relative to the 

start of TD Fragment 1, so its IOC flag may not be set. 

•  In Figure 4-17 all TRBs define buffers that end on Packet boundaries, hence an IOC 

flag may be set in any TRB of a TD Fragment, but only once per TD. 

Note: The TD Fragment rules, that define which TRBs of a TD that an IOC flag may be 

set in, apply to Isoch TDs, however a partially formed TD shall not be posted to 

an Isoch endpoint. Only fully formed TDs may be posted to Isoch endpoints, e.g. 

software shall write the first TRB of a multi-TRB TD last, irrespective of its size. 

4.12 Streams 

Streams extend the number of Transfer Rings that may be accessible to a SS 

Bulk USB endpoint. A standard endpoint defines a single Transfer Ring. Streams 

allow an individual endpoint to define up to 6553339 Transfer Rings using Linear 

Stream Arrays or Primary/Secondary Stream Arrays.  

Streams allow the data flow of a bulk pipe to be multiplexed between multiple 

Transfer Rings associated with the endpoint. The USB device determines which 

Stream is active at any time, i.e. which Stream Context Transfer Ring is being 

used to move data. 

The TR Dequeue Pointer field of an Endpoint Context that supports Streams 

points to an array of Stream Context data structures called the Stream Context 

Array or just Stream Array. A Stream (i.e. Stream Context) is selected with a 

Stream ID, where the Stream ID is used to index into a Stream Array. 

A Stream Context data structure also contains a TR Dequeue Pointer field, which 

points to the Transfer Ring associated with the Stream. 

A Stream Protocol maintained between the xHC and a SS USB device allows the 

device to establish the Current Stream (CStream) of an endpoint and control the 

movement of data for that Stream. At any time the device may terminate a 

Stream data transfer and switch to another Stream. Before an endpoint 

transitions to the Stopped, Halted, or Error state, the xHC shall ensure that the 

Stream Context TR Dequeue Pointer, DCS, and if SEC = ‘1’, Stopped EDTLA40 

fields reflect the forward progress of any Stream that entered the Move Data 

state while the endpoint was in the Running state, e.g. the Stream Context fields 

are updated with the CStream state when a Stream exits the Move Data state 

                                                   

39Stream IDs 0, 65535 (No Stream) and 65534 (Prime) are reserved. 

40Stopped EDTLA Capability support (i.e. SEC = '1') shall be mandatory for all xHCI 1.1 compliant xHCs. 
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(e.g. after a Stream switch or due to an error), or before the endpoint enters the 

Stopped, Halted, or Error state.  Refer to section 3.3.8 for more information on 

Stream Context state requirements after a Stopped Endpoint Command. 

Because all Streams associated with an endpoint share the same bulk pipe, if the 

Current Stream causes the pipe to stall, then all Streams associated with the 

pipe are also stalled. There are cases with the Stream Protocol where a Stall may 

occur and there is no directly attributable TRB that can be referenced by the 

Transfer Event TRB that reports the error (e.g. due to sending a Prime Pipe 

transaction). In this case the Slot Context Interrupter Target field shall be used 

to generate the Event and the TRB Pointer and TRB Transfer Length fields of the 

Transfer Event shall be set to ‘0’. Refer to section 4.17.4. 

A Stream Context may be “active” or “non-active”. A non-active Stream Context 

shall be identified by an empty Transfer Ring or if, through an out-of-band 

(Device Class) defined mechanism, software knows that the Stream Context will 

not be selected by a USB device to become the Current Stream (CStream). An 

active Stream Context does not meet the criteria described above for a non-

active Stream Context. Reliably determining whether a Stream Context is active 

or not, is a Device Class responsibility. There is no xHCI defined method.  

For example, a UASP data Stream Context becomes active (i.e. may be selected 

at any time by the device and become the Current Stream) after software rings 

the doorbell with the DB Stream ID equal to the Stream ID of the Stream 

Context. The Stream Context becomes non-active (i.e. shall not be selected by 

the device to become the Current Stream) when the UASP command associated 

with the Stream Context completes, or after an Abort Task command for the 

Stream Context is successfully completed by the UASP device.  

Note: The value of CStream is not exposed for a Stream endpoint by the xHC after an 

endpoint transitions to the Stopped state (e.g. after to a Stop Endpoint 

Command). So if the Transfer Ring of a Stream Context is not empty, then 

software shall use an out-of-band mechanism to determine whether a Stream 

Context is active or not. 

For more information on Streams refer to the section 8.12.1.4 of the USB3 

specification. 

4.12.1 xHCI Stream Protocol 

The USB Stream Protocol adheres to the semantics of the standard SS Bulk 

protocol, so the packet exchanges on a SS bulk pipe that supports Streams are 

similar to a SS bulk pipe that doesn’t. The Stream Protocol is managed strictly 

through manipulation of the packet header Stream ID field. 

Stream selection is driven by a USB device. The Stream Protocol allows a device 

to switch Streams on packet boundaries. 
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This section references the General Stream Protocol State Machine  (SPSM) 

defined in the USB3 specification (Figure 8-19), which applies to both IN and 

OUT endpoints. Unless otherwise stated, refer to the USB3 specification for the 

specific details of Stream ID and packet management on IN or OUT endpoints. 

Refer to USB3 section 8.12.1.4.2 for the IN Stream Protocol, and section 

8.12.1.4.3 for the OUT Stream Protocol details.  

Figure 4-19: xHC Stream Protocol State Machine (xSPSM) 
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Figure 4-19 illustrates the xHCI Stream Protocol state machine, which overlays 

the USB Stream Protocol State Machine described in the USB3 spec. This section 

describes the xHC’s role in the execution of the Stream Protocol. There is a 1:1 

correspondence of the states described in the xSPSM and those defined in the 

USB3 SPSM. The xSPSM identifies the xHCI’s role in advancing the USB3 SPSM. 

Refer to Appendix E for state machine notation. 

The xSPSM associated with an unconfigured endpoint shall enter the Disabled 

state when a Configure Endpoint Command is executed and Streams are enabled 

(MaxPStreams >0). 

The first time the endpoint doorbell is rung after entering the Disabled state, 

the xHC shall transition the xSPSM to the Prime Pipe state, and the device 

should automatically transition the xSPSM to the Idle state. 
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Note: The USB packet exchanges that transition the SPSM through its states are 

described in USB3 specification section 8.12.1.4. 

The Prime Pipe state is used by the xHC to inform the USB device that host 

memory buffers have been modified or added to the endpoint by system 

software. The device may use this information as queue to start or restart 

stream activity. 

To facilitate the xSPSM management of Prime Pipe transitions, an Idle Prime 

Pipe Value (IPPV), LCStream Flow Control Value  (LFCV), and Doorbell Pending 

Value (DBPV) may be implemented by the xHC as a shadow flags. All three flags 

are initially cleared (‘0’). The xSPSM utilizes IPPV. LFCV, and DBPV. 

IPPV is cleared (‘0’) when the Idle state is entered from the Start Stream or 

Move Data state and set (‘1’) when the Prime Pipe state is entered. IPPV is used 

to limit Prime Pipe transitions to one per Idle state entry. 

LFCV records if the LCStream was flow controlled by the device. In this case, the 

xHC should not generate a Host Initiated Data Move if buffers are posted for the 

LCStream. LFCV is updated when the Move Data state is exited. If the Move Data 

state was exited due to an NRDY(Stream n) condition then LFCV is set, otherwise 

LFCV is cleared. Refer to the IMDSM and OMDSM (Figures 8-30 and 8-32, 

respectively) in the USB3 specification for more information on the 

NRDY(Stream n) condition. 

DBPV is cleared when entering the Start Stream or Move Data states and set if 

the doorbell is rung while the xSPSM is in the Start Stream or Move Data states. 

DBPV records doorbell rings while the xSPSM is not in the Idle state, so that a 

Prime Pipe state may be immediately forced when the Idle state is reentered. 

To further accelerate the Stream protocol an xHC implementation may 

optionally capture the DB Stream ID value when the doorbell is rung. A fourth 

shadow flag, DB Stream ID Captured Value  (DSICV) is set if the xHC hardware 

captures the DB Stream ID when the doorbell is rung, otherwise it is cleared.  

If the doorbell for the endpoint is rung while in the Idle state the following 

algorithm shall be applied: 

•  If Host Initiated transitions are disabled (HID = ‘1’): 

•  if IPPV = ‘0’, transition to the Prime Pipe state. 

•  if IPPV = ‘1’, remain in the Idle state. 

•  If HID = ‘0’: 

•  If the xHC captures the DB Stream ID when the doorbell is rung (DSICV=1): 

•  If LFCV = ‘0’ and the DB Stream ID value equals LCStream41, transition to the 

                                                   

41Refer to section 8.12.1.4.1 in the USB3 specification for the definition of LCStream. 
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Move Data state. 

•  If LFCV = ‘1’ or the DB Stream ID value does not equal LCStream: 

•  if IPPV = ‘0’, transition to the Prime Pipe state. 

•  if IPPV = ‘1’, remain in the Idle state. 

•  If the DB Stream ID is not captured when the doorbell is rung (DSICV=0), access 

the Transfer Ring associated with LCStream to determine whether it is empty: 

•  If LFCV = ‘0’ and the Transfer Ring is not empty (TD(LCStream)), transition to 

the Move Data state. 

•  If LFCV = ‘1’ or the Transfer Ring is empty (!TD(LCStream)), transition to the 

Prime Pipe state. 

Note: Due to internal resource or other limitations, an xHC implementation may disable 

Host Initiated transitions for an endpoint, i.e. the xSPSM may operate as if HID is 

always ‘1’, irrespective of the value of the field in the Endpoint Context. 

Refer to section 4.12.1.1 for more information on Host Initiated transitions to 

the Data Move state. 

When the xSPSM returns to the Idle state from the Prime Pipe state the xHC 

shall set the IPPV flag to ‘1’, flagging the fact that a Prime Pipe transition has 

been executed while in Idle. 

When the xSPSM transitions from the Idle to the Start Stream or the Move Data 

state the xHC shall clear the DBPV flag to ‘0’, preparing it to record any Doorbell 

rings while it is in the Start Stream or Move Data states. 

If the endpoint’s doorbell is rung while in the Start Stream or Move Data state, 

the DBPV flag is set to ‘1’. 

Note: If an error (USB Transaction, timeout, etc.) is detected in the SuperSpeed ISPSM 

(Figure 8-29 in the USB3 specification) Prime Pipe or Prime Pipe Ack state, or 

the OSPSM (Figure 8-31 in the USB3 specification) Prime Pipe, Start Stream End, 

or the Prime Pike Ack state, the xHC shall generate a Transfer Event with the TRB 

Pointer and TRB Transfer Length fields = ‘0’, to the Event Ring identified by the 

Slot Context Interrupter Target field. 

When the Idle state is entered from the Start Stream or Move Data state, the 

IPPV flag is cleared to ‘0’, enabling one Prime Pipe transition while in the Idle 

state. 

If in the Idle state and the IPPV flag is ‘0’ and DBPV is ‘1’, the xSPSM shall 

transition to the Prime Pipe state, informing the device of the recorded doorbell 

ring. 

A Stream ID is a zero-based value that indexes into the endpoint’s Stream 

Context Array starting at offset ‘0’, as illustrated in Figure 4-20. 

The xHC uses the value of the Stream ID field, received in a SuperSpeed 

Transaction Packet (TP) or Data Packet (DP), as an index into the Stream Context 
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Array(s) to access the Stream Context associated with the packet. Refer to 

section 8.2 in the USB3 specification for a discussion of SuperSpeed Packet 

Types. 

If Streams are defined for an endpoint, then: 

•  The Endpoint Context MaxPStreams field is > ‘0’. 

•  The Endpoint Context TR Dequeue Pointer field points to a Primary Stream Context 

Array. 

•  The Primary Stream Context Array shall contain MaxPStreams Stream Context data 

structures. 

Streams may only be defined for Bulk endpoint types.  

The MaxPStreams field in the Endpoint Context identifies the number of Streams 

supported by the Primary Stream Array of the endpoint. If MaxPStreams = ‘0’, 

then the endpoint is a standard endpoint and its TR Dequeue Pointer field points 

to a Transfer Ring. The value of the  MaxPStreams field shall not exceed the 

value reported in the MaxStreams field of the SuperSpeed Endpoint Companion 

Descriptor for the endpoint. 

The Stream ID field of USB packets on endpoints that do not define Streams 

shall be ignored by the xHC. 

Refer to section 3.3.8 for more information on how a Stream is affected by a 

Stop Endpoint Command . Refer to section 4.6.10 for more information on how a 

Stream is affected by a Set TR Dequeue Pointer Command . 

4.12.1.1 Host Initiated Data Move 

A Host Initiated transition from the Idle to the Data Move state is described in 

the General Stream Protocol State Machine (SPSM) of section 8.12.1.4 in the 

USB3 specification. The objective of a Host Initiated transition to Data Move is 

to initiate a Data Move operation that has a high probability of being accepted 

by the device. 

A doorbell is rung when work is added to a Transfer Ring. The DB Stream ID 

indicates the specific Stream of the endpoint that the doorbell ring references.  

An xHC implementation is not required to capture the value of DB Stream ID 

field when the doorbell is rung, however this feature may be used to accelerate 

SPSM transitions. When the doorbell is rung in the Idle state, the DB Stream ID 

value explicitly identifies the Stream that has had work added to it, thus 

eliminating the need to access the associated Transfer Ring to determine this 

condition. In Figure 4-19 the DB Stream ID Capture Value  (DSICV) shadow flag is 

used to indicate whether an xHC implements this feature.  
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Some Stream usage models may operate more efficiently if the device maintains 

full control over Stream selection. Host Initiated transitions from the Idle to the 

Move Data state may be disabled by setting the Host Initiated Disable (HID) flag 

in the Endpoint Context to ‘1’.  

4.12.2 Stream ID Management 

The xHCI architecture provides software with the ability to increase or reduce 

the number of Streams supported by an xHC Endpoint Context during runtime, 

and support for the case where a large number of Streams would cause a Stream 

Context Array to exceed a PAGESIZE. 

Both of these features are supported through hierarchical Stream Context 

Arrays. With this approach, the Endpoint Context references a Primary Stream 

Array, which in turn may reference a Secondary Stream Array . Figure 4-20 

illustrates the relationship between the Endpoint Context, the Primary Stream 

Context Array, and the Secondary Stream Context Array . 

If the MaxPStreams field of the Endpoint Context is greater than ‘0’, then 

Streams are supported by the endpoint and the TR Dequeue Pointer field points 

to a Primary Stream Array with 2MaxPStreams+1 entries. Refer to Table 6-8 for the 

definition of MaxPStream. 

Note that the MaxStreams field of the SuperSpeed Endpoint Companion 

Descriptor identifies the maximum number of Streams that the associated 

endpoint supports, however software may configure the Primary Stream Array of 

the associated endpoint with less than MaxStreams entries and grow the 

number of hardware supported Streams later.  

Figure 4-20: Stream Context Data Structures 

Slot

Control EP 0

EP1 OUT

(Max Streams = 0)

EP1 IN

(Max PStreams = 3)

EP2 OUT
(Max Streams = 0)

EP2 IN
(Max Streams = 0)

Stream Context 0
(PSID = 0, SSID = 0, SCT = 3)

Stream Context 1
(PSID = 1, SSID = 0, SCT = 1)

Stream Context 2
(PSID = 2, SSID = 0, SCT = 3)

Device Context

Primary

Stream Context Array TR 

Ring

TR 

Ring

TR 

Ring

TR 

Ring

TR 

Ring

TR 

Ring

TR 

Ring Stream Context 0
(PSID = 0, SSID = 0, SCT = 0)

Stream Context 1
(PSID = 0, SSID = 1, SCT = 0)

Secondary

Stream Context Array 0

...
Stream Context 15

(PSID = 15, SSID = 0, SCT = 1)

...
Stream Context 15

(PSID = 0, SSID = 15, SCT = 0)

Stream Context 0
(PSID = 2, SSID = 0, SCT = 0)

Stream Context 1
(PSID = 2, SSID = 1, SCT = 0)

Secondary

Stream Context Array 2

...
Stream Context 15

(PSID = 2, SSID = 15, SCT = 0)

TR 

Ring

TR 

Ring

 



 

 

238    

In the example of Figure 4-20, to access a specific Stream Context, the xHCI 

splits the Stream ID into two sub-fields; the Primary Stream ID (PSID) and 

Secondary Stream ID (SSID). The Primary Stream ID is used as an index into the 

Primary Stream Array. If the Secondary Stream ID is equal to ‘0’, then the Stream 

Context in the Primary Stream Array shall contain a pointer to a Transfer Ring 

(e.g. Primary Stream Context 1 or 15, SCT = ‘1’). If the Secondary Stream ID is 

non-zero, then the Stream Context in the Primary Stream Array shall contain a 

pointer to a Secondary Stream Array (e.g. Primary Stream Context 0 or 2, SCT = 

‘3’), and the Secondary Stream ID is used as an index into the Secondary Stream 

Array. Also note that the 0th element in Secondary Stream Context Array 0  (SSID 

= 0, PSID = 0) does not point to a Transfer Ring because it Stream ID 0 is 

reserved, however the 0th element in Secondary Stream Context Array 2 does 

point to a Transfer Ring because it represents Stream ID 2 (SSID = 0, PSID = 2).  

The boundary between the PSID and SSID sub-fields is defined by the 

MaxPStreams field of the Endpoint Context , Refer to Table 6-8. The PSID resides 

in the low order bits of a Stream ID and the SSID resides in the high order bits.  

All endpoints that declare Streams shall be initialized to point to a Primary 

Stream Array. Secondary Stream Arrays  may be defined at initialization or run 

time. Software shall coordinate the allocation of Stream IDs with the 

Primary/Secondary Stream Array  layout of an endpoint. Note that in the example 

of Figure 4-20, Stream Contexts 0 and 2 in the Primary Stream Context Array  

point to Secondary Stream Context Arrays . To access a Stream Context in the 

Secondary Stream Array referenced by Primary Stream Context 0, software shall 

set the Primary Stream ID to 0, and the Secondary Stream ID to the index of the 

Secondary Stream Context. Note that the Stream ID value ‘0’ (i.e. PSID & SSID = 

‘0’) is reserved by the USB3 spec and should never be presented to the xHC by a 

device that declares a Stream endpoint. Hence in the example of Figure 4-20, 

Stream Context 0 in Secondary Stream Context Array 0 is reserved and shall not 

be accessed by the xHC. 

Note: If Secondary Stream Arrays are enabled, then Stream Context 0 of the Primary 

Stream Context Array shall always reference a Secondary Stream Array (i.e. SCT 

> ‘1’). An SCT value of ‘0’ or ‘1’ may result in undefined behavior. 

The value of MaxPStreams informs the xHC of the size of the Primary Stream 

Array. If Secondary Streams are enabled, then the maximum size of a Primary 

Stream Array is 256 entries (MaxPStreams = ‘7’). The Stream Context Type (SCT) 

field in each Stream Context identifies whether a context in the Primary Stream 

Array points to a Transfer Ring or a Secondary Stream Array . The SCT field also 

identifies the number of entries in a Secondary Stream Array . This flexible 

mechanism must be carefully managed by software to ensure that the SIDs that 

it generates shall not cause the xHC to reference an out-of-range Secondary 

Stream Context. 



 

 

 

  239 

The maximum size Primary Stream Array supported by an xHC implementation is 

defined by the MaxPSASize field in the HCCPARAMS1 register (refer to Table 

5-13). 

The NSS field in the HCCPARAMS1 register (Table 5-13) identifies whether an 

xHC implementation supports Secondary Stream Arrays . 

4.12.2.1 Stream Array Bounds Checking 

Stream Array bounds checking shall be supported by the xHCI. This feature 

ensures that an invalid Stream ID presented by a device or a Set TR Dequeue 

Pointer Command shall not cause the xHC to reference host memory that it 

doesn’t have access to. 

The size of the Primary Stream Array shall be determined by MaxPStreams. 

If Linear Streams are enabled, then the maximum size of a Primary Stream Array 

shall be 64K entries. 

Note: The Stream ID values FFFFh (NoStream) and FFFEh (Prime) are reserved by the 

USB3 spec. Hence, if 64K Stream Contexts are defined, the last two are reserved 

and shall not be accessed by the xHC. 

If Streams are enabled (MaxPStreams > ‘0’) then the xHC shall perform the 

following checks when parsing a Stream ID presented by a USB packet or a Set 

TR Dequeue Pointer Command . 

Note: The following tests are defined for a Stream ID presented by a USB packet. If a 

boundary error is detected on a Stream ID presented by a Set TR Dequeue Pointer 

Command a Command Completion Event shall set its Completion Code to TRB 

Error. 

•  If a Stream ID = ‘0’ the xHC shall generate a Transfer Event with the Completion Code 

set to Invalid Stream ID Error and shall halt the endpoint. 

•  If the TR Dequeue Pointer field of a Stream Context data structure equals ‘0’: 

•  If the Stream Context Type (SCT) equals Transfer Ring: 

•  The xHC shall interpret the value as an “empty” Transfer Ring and shall not 

attempt to DMA TRBs from the address and reject the request with a 

NoStream response. 

•  If the Stream Context Type (SCT) equals SSA: 

•  The xHC shall generate a Transfer Event with the Completion Code set to 

Invalid Stream Type Error, shall halt the endpoint, and shall not attempt to 

DMA a Stream Context data structure from the address. 

If Linear Stream Array mode is enabled (Linear Stream Array42 (LSA) flag = ‘1’): 

                                                   

42The Linear Stream Array (LSA) field is defined in Table 6-8. 
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•  If a Stream ID is less than the Primary Stream Array size defined by MaxPStreams and 

greater than ‘0’, then the xHC shall check Stream Context Type (SCT) of Stream 

Context data structure in the Primary Context Array as follows: 

•  If Primary:Transfer Ring (Stream Context Type43 (SCT) field = ‘1’): 

•  The Stream Context is valid. 

•  else 

•  The Stream Context is not valid and the xHC shall generate a Transfer Event 

with the Completion Code set to Invalid Stream Type Error and shall halt the 

endpoint. 

•  If a Stream ID is ‘0’ or greater than or equal to the Primary Stream Array size defined 

by MaxPStreams the xHC shall generate a Transfer Event with the Completion Code 

set to Invalid Stream ID Error and shall halt the endpoint. 

If Secondary Stream Arrays are enabled (LSA = ‘0’): 

•  Use the MaxPStreams+1 low order bits of the Stream ID to index into the Primary 

Stream Array. 

•  Check SCT field of the Primary Stream Array Stream Context data structure: 

•  If Secondary:Transfer Ring (SCT = ‘0’): 

•  The xHC shall generate a Transfer Event with the Completion Code set 

to Invalid Stream Type Error and shall halt the endpoint. 

•  else if Primary:Transfer Ring (SCT = ‘1’): 

•  If the SSID is not ‘0’: 

•  The Stream Context is not valid and the xHC shall generate a 

Transfer Event with the Completion Code set to Invalid Stream ID 

Error and shall halt the endpoint. 

•  else 

•  The Stream Context is valid. 

•  else 

•  Primary:SSA (SCT = ‘2’ to ‘7’). 

•  If the SSID is ‘0’ or out of range as defined by the Primary:SCT Secondary 

Stream Array Size, then the xHC shall generate a Transfer Event with the 

Completion Code set to Invalid Stream ID Error and halt the endpoint. 

•  Check SCT of secondary Stream Context data structure: 

•  If not Secondary:Transfer Ring (SCT = ‘0’): 

•  The Stream Context is not valid and the xHC shall generate a 

Transfer Event with the Completion Code set to Invalid Stream 

Type Error and shall halt the endpoint. 

•  else 

                                                   

43The Stream Context Type (SCT) field is defined in Table 6-13. 
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•  It is a Secondary:Transfer Ring type and the Stream Context is 

valid. 

Note: If a non-CStream SID is received in the Move Data state then the pipe shall halt 

with a Invalid Stream Type Error completion code. 

Note: If an NRDY with a non-Prime SID is received in the Prime Pipe state then the pipe 

shall halt with an Invalid Stream Type Error completion code. The SID shall be 

ignored if the Deferred bit is set in a packet, or an ERDY is received, in the Prime 

Pipe state, and no Invalid Stream Type Error shall be generated. 

4.12.3 Evaluate Next TRB (ENT) 

The Evaluate Next TRB (ENT) flag applies to all Transfer Rings, and it is 

particularly important for Stream Contexts. It provides a means of forcing the 

execution of a terminating Event Data TRB (4.11.5.2) when a Stream is 

terminated. 

If the device initiates the xSPSM (4.12.1) transition from the Move Data to the 

Idle state, the xHC does not have visibility to the conditions that caused it. If the 

transition is due to a temporary condition e.g. the device needed to switch to a 

higher priority Stream or flow control the current Stream, then the Stream will 

be rescheduled at a later time by the device. However, if the transition was due 

to the device completing the data transfer associated with the Stream, then the 

Stream may not be scheduled again by the device.  

When the transition to the Idle state occurs, the xHC is expected to save the 

state of the Stream (e.g. the Transfer Ring Dequeue Pointer) so that it may pick 

up where it left off the next time the Stream is scheduled. Note that the 

transition to the Idle state may occur in the middle of a TD, so the saved Stream 

state shall support the ability to continue a partially completed TD.  

If the transition to the Idle state was due to one of the temporary conditions 

described above, then the xHC should wait for the device to reschedule the 

Stream. However, if the transition to the Idle state was due to a completed 

transfer, then the xHC should complete the TD before saving the Stream state.  

If a TD is comprised of one or more Normal TRBs and terminated with an Event 

Data TRB, then the transition to the Idle state (and associated Stream state save) 

could occur after all the data for the TD has been moved (e.g. after Transfer 

Event TRBs have been executed), but before the Event Data TRB is executed. 

Under these conditions, the execution of the Event Data TRB necessary to 

complete the TD will not occur until the next time the Stream is scheduled. This 

could lock up the Stream if software was waiting for the TD to complete before 

scheduling the Stream again. 

Before the transitioning a Stream pipe to the Idle state, then the xHC shall 

evaluate the ENT flag in the last TRB completed, and if the ENT flag is set (‘1’), 

then the xHC shall evaluate the next TRB before saving the Stream state.  
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Setting the ENT flag in the last Normal TRB of the TD described above, allows 

the xHC to execute the terminating Event Data TRB and complete the TD before 

saving the Stream state, thus eliminating the lock up condition.  

Note: System software shall set the ENT flag in the last Transfer TRB before a 

terminating Event Data TRB in a TD. This action ensures the timely execution of 

an Event Data TRB if the Transfer Ring is flow controlled. 

When the xHC detects the Chain and ENT bits both set to ‘1’ in a TRB, it shall 

evaluate the next TRB. If the next TRB is an Event Data TRB, the xHC shall 

generate the associated Event Data Transfer Event before saving the Stream 

state. If the next TRB is not an Event Data TRB , the xHC shall save the Stream 

state, i.e. evaluate the next TRB the next time the associated Stream is 

scheduled. 

Note: System software should only set the ENT flag in a TRB if the next TRB is an Event 

Data TRB and the Event Data TRB is the last TRB in a TD. The ENT flag does not 

span TDs, therefore the ENT flag is valid only if the Chain bit (CH) is ‘1’. 

Note: The ENT flag shall “span” a Link TRB if there is a Link TRB between the TRB with 

the ENT flag set and the next Transfer TRB. i,e, if the ENT flag is set in a TRB that 

it is immediately followed by a Link TRB, the xHC shall execute the Link TRB and 

evaluate the TRB that the Link TRB points to, before advancing to the next 

endpoint in the Pipe Schedule. 

Note: If an endpoint is Halted due to an error while executing a TRB, a Transfer Event 

shall be generated for that TRB and the xHC is not required to evaluate the ENT 

flag of the TRB that generated the error. 

4.13 Device Notifications 

The USB3 specification defines a Device Notification Transaction Packet. The 

Notification Type field in this packet defines 16 possible notification types. 

Some notification types are handled directly by the xHC and others  may be 

reported to software. The Device Notification Control (DNCTRL) register allows 

system software to individually select which notifications are important to it and 

shall generate a Device Notification Event. Refer to section 6.4.2.7 for more 

information on the Device Notification Event TRB. 

Refer to section 7.5.1.6 in the USB3 spec for a complete definition of the various 

Device Notification packet format and types.  

Note: To support debugging, the DNCTRL register allows Device Notification Events to 

be generated for notification types that are normally only handled by the xHC. 

Note: The xHC shall use the Device Slot’s Slot Context Interrupter Target field to 

determine the Event Ring that shall receive the event. 
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4.13.1 Latency Tolerance Message Handling 

Latency Tolerance Messaging (LTM) represents a new, more robust, system 

technique for managing power consumption on a platform. Current platform 

power management policies are forced to guess when and for how long to sleep. 

These guesses usually force the platform to trade power savings at the expense 

of platform performance, in particular performance of attached devices. LTM 

adds the capability for attached devices to provide information that can improve 

the host platform's ability to select when and how long to sleep. This is 

accomplished by an attached device informing the host of its acceptable service 

latency between accesses, the device's latency tolerance.  

The xHC's role in supporting this new platform capability is to accept latency 

tolerance values from USB3 devices, evaluate the values and forward the lowest 

value to the host platform, using the host platform’s Latency Tolerance 

Reporting (LTR) mechanism. LTM is optional normative, however shall be 

supported by any xHC implementation that also supports a corresponding host 

interconnect LTR mechanism. The form of the LTR mechanism used by the xHC 

to forward these latency tolerance values to system will be host-specific and will 

vary based on the interconnect architecture used by the host platform for device  

communications (e.g. PCI Express, AMBA, etc.). The actual host-specific LTM 

mechanism for a given platform is outside the scope of this specification.  

USB3 defines a complimentary Latency Tolerance Messaging (LTM) mechanism. 

USB3 LTM is an optional normative USB power management feature that utilizes 

reported Best Effort Latency Tolerance  (BELT)  values to enable more power 

efficient platform operation. These messages are supported by USB3 devices 

(excluding hubs) using an optional USB3 “Device Notification 

(DEV_NOTIFICATION)” Transaction Packet (TP) with a Notification_Type = 

LATENCY_TOLERANCE_MESSAGE (LTM). This USB message is also referred to as 

a Latency Tolerance Message (LTM) TP. The LTM TP contains the BELT value that 

indicates the current tolerable service latency for that device. Refer to the USB3 

Specification (section 8.5.6) for detail on DEV_NOTIFICATION Transaction 

Packets and the BELT Messaging mechanism. 

The Latency Tolerance Messaging Capability  (LTC) bit in the HCCPARAMS1 

register identifies whether the xHC shall support LTM handling. If LTC = '1', then 

an xHC implementation shall support the LTR mechanism as described by the 

appropriate system bus spec, USB LTM as described in section 8.5.6.4 of the 

USB3 spec, and the Set LTV Command as described in section 4.6.14. If an xHC 

implementation is designed for a bus/system that does not support an LTR 

mechanism or decides not to support LTM, then LTC shall be '0', and the xHC 
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will not maintain internal LTM related variables described below, and software 

shall not enable LTM in USB devices.44 

When the host bus of the platform implements a host-specific LTM mechanism, 

the xHC shall: 

•  Maintain an internal Current BELT variable, which represents the last BELT value 

reported to the host. This variable is initialized to the value of tBELTdefault (as 

defined in section 8.13 of the USB3 spec.). 

•  For each configured USB device, maintain an internal Device BELT variable. These 

variables are initialized to the value of tBELTdefault. 

•  Recognize receipt of an USB LTM TP. 

Upon receiving an LTM TP the xHC shall determine the lowest service latency 

value for the attached USB subsystem by performing the following actions:  

1. Extract the BELT value and multiplier from the LTM TP.  

2. Record the value received for the device in the Device BELT variable 

associated with the device. 

3. Compare the Current BELT value to each Device BELT value. 

a. If a device’s Device BELT value represents a smaller latency than 

Current BELT, then set Current BELT equal to the smallest Device 

BELT. 

4. If the Current BELT value has been modified, then: 

a. Format a host-specific Latency Tolerance Reporting (LTR) 

message for transmission to the host.  

b. Place the Current BELT value in the LTR message defined for the 

host interconnect. 

 

Note: Based on the host interconnect used by the platform and 

the associated LTR mechanism, it may be necessary to translated 

the BELT value into multiple forms before forwarding to the host.  

c. Send the LTR message the host. 

Step Record the value received for the device in the  requiring that the xHC keep 

a record of the value received is necessary to enable the comparison operation 

in step Compare the . In addition, this value shall also be recorded in the event 

                                                   

44For example, If LTC = '1', then a PCIe xHC implementation is required to support PCIe Latency Tolerance 
Reporting (LTR) as described in section 6.18 of the PCIe spec, USB LTM, and the Set LTV Command. If the xHC is 
implemented on a non-PCIe bus then it would use the equivalent LTR mechanism defined for that bus. 
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that the device is removed and under these circumstances the xHC shall set the 

Current BELT value to tBELTdefault and re-evaluate for the lowest latency of the 

remaining Device BELT values by executing Step Compare the  and step If the  

above.  

Note: The manner in which the Current BELT and Device BELT variables are stored is 

implementation specific and as such falls outside the scope of this specification. 

The Set LTV Command TRB provides a means for host software to provide its 

own “Device BELT” value. This command is optional normative, however it shall 

be supported if the xHC also supports a corresponding host interconnect LTM 

mechanism. 

xHCI Device BELT is an internal variable that maintained by the xHC. The xHCI 

Device BELT value is initialized to an “unconfigured” state. While the xHCI Device 

BELT variables is “unconfigured”, it is not compared with the other Device BELT 

variables in Step 3 above. 

When a Set LTV Command is executed by the xHC: 

•  The BELT field of the Set LTV Command TRB is copied to the xHCI Device BELT 

variable. This action transitions the xHCI Device BELT variable from “unconfigured” 

to “configured”. When xHCI Device BELT is “configured”, it is compared with the other 

Device BELT variables in Step 3 above. 

•  Re-evaluate for the lowest latency by executing Step 3 and step 4 above. 

Refer to section 4.6.14 for more information on the Set LTV Command. 

Refer to section 6.4.3.13 for more information on the Set LTV Command TRB. 

Note: The xHC hardware automatically handles LATENCY_TOLERANCE_MESSAGE 

Device Notifications (Notification Type = 2) so there is no need to enable Device 

Notification Event generation for this notification type. 

4.13.2 Function Wake 

A USB3 device sends a FUNCTION_WAKE Device Notification Transaction Packet 

to inform the host of a “Function Remote Wake”. Software should set flag N1 in 

the DNCTRL register to enable the generation of Device Notification Events when 

FUNCTION_WAKE Device Notifications are received.  

Note: The FUNCTION_WAKE Device Notification Transaction Packet is used to indicate 

“Function Remote Wake”. A Function Remote Wake is distinct from a “Remote 

Wake” 45  that is initiated by a low level USB signaling. 

                                                   

45 Note that section 9.2.5.4 of the USB3 spec defines “remote wake” as being device level wake signaling, “enabled 
when any function within a device is enabled for function remote wakeup”, however the USB2 LPM ECN 
defines “remote wake” as link level Device Initiated L1 Exit signaling. 
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Refer to section 8.5.6 of the USB3 spec for more information on 

FUNCTION_WAKE Device Notification Transaction Packets.  

4.14 Managing Transfer Rings 

This section presents an overview of how the host controller interacts with 

Transfer Rings. 

A number of terms that are used throughout this section are described below.  

System software shall translate the device Endpoint Descriptor (and SuperSpeed 

Endpoint Companion Descriptors) fields into the appropriate Endpoint Context 

Interval, Max Packet Size , Max Burst Size , and Mult values. Refer to section 6.2.3 

for the definition of Endpoint Context. 

The xHC uses the Max Packet Size and Max Burst Size fields in the Endpoint 

Context to manage transactions on the USB. 

Transfer Descriptors (TDs) allow software to define contiguous blocks of data, 

constructed from non-contiguous host memory buffers, that shall be passed to 

or from a USB device. 

The TD Transfer Size is defined by the sum of the TRB Transfer Length fields in 

all TRBs that comprise the TD. 

For IN pipes, a device may truncate the data transfer associated with a TD by 

issuing a Short Packet before the TD is exhausted. In this case the xHC shall 

retire the TD that received the Short Packet and advance to the next TD on the 

Transfer Ring or the Enqueue Pointer (i.e.Cycle bit transition), whichever is 

encountered first. 

If the Interrupt On Completion (IOC) or Interrupt-on Short Packet (ISP) flags are 

set in the TRB that received the Short Packet, a Transfer Event shall be 

generated with the Completion Code set to Short Packet. 

An endpoint is considered Active when it is on the xHC’s Pipe Schedule, and 

Inactive if it is not. Ringing the Doorbell of an endpoint in the Running state will 

activate it, and the xHC shall place the endpoint in its Pipe Schedule. While the 

endpoint is Active the xHC shall actively process TDs on its Transfer Ring. If the 

Transfer Ring for the endpoint is exhausted or the endpoint exits the Running 

state, the endpoint is pulled from the xHC’s Pipe Schedule and placed in Inactive 

state. Software may ring the Doorbell of an endpoint in the Running state to 

reactive an inactive endpoint. 

A Bus Instance (BI) represents a “unit” bus bandwidth at the speed that the BI 

supports. The bit rate cited for a USB bus (e.g. SS 5Gb/s. HS 480Mb/s, etc.) 

should not be confused with the “Total Available Bandwidth”, which is the 

maximum bandwidth available for actually moving data through a BI.  



 

 

 

  247 

The Total Available Bandwidth identifies a BI’s ability to move real data. As rule 

of thumb, the Total Available Bandwidth will be at least 20% lower than the 

cited bit rate of a BI, or more depending on the mix of packet sizes. Also note 

that multiple Root Hub ports may share the bandwidth of a single BI. The 

mapping of BI to Root Hub ports is xHC implementation dependent and not 

exposed to software. 

During each IN transaction, the xHC shall use the Max Packet Size to detect 

Packet Babble errors. If a babble error is detected, a Transfer Event shall be 

generated for the offending TRB, with the Completion Code set to Babble 

Detected Error. 

When the xHC detects that a Transfer Ring will be exhausted after the execution 

of a TP or DP (e.g. the last packet of the last TRB of the last TD on a Transfer 

Ring), it should clear the ACK TP or DP Packet Pending (PP) bit to ‘0’. If Max Exit 

Latency is greater than ‘0’, then the xHC should clear the Packet Pending flag in 

the last packet of each Isoch TD. The Packet Pending bit shall be set to ‘1’ in all 

other ACK TPs or DPs generated by the xHC. 

4.14.1 General Scheduling Model 

When a doorbell is rung for a Running endpoint, the xHC places the endpoint on 

a Pipe Schedule. An xHC will typically maintain two Pipe Schedules per Bus 

Instance, one for periodic pipes (Isoch and Interrupt endpoints) and another for 

async pipes (Control and Bulk). 

Each pass through a Pipe Schedule an endpoint is given one “Service 

Opportunity”. A Service Opportunity (SO) is a block of time that the xHC 

allocates for moving packets on USB, for a specific endpoint.  

Depending on the endpoint type and settings,1 to 3 USB Transactions may be 

executed during a Service Opportunity (SO). USB Standard Transactions transfer 

a single Data Packet (DP), however a single USB Burst Transaction may transfer 

multiple DPs. 

The Max Service Opportunity Packet Count  (MSOPC) is the maximum number of 

DPs that the xHC shall schedule during one Service Opportunity (SO). The 

MSOPC value for an endpoint is set by the number of packets defined by the 

Endpoint Context Max Burst Size field times the Mult field. 

The Transfer Descriptor Packet Count  (TDPC) is the number of packets required 

to move all the data defined by a TD. Note that a partial or a zero-length packet 

increments this count by 1. 

The Transfer Ring Packet Count (TRPC) is the sum of the TDPCs for all TDs on a 

Transfer Ring. 
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The Service Opportunity Packet Count (SOPC) is the number of packets actually 

scheduled by the xHC during a SO. The SOPC value shall be initialized at the 

beginning of a SO, and decremented as each transaction or retry of the SO is 

completed. When SOPC reaches zero the SO for the current endpoint is 

complete, the xHC shall initiate a SO for the next endpoint in the schedule. 

Retries may terminate the current SO and continue on the next SO.  

Normally SOPC is less than or equal to MSOPC, however the xHC is allowed to 

limit the SOPC to a value less that MSOPC. And if only one endpoint is in the 

Pipe Schedule SOPC may be greater than MSOPC, e.g. a continuous burst on the 

bus. Refer to the individual pipe type discussions below for more details on 

SOPC usage. 

The endpoints assigned to a periodic schedule are closely controlled by the xHC 

through the Address Device and Configure Endpoint Commands to ensure that 

the periodic Pipe Schedule consumes no more than a maximum percentage of 

the Total Available Bandwidth. Any USB bandwidth not consumed by periodic 

pipes, is available to async pipes. 

Note: The “maximum percentage” of the Total Available Bandwidth depends on the 

speed of the periodic pipe. Refer to section 4.14.2 for more information. 

The endpoints assigned to an async schedule are considered “Best Effort” and 

may consume any USB bandwidth not consumed by periodic pipes. Each 

endpoint in an async Pipe Schedule is given one Service Opportunity (SO) per 

pass through the schedule. 

4.14.1.1 System Bus Bandwidth Scheduling 

System bus bandwidth is limited, especially in cases where the xHC is connected 

to a system by a bus that provides less bandwidth than the USB bus instances 

that it supports. To ensure consistent and reliable operation of USB endpoints 

the xHC shall manage the system bus activity associated with an endpoint using 

methods that are similar to the way that it manages the USB bandwidth 

associated with an endpoint. 

For example, given the system bus bandwidth available to the xHC it shall 

distribute that bandwidth across its active endpoints. Periodic endpoints will 

have priority over async endpoints, and all async endpoints will be given fair 

access to the remaining system bus bandwidth. 

The xHC uses the value of the Average TRB Length field in the Endpoint Context 

as a metric to help compute the system bus bandwidth requirements of an 

endpoint. The accuracy of this parameter is particularly important for periodic 

endpoints. An xHC will use the Average TRB Length and other metrics to 

allocate/distribute system bus bandwidth to endpoints. These “other” metrics 

are xHC implementation specific and outside the scope of this specification. The 

Average TRB Length field is computed by dividing the average TD Transfer Size 
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by the average number of TRBs that are used to describe a TD, including Link, 

No Op, and Event Data TRBs. 

A Configure Endpoint Command  may be rejected by the xHC with a Bandwidth 

Error  or a Secondary Bandwidth Error if it determines that there is not enough 

system bandwidth available for it.  

 IMPLEMENTATION NOTE 

TRB Lengths and System Bus Bandwidth 

System buses are most efficient when they are moving large transfers. As transfer sizes 

become smaller, the throughput of a bus can fall off rapidly. 

The xHCI supports byte granularity for the TRB Data Buffer Pointer and Length fields, 

which enables “fine-grain” scatter/gather operations. The threshold where it is more 

efficient to declare many small TRBs and allow the xHC to use DMA to scatter/gather 

data vs. having software copy that data to/from larger buffers will depend on many 

factors (e.g. the xHC implementation, system I/O bus performance, system memory 

performance, etc.). The xHCI does not place lower limits on TRB sizes, which could 

constrain the ability of a system developer to optimize the performance/throughput of 

their entire system. However, an xHC will place limits on the system bus bandwidth 

allocated to an individual endpoint, to ensure that other endpoints are not affected by 

an endpoint that requires disproportionately large number of system bus transactions 

to complete its USB transactions. 

A programmer should assume that defining large numbers of small TRB Data Buffers 

will affect USB throughput and design accordingly. The extent to which the system 

bandwidth demands of a single endpoint will affect that endpoint or other endpoints is 

xHC implementation dependent. 

Note that an Average TRB Length of 16 implies that 50% of the system bus bandwidth 

consumed by an endpoint moving TRBs, i.e. each 16 byte TRB defines 16 bytes of data. 

And an Average TRB Length of 1024 implies that 1.5% of the system bus bandwidth 

consumed by an endpoint moving TRBs. Ideally the Average TRB Length represents the 

true average size of the data buffers that the TRBs of an endpoint reference, which will 

generally be a class specific or application specific value. If precise values for the Average 

TRB Length of an endpoint are not available, software may calculate a running average 

of the size of TRBs scheduled for an endpoint in real-time and periodically updating 

Average TRB Length. Reasonable initial values of Average TRB Length for Control 

endpoints would be 8B, Interrupt endpoints 1KB, and Bulk and Isoch endpoints 3KB. 

4.14.2 Periodic Transfer Ring Scheduling 

Isoch and Interrupt endpoints define “periodic” transfers. Periodic transfers 

provide guaranteed bandwidth on the USB. 
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A Periodic TD is an Isoch TD or a TD scheduled on an interrupt endpoint 

Transfer Ring. 

A Periodic Pipe is an Isoch or interrupt endpoint. 

The Microframe Index Register (MFINDEX) is advanced at the Minimum Interval 

Time (MIT). The MIT is equal to 125 µs., corresponding to High-Speed and 

SuperSpeed microframe timing. The time that the Microframe Index Register is 

advanced, is defined as the MIT Boundary. 

The MIT multiplied by the Endpoint Context Interval field as a base 2 exponent, 

defines Endpoint Service Interval Time  (ESIT). 

 ESIT = 2Interval * 125 µs. 

All ESITs are temporally aligned with MIT Boundaries.  

The xHC uses the Max Endpoint Service Time Interval Payload  (Max ESIT 

Payload) and Interval fields in the Endpoint Context to compute the USB 

bandwidth that it shall reserve for a periodic endpoint. A periodic pipe may, on 

an ongoing basis, use less bandwidth than that reserved. A USB device reports, if 

necessary, the actual bandwidth used via its normal, non-USB defined 

mechanisms. 

Software shall define the maximum periodic payload per ESIT as follows for 

USB2 periodic endpoints: 

 Max ESIT Payload in Bytes = Max Packet Size * (Max Burst Size + 1). 

Software shall define the maximum periodic payload per ESIT as follows if the 

SuperSpeed Endpoint Companion:bmAttributes:SSP ISO Companion  bit is 

cleared (0): 

 Max ESIT Payload in Bytes = SuperSpeed Endpoint Companion 

Descriptor:wBytesPerInterval. 

Software shall define the maximum periodic payload per ESIT as follows if the 

SuperSpeed Endpoint Companion:bmAttributes:SSP ISO Companion  bit is set (1): 

 Max ESIT Payload in Bytes = 

SuperSpeedPlus Isochronous Endpoint Companion 

Descriptor:dwBytesPerInterval. 

Refer to section 6.2.3.8 for more information on Max ESIT Payload . 

Note: Undefined behavior may result if an Isoch TD is encountered which defines more 

that Max ESIT Payload bytes. 

The xHC bandwidth calculation for a periodic endpoint is defined as follows:  

Reserved Bandwidth in MBytes/s = Max ESIT Payload / (2Interval * 0.000125) 
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Per the USB specifications, the Maximum Allowed ESIT Payload  of a FS 

Interrupt, FS Isoch, HS Interrupt, HS Isoch, SS Interrupt, or SS Isoch periodic 

pipe are defined as 64B, 1KB, 3KB, 3KB, 3KB, and 48KB, respectively.  

The maximum percentage of Total Available Bandwidth depends on the speed 

of the BI. The USB requires that no more than 90% of any frame be allocated for 

periodic (isochronous and interrupt) transfers for SuperSpeed and full-speed 

endpoints. High-speed endpoints shall allocate at most 80% of a microframe for 

periodic transfers. 

The xHC is free to schedule a isoch transfer at any time within an ESIT as long as 

the complete TD shall have an opportunity to complete within the ESIT.  

For SuperSpeed pipes, if the Endpoint Context Max Exit Latency field is greater 

than ‘0’, the xHC shall transmit a PING packet a minimum of Max Exit Latency 

prior to initiating an Isoch transfer, to transition the links in the path between 

the xHC and the device to the U0 state. PING generation is optional for Interrupt 

endpoints. Refer to section 4.23.5.2 for more information on Max Exit Latency 

and its computation. 

The Microframe Index (MFINDEX) register is incremented at the beginning of 

each microframe. Figure 4-21 illustrates the required relationships between the 

USB2 SOF FrameNumber and the SS Isoch Timestamp (ITS) Bus Interval Counter 

field (refer to section 8.7 of the USB3 spec) 1/8th ms. counter values, and the 

MFINDEX register. Figure 4-21 also illustrates the partitioning of the Frame 

Index and µFrame Index fields of the MFINDEX register. 

Figure 4-21: Microframe Index (MFINDEX) Register Mapping 

USB2 SOF FrameNumber

Microframe Index Register

13 10 9 3 2 0

µFrame 

Index
Frame Index

10 0

SS Isoch Timestamp Bus Interval Counter
 

 

To enable software computation of larger Microframe Index values, MFINDEX 

Wrap Events may be enabled. If enabled, a MFINDEX Wrap Event is inserted on 

the Event Ring of the Primary Interrupter every time the MFINDEX register wraps 

from 03FFFh to 0. Refer to section 6.4.2.8 for a description of the MFINDEX 

Wrap Event. Refer to the definition of the USBCMD register (5.4.1) for details on 
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the Enable Wrap Event (EWE) flag that may be used to enable MFINDEX Wrap 

Events. 

Note: If the target Event Ring is full, MFINDEX Wrap Events shall be dropped by the 

xHC. 

If all Root Hub ports are in the Disconnected , Disabled, Training, or Powered-

off state the MFINDEX counting action may be stopped by the xHC to reduce 

power consumption. The EU3S flag in the USBCMD register may be used to 

optionally add the U3 state to list of port states that enable the counting action 

to be stopped. Exiting any of these states on any port shall automatically restart 

the MFINDEX counting action. 

Refer to section 4.11.2.5 for more information on the use of the MFINDEX 

register. 

4.14.2.1 Isochronous Transfer Ring Scheduling 

This section defines the xHCI operational model for isochronous Transfer Rings.  

If an Isoch Endpoint Context is Active, the xHC shall process one Isoch TD from 

its Transfer Ring each ESIT. 

Software shall not define a TD Transfer Size for a TD of an Isoch endpoint that 

exceeds the Max ESIT Payload. 

The xHC may schedule multiple Service Opportunities (SOs) per ESIT. 

SOPC is set to the smaller of TDPC or MSOPC. 

The xHC shall compute the TD Transfer Size as it processes a TD. If in the 

process of executing the TRBs of the TD the TD Transfer Size exceeds the Max 

ESIT Payload or the Maximum Allowed ESIT Payload, then a Bandwidth Overrun 

Error shall be generated for the offending TRB and the xHC shall advance its 

Dequeue Pointer to the next Isoch TD boundary or the Enqueue Pointer 

(i.e.Cycle bit transition), whichever is encountered first. Note that the pipe 

remains Active after this error, the xHC simply truncates the transfer and 

advances to the next TD. 

If the Transfer Ring is empty and there is no TD defined to receive Isoch IN data, 

the xHC shall remove the endpoint from the periodic schedule and generate a 

single Transfer Event with the Completion Code set to Ring Overrun. 

If the Transfer Ring is empty and there is no TD defined to transmit Isoch OUT 

data, the xHC shall remove the endpoint from the periodic schedule and 

generate a single Transfer Event with the Completion Code set to Ring Underrun. 

Ringing the doorbell of a periodic endpoint that has encountered a Ring Overrun 

or Ring Underrun condition shall place it on back on the periodic schedule. 
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Interval values are limited to base 2 multiples. An ESIT Boundary is defined by 

when the least significant bits of the MFINDEX register transition to ‘0’. e.g. if the 

Interval equals 2 microframes, the ESIT Boundary is defined by the transition of 

the least significant bit of the MFINDEX register to ‘0’. If the Interval equals 4 

microframes, the ESIT Boundary is defined by the transition of the least 

significant two bits of the MFINDEX register to ‘0’. And so on.  

Note: Section 8.12.6 of the USB3 spec states that “If there is no data to send to an 

isochronous OUT endpoint during a service interval, the host does not send 

anything during the interval.” The USB2 spec is silent on this subject. When xHC 

encounters a zero-length Isoch OUT TD on a Transfer Ring, it shall transmit a 

zero-length DP to the USB bus regardless bus speed, consuming the Isoch TD 

for the Service Interval. If the Transfer Ring is empty when the xHC attempts to 

service an Isoch TD, no DPs shall be sent, and an Underrun Event shall be 

generated. 

4.14.2.1.1 High-speed endpoints 

The USB Endpoint Descriptor (refer to section 9.6.6 in the USB2 spec.) 

wMaxPacketSize field for a high-speed isochronous endpoint is divided into two 

fields: the Maximum Packet Size (bits 0-10), and the Multiplier field (bits 11-

12). High-speed USB devices support “high-bandwidth” pipes via the Multiplier 

field. The USB2 Maximum Packet Size and Multiplier bit fields of the 

wMaxPacketSize fields are separated and passed to the xHC through the 

Endpoint Context Max Packet Size and Max Burst fields respectively. 

For high-speed devices, the xHC shall execute the specified number of Max 

Packet Sized bus transactions specified by the Max Burst Size field in a single 

microframe (MIT). The TD is used to service all transactions indicated by the Max 

Burst field. 

The maximum sized High-speed isochronous packet size supported is 1024 

bytes. The Max Burst Size field may define up to up to 3 contiguous packets in a 

burst. 

For OUT transfers, the xHC shall transmit data packets with data fields less than 

or equal to the endpoint’s Max Packet Size . If a TD defines more information 

than will fit into the Max Packet Size and the Max Burst Size is greater than ‘0’, 

the xHC shall transmit up to Max Burst Size+1 consecutive packets on the USB to 

move the TD data. If more than one Max Packet Size packet is required to move 

the data defined by a TD, then all packets associated with the TD are 

transmitted as a contiguous burst in a single microframe of the ESIT. When all 

bytes have been transmitted for an Isoch TD the xHC advances its Dequeue 

Pointer to the next TD and waits for the next ESIT delay before scheduling the 

endpoint again. 

For IN transfers, the xHC may issue up to Max Burst Size+1 IN transactions of 

Max Packet Size for a single Isoch TD. It is assumed that software has properly 
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initialized the Isoch TD to accommodate all of the possible data that may be 

received in an ESIT. During each IN transaction, the xHC shall use Max Packet 

Size to detect Packet Babble errors. 

For IN transfers, the xHC keeps the sum of bytes received in an internal TD 

Payload Length register. After all transactions for the endpoint have completed 

for the ESIT, the local TD Payload Length register contains the total bytes 

received. If the final value of local TD Payload Length register is less than the 

value of TD Transfer Size, then less data than was allowed for was received from 

the associated endpoint. This Short Packet condition shall assert a Short Packet 

completion code only if the ISP or IOC flag was set on the TRB that the Short 

Packet condition was detected on. If the device sends more than Max Packet 

Size bytes, then the xHC shall generate a Transfer Event with the Completion 

Code set to Babble Detected Error for the TRB that the error was detected on. 

Refer to section 4.10.2.4 for more information on Babble Error handling.  

If the Max Burst Size field is greater than ‘0’, then the xHC shall automatically 

attempt to execute Max Burst Size+1 transactions on the USB. The xHC shall not 

execute all Max Burst Size transactions if: 

•  The endpoint is an OUT and the TD is exhausted before all the transactions of the 

burst have executed (e.g. ran out of data). 

•  The endpoint is an IN and the endpoint delivers a Short Packet, or an error occurs on 

a transaction before all the transactions of the burst have been executed. 

•  The endpoint is an IN and the TD is exhausted before all the transactions of the burst 

have executed (e.g. ran out of buffer space). This condition shall result in the xHC 

terminating the Isoch TD with a Isoch Buffer Overrun Transfer Event. 

Note: The Isoch Buffer Overrun condition shall force a Transfer Event for the TRB, 

irrespective of the state of the IOC flag. System software may determine whether 

to treat this condition as an error or not. 

Refer to Appendix B for a table summary of the host controller required 

behavior for all the High-speed USB2 high-bandwidth transaction cases. 

4.14.2.1.2 Full-speed or High-speed endpoints 

The end of a microframe may occur before all packets have been executed for a 

high-speed or full-speed endpoint. When this happens, the xHC shall terminate 

the Isoch TD with a Missed Service Error Transfer Event. 

4.14.2.1.3 SuperSpeed endpoints 

If the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor is 

greater than ‘0’, the SuperSpeed endpoint supports “high-bandwidth” pipes. 

Software shall pass the bMaxBurst value to the xHC through the Endpoint 

Context Max Burst Size field. 
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Additionally, the Mult value defined in bits 1:0 of the SuperSpeed Endpoint 

Companion Descriptor bmAttributes field identifies the number of Bursts within 

an ESIT that the device supports. This value is passed to the xHC through the 

Endpoint Context Mult field. Note that the range of values for the Mult field is 

limited by the USB3 spec to ‘0’ to ‘2’, or 1 to 3 bursts.  

The maximum sized SuperSpeed isochronous packet size supported is 1024 

bytes. The Max Burst Size field may define up to up to 16 contiguous packets in 

a burst, and the Mult field may allow up to 3 bursts in an ESIT, allowing for up to 

48KB per ESIT. 

For OUT transfers, the xHC shall transmit data packets with data fields less than 

or equal to the endpoint’s Max Packet Size . If a TD defines more information 

than will fit into the Max Packet Size and the Max Burst Size is greater than ‘0’, 

the xHC may transmit a burst of up to Max Burst Size+1 consecutive packets in a 

single MIT. If a TD defines more information than will fit into a single burst and 

Mult is greater than ‘0’, the xHC shall transmit up to Mult+1 bursts in an ESIT. 

When all bytes have been transmitted for an Isoch TD the xHC advances its 

Dequeue Pointer to the next TD and waits for the next ESIT delay before 

scheduling the endpoint again. 

For IN transfers, the xHC may issue up to (Max Burst Size + 1) * (Mult + 1) IN 

transactions of Max Packet Size for a single Isoch TD. It is assumed that software 

has properly initialized the Isoch TD to accommodate all of the possible data 

that may be received in an ESIT. During each IN transaction, the xHC shall use 

Max Packet Size to detect Packet Babble errors. 

Refer to section 8.12.6.1 of the USB3 spec for more information on xHC 

execution of SuperSpeed isochronous transactions.  

For IN transfers, the xHC keeps the sum of bytes received in an internal TD 

Payload Length register. After all transactions for the endpoint have completed 

for the ESIT, the local TD Payload Length register contains the total bytes 

received. If the final value of local TD Payload Length register is less than the 

value of TD Transfer Size, then less data than was allowed for was received from 

the associated endpoint. This Short Packet condition shall assert a Short Packet 

completion code only if the ISP or IOC flag was set on the TRB that the Short 

Packet condition was detected on. If the device sends more than TD Transfer 

Size or Max Packet Size bytes (whichever is less), then the xHC shall generate a 

Transfer Event with the Completion Code set to Babble Detected Error for the 

TRB that the error was detected on. Note, that the xHC is not required to update 

the Transfer Event TRB Transfer Length field in this error scenario. Refer to 

section 4.10.2.4 for more information on Babble Error handling. 

The host controller shall not execute all (Max Burst Size + 1) * (Mult + 1) 

transactions if: 
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•  The endpoint is an OUT and the TD is exhausted before all the transactions of the 

burst have executed (ran out of data), or 

•  The endpoint is an IN and the endpoint delivers a Short Packet, or an error occurs on 

a transaction before all the transactions of the burst have been executed. 

•  The endpoint is an IN and the TD is exhausted before all the transactions of the burst 

have executed (e.g. ran out of buffer space). This condition shall result in the xHC 

terminating the Isoch TD with a Isoch Buffer Overrun Transfer Event. 

In addition to the Microframe Index (MFINDEX) register, the xHC shall maintain a 

13 bit Delta Time down-counter that is cleared to ‘0’ at the MIT boundary and 

incremented every 16.666~ ns. (i.e. 8 HS bit times). The Delta Time counter 

identifies the delay, in 16.666~ ns. increments, between the start of the current 

packet to the previous MIT Boundary. Note: A value of 7500 is reported if the 

Delta Time counter is sampled exactly on a MIT Boundary. 

The value of the Microframe Index (MFINDEX) register shall be written to bits 

13:0 and the value of the Delta Time register shall be written to bits 26:14 of the 

Isochronous Timestamp (ITS) field of Isochronous Timestamp Packets (ITP) when 

they are sent. Refer to the USB3 specification section 8.7 for more information 

on the ITP and the required accuracy of the ITS field.  

•  If an Isoch IN Transfer Ring is Active and the xHC is unable to send an isochronous IN 

request (ACK TP) during an ESIT, (due to problems such as internal buffer overrun, 

excessive DMA access latency, etc.) the xHC shall set the Completion Code to Data 

Buffer Error in the Transfer Event generated for the associated Isoch TD. Note that 

this is an error condition that should never occur. 

•  If an Isoch OUT Transfer Ring is Active and the xHC is unable to send an isochronous 

OUT DP data during an ESIT (due to problems such as internal buffer overrun, 

excessive DMA access latency, etc.), the xHC discards the data and notifies software 

by setting the Completion Code to Data Buffer Error in the Transfer Event generated 

for the associated Isoch TD. Note that this is an error condition that should never 

occur. 

•  If the xHC receives a corrupted data packet, it discards the data and informs software 

by setting the Completion Code to USB Transaction Error in the Transfer Event 

generated for the associated Isoch TD. 

Note: An IN Isoch endpoint may set the Completion Code to Isoch Buffer Overrun if the 

Last Packet Flag (LPF) is not set in the last DP received in a Service Interval. Refer 

to section 8.6 in the USB3 spec for more information on LPF. 

4.14.2.1.4 Isochronous Scheduling Threshold 

The Isochronous Scheduling Threshold  (IST) field in the HCSPARAMS2 capability 

register is an indicator to system software as to how the host controller pre-

fetches and caches TRB structures. It is used by system software when adding 

isochronous work items. The value of this field indicates to system software the 

minimum distance (in time) that it is required to stay ahead of the host 
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controller while adding TRBs in order to have the host controller process them 

at the correct time. In other words, software shall add a TRB to the ring some 

period of time before that TRB is required to be executed,  and the IST indicates 

a minimum value for this period of time as required by the specific host 

controller hardware implementation. 

Software shall determine the host controller's current frame/microframe by 

reading the MFINDEX register, to account for the uncertainty in the actual read 

latency and position within the microframe, software shall always add a value of 

one microframe to the value read. 

It is recommended that software post sufficient TRB(s) to the ring to allow 

uninterrupted processing by the host controller. This may be accomplished by 

always placing multiple TD(s) on the ring that either exceed the time window 

represented in the IST field or exceeds the round-trip delay in the host software, 

which ever is greater. 

The Isochronous Scheduling Threshold (IST) field definition can be found in 

section 5.3.4. 

A value of ‘2’ in the Isochronous Scheduling Threshold (IST) field indicates that 

software can add a TRB no later than 2 microframes before that TRB is due to be 

executed. 

If bit [3] of IST is cleared to '0', software can add a TRB no later than IST[2:0] 

Microframes before that TRB is scheduled to be executed.  

If bit [3] of IST is set to '1', software can add a TRB no later than IST[2:0] Frames 

before that TRB is scheduled to be executed.  

Note: Undefined behavior may result if a partially formed Isoch TD is encountered, i.e. 

the enqueue pointer (Cycle bit transition) is encountered before the end of the 

TD (Chain = ‘0’). This condition may occur if software fails to honor the IST. 

Note: Ideally the IST value declared by an xHC implementation represents a worst case 

latency, however the xHC may encounter system latencies that cause it to skip a 

scheduled Isoch TD even if software has met the IST requirements. These 

conditions are normally indicated as a Missed Service Error. If Missed Service 

Errors persist, software may choose to use a larger value for IST than that 

reported by the xHC. 

4.14.3 Interrupt Transfer Ring Scheduling 

The value of the Endpoint Context Interval field is treated as a throttling 

parameter or a deadline by the xHC for Interrupt endpoints. The following rules 

apply to Interrupt Transfer Ring scheduling:  

•  If an interrupt transfer ring has been idle, the maximum time between the xHC 

receiving a doorbell ring for the endpoint and scheduling the first associated 
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interrupt transaction on USB for the first TD posted to Transfer Ring shall be equal 

to IST + ESIT. 

•  If multiple Interrupt TDs are posted to an Interrupt endpoint Transfer Ring, the xHC 

should consume no more than one TD per ESIT. 

•  Software may define a TD Transfer Size for a TD of an Interrupt endpoint that exceeds 

the Max ESIT Payload. 

•  An Interrupt pipe executes a single SO per ESIT. 

•  SOPC is set to the smaller of TDPC or MSOPC. 

•  An Interrupt pipe shall transmit or receive no more that one Max ESIT Payload per 

ESIT, e.g. if the Interrupt TD Transfer Size is greater than the Max ESIT Payload, then 

the TD may take multiple ESITs to complete. 

•  A Short Packet shall terminate an IN Interrupt TD and the next TD (if present) shall 

be scheduled in the next ESIT. 

•  Unexpected ERDYs shall be silently dropped. 

Note: Since Interrupt pipes provide reliable data delivery but the number of packets 

(including retries) per ESIT is limited by the value of MSOPC, packet retries may 

cause an Interrupt TD to require more ESITs than expected to complete. If a 

second TD is pending on the Transfer Ring when this condition occurs, it shall 

be delayed until the first TD is successfully transferred. 

 

To minimize the latency impact of retries on an Interrupt pipe, up to MSOPC 

packets (including retires) may be transferred in an ESIT even if the initial SOPC 

value was less than MSOPC. 

 

An xHC implementation may exceed MSOPC packets per ESIT if it can 

guarantee that additional packets do not affect the bandwidth guarantees that 

have been established with other periodic endpoints. 

4.14.3.1 Low-, Full-, and High-speed Endpoints 

•  Interrupt IN pipes 

•  If an IN transaction is NAKed, then the Interrupt TD will be retried in the next 

ESIT. 

•  If the IN transaction times out, then the xHC shall retry the transaction for the 

endpoint CErr times in the same ESIT if possible, or if the maximum number of 

transactions per microframe has been reached, the xHC shall retry the 

transaction in the next ESIT. If Bus Error Counter = 0, the endpoint shall halt. 

•  Interrupt OUT pipes 

•  If an OUT transaction is NAKed, then the xHC shall not issue another transaction 

for the endpoint until 1 ESIT later. 
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•  If the OUT transaction times out, then the xHC shall retry the transaction for the 

endpoint CErr times in the same ESIT if possible, or if the maximum number of 

transactions per microframe has been reached, the xHC shall retry the 

transaction in the next ESIT. If Bus Error Counter = 0, the endpoint shall halt. 

For High Bandwidth endpoints, the Endpoint Context Max Burst Size field 

specifies the maximum number of desired transactions per microframe. If the 

maximum number of transactions per microframe has not been reached, the xHC 

may immediately retry a transaction that failed during the current microframe. If 

possible an xHC implementation should attempt an immediate retry of a failed 

transaction since this minimizes impact on devices that are bandwidth sensitive. 

If the maximum number of transactions per microframe has been reached, the 

xHC shall retry the failed transaction at the next ESIT for the endpoint.  

Note that for a high-bandwidth interrupt OUT endpoint, the host controller may 

optionally immediately retry the transaction if it fails.  

The xHC is allowed to issue less than the maximum number of transactions to  an 

endpoint per microframe only if the TD Transfer Size is less than the Max ESIT 

Payload. 

Normal DATA0/DATA1 data toggle sequencing is used for each interrupt 

transaction during a microframe. 

Refer to Table 4-7 for HS/FS Interrupt pipe actions based on Endpoint Response 

and Residual Transfer State. 

Refer to Appendix B for a table summary of the host controller required 

behavior for all the high-bandwidth transaction cases. 

4.14.3.2 SuperSpeed Endpoints 

•  ESIT*2 defines the maximum latency between an ERDY and an OUT DP or IN TP being 

scheduled to a SS Interrupt endpoint. 

•  Interrupt IN pipes 

•  If Interrupt IN TDs are available, the xHC shall issue ACK TPs to the interrupt 

endpoint at one ESIT or less intervals. 

•  If an IN request is responded to with an NRDY, then the xHC shall wait indefinitely 

for a ERDY from the endpoint. System software is responsible for any timeouts. 

The only exception to this rule is when an endpoint that has been flow controlled 

by an NRDY is stopped with a Stop Endpoint Command then restarted by ringing 

its doorbell. When the endpoint transitions to the Running state, it checks its 

Transfer Ring and if a TD exists, it shall issue an IN. 

•  Once the xHC receives the ERDY TP, it shall send an IN request (via an ACK TP) 

to the device no later than 2 x ESIT. 
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•  If the xHC is unable to accept a valid Data Packet from a device due to internal 

issues (e.g. internal buffer overrun, etc.), it shall set the ACK TP Host Error (HE) bit 

to ‘1’. 

•  Interrupt OUT pipes 

•  If an OUT DP is responded to with an NRDY, then the xHC shall wait indefinitely 

for a ERDY from the endpoint. System software is responsible for any timeouts. 

The only exception to this rule is when an endpoint that has been flow controlled 

by an NRDY is stopped with a Stop Endpoint Command then restarted by ringing 

its doorbell. When the endpoint transitions to the Running state, it checks its 

Transfer Ring and if a TD exists, it shall issue an OUT. 

•  If a DP was received by the device with an error, the Retry bit shall be set in the 

returned ACK TP and the xHC should retry the same DP by the next ESIT at the 

latest. 

•  If an OUT DP is responded to with a STALL TP, the xHC shall set the Halted flag 

for the EP to ‘1’ and pull the endpoint from the Pipe Schedule. USB System 

Software intervention is required to recover from the error. 

Refer to Table 4-8 for SS Interrupt pipe actions based on Endpoint Response 

and Residual Transfer State. 

4.14.4 Asynchronous Transfer Ring Scheduling 

Control and Bulk endpoints define “Asynchronous” transfers. Async endpoints 

provide “best effort” delivery of their data. As such, their delivery delays are not 

bounded.  

An Async TD is a TD scheduled on a control or bulk endpoint Transfer Ring.  

An Async Pipe is a control or bulk endpoint. 

To ensure fairness across the pipes in the async schedule, the xHC shall 

schedule Service Opportunities for each Async Pipe using a round-robin 

algorithm. The maximum amount of async data moved for an Async Pipe during 

a Service Opportunity is called the Max Service Transfer Size , and is defined by 

an Endpoint Context’s Max Packet Size and Max Burst Size fields. 

 Max Service Transfer Size = Max Packet Size * Max Burst Size 

If the Max Service Transfer Size  is greater than or equal to the TD Transfer Size 

then one Service Opportunity is used to move the TD data. If the Max Service 

Transfer Size is smaller than the TD Transfer Size then multiple service 

opportunities will be necessary to move the TD data.  

The xHC is allowed to schedule less packets during an Async Pipe Service 

Opportunity than allowed for by the Max Burst Size . 
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If async schedule execution is interrupted by periodic transfers, the  xHC shall 

retain an identifier for the next Async Pipe to be executed. When the 

asynchronous schedule is restarted, this shall be the first Async Pipe that will be 

serviced. 

The order of Async Pipe execution on the async schedule is xHC determined.  

Each Async Pipe is only given one Service Opportunity per pass through the 

async schedule. 

Each Stage of a control transfer is a different Async TD, and may be scheduled 

during different Service Opportunities.  

If there is more than one endpoint in the async schedule the xHC shall limit the 

number of packets transferred during a Service Opportunity (SO) to MSOPC. 

However, if only one endpoint is in the async schedule, the xHC may exceed the 

default MSOPC and continuously stream packets to an endpoint. The xHC shal l 

interrupt a continuous stream when a second endpoint is scheduled and revert 

to the MSOPC packet limit per endpoint SO. 

Note: Retries are counted against the EPs SOPC. e.g. If an error is detected on the last 

packet of the SO, then the xHC shall advance to the next EP and the packet shall 

be retried at the beginning of the next SO for the endpoint. 

Table 4-7: USB2 Pipe Actions based on Endpoint Response and Residual Transfer State 

Direction Endpoint Response 

Transfer State after 
Transaction 

(Bytes to transfer) 

Pipe Action 

IN Data Packet 

Max Packet Size  

Not Zero Decrement SOPC. 

If SOPC = 0: 

Advance to next endpoint. 

else 

Continue moving endpoint 
packets. 

Zero Retire TD. 

Advance to next endpoint. 

Data Packet 

Short 

Don’t care Retire TD. 

Advance to next endpoint. 

NAK Don’t care Advance to next endpoint. 

Stall or Babble Don’t care Note 8-1. 
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CRC or Bad PID error Don’t care Discard packet. 

Note 8-2. 

Timeout Don’t care Note 8-2. 

OUT ACK Not Zero Decrement SOPC. 

If SOPC = 0: 

Advance to next endpoint in 

schedule. 

else 

Continue moving endpoint 

packets. 

Zero Retire TD. 

Advance to next endpoint. 

NYET, NAK Don’t care Advance to next endpoint. 

Stall or Babble Don’t care Note 8-1. 

CRC, Timeout, or Bad 
PID error 

Don’t care Note 8-2. 

PING ACK Not Zero Allowed to transfer up to SOPC 

packets. 

NAK Don’t care Advance to next endpoint. 

Stall Don’t care Note 8-1. 

CRC, Timeout, or Bad 

PID error 

Don’t care Note 8-2. 

 

Note 8-1: 

If Stall 

     Generate Stall Error Transfer Event. 

else 

     Generate Babble Detected Error Transfer Event. 

Set endpoint to the Halted state. 

Pull endpoint from Pipe Schedule. 

Advance to next Async Pipe. 

Note 8-2: 

 

Decrement the Bus Error Counter. 

If Bus Error Counter = ‘0’: 
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Generate USB Transaction Error Transfer Event 

Set endpoint to the Halted state. 

Pull endpoint from Pipe Schedule. 

Advance to the next endpoint in the Pipe Schedule.  

else 

If IN or OUT endpoint, do not advance Data Toggle.  

Decrement SOPC. 

If SOPC = 0: 

Advance to the next endpoint in the Pipe Schedule.  

else 

Retry the packet. 

Note: When retiring a TD, if its Transfer Ring is empty, pull the endpoint from the Pipe 

Schedule. 

Table 4-8: USB3 Pipe Actions based on Endpoint Response and Residual Transfer State 

Direction Endpoint Response 

Transfer State 
after 

Transaction 

(Bytes to 
transfer) 

Pipe Action 

IN DP 

Max Packet Size  

Not Zero Decrement SOPC. 

If SOPC = 0: 

Advance to next endpoint. 

else 

Continue moving endpoint 
packets. 

Zero Retire TD. 

Advance to next endpoint. 

DP 

Short 

Don’t care Retire TD. 

Advance to next endpoint. 

DP(EOB = ‘1’) Don’t care Pull endpoint from Pipe 
Schedule.46 

Advance to next endpoint. 

NRDY Don’t care Pull endpoint from Pipe 

Schedule. 

Advance to next endpoint. 

                                                   

46The assertion of EOB on a Short Packet may also retire the TD. 
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Stall Don’t care Generate Stall Error Transfer 

Event. 

Set the endpoint to the Halted 
state. Pull endpoint from 

schedule. 

Advance to next endpoint. 

DPP Error47 Don’t care Discard data. 

Decrement the Bus Error 
Counter, 

If Bus Error Counter = ‘0’: 

Generate USB Transaction Error 
Transfer Event. 

Set endpoint to the Halted state. 

Pull endpoint from Pipe 
Schedule. 

Advance to next endpoint. 

else 

Decrement SOPC. 

If SOPC = 0: 

Advance to next endpoint. 

DPH Error48 Don’t care Discard data and send no 
acknowledgement. 

DPP exceeds 
Max Packet Size or remaining 

TD Transfer Size Error 

Don’t care Discard data. 

Generate Babble Detected Error 

Transfer Event. 

Set endpoint to the Halted state. 

Pull endpoint from schedule. 

Advance to next endpoint in 
schedule. 

IN 

(continued) 

tHostTransactionTimeout49 
Error 

Don’t care Generate USB Transaction Error 
Transfer Event. 

Set endpoint to the Halted state. 

Pull endpoint from schedule. 

Advance to next endpoint in 

schedule. 

                                                   

47DPP Error may be due to one or more of the following conditions: CRC incorrect, DPP aborted, DPP missing, ACK 

TP with the Retry Data Packet (rty) bit set, or the data length in the DPH does not match the actual data payload 
length. 

48DPH Error may be due to one or more of the following conditions: an incorrect Device Address, the Endpoint 

Number and Direction does not refer to an endpoint that is part of the current configuration, or the DPH does not 
have an expected sequence number. A DPH Error may result in a tHostTransactionTimeout if a expected DPH is 
not received. 

49Refer to section 8.13, Table 8-36 in the USB3 spec for the range of valid tHostTransactionTimeout values. 
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OUT ACK TP Not Zero If SOPC exhausted: 

Advance to next endpoint. 

else 

Continue moving endpoint 

packets. 

Zero Retire TD. 

Advance to next endpoint. 

ACK TP w/Rty Don’t care Decrement the Bus Error 
Counter. 

If Bus Error Counter = ‘0’: 

Generate USB Transaction Error 
Transfer Event. 

Set endpoint to the Halted state. 

Pull endpoint from Pipe 
Schedule. 

Advance to next endpoint. 

else 

Backup DPH sequence number 

to value indicated by the ACK TP 
Sequence Number. 

If SOPC exhausted: 

Advance to next endpoint. 

else 

Continue moving endpoint 

packets. 

NRDY Don’t care Pull endpoint from schedule. 

Advance to next endpoint in 
schedule. 

Stall Don’t care Generate Stall Error Transfer 
Event. 

Set the endpoint to the Halted 
state. 

Pull endpoint from Pipe 

Schedule. 

Advance to next endpoint. 

tHostTransactionTimeout49 Don’t care Generate USB Transaction Error 
Transfer Event. 

Set endpoint to the Halted state. 

Pull endpoint from Pipe 
Schedule. 

Advance to next endpoint. 
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ACK TP Error50 Don’t care Discard. 

N/A ERDY N/A Place endpoint on schedule. 

N/A TP Error51 N/A Discard. 

  

Note: When retiring a TD, if its Transfer Ring is empty, pull the endpoint from the Pipe 

Schedule. 

The xHC shall concatenate buffers referenced by TRBs in a TD, moving Max 

Packet Size transfers for all but possibly the last packet of a TD. The size of the 

last packet is determined by the TD Residue.  

 TD Residue = TD Transfer Size - (Max Packet Size * 

    ROUNDDOWN(TD Transfer Size / Max Packet Size)) 

4.14.4.1 SuperSpeed Burst Transactions 

The USB3 Specification, section 8.10.2 defines bMaxBurst as “The number of 

packets an endpoint on a device can send or receive at a time without an 

intermediate acknowledgement packet”.  

For a SuperSpeed bulk endpoint, the xHC shall use Max Burst Size (which is set 

to bMaxBurst, refer to section 6.2.3.4) to determine the maximum number of 

outstanding acknowledgement packets that are allowed for an endpoint. It may 

also use Max Burst Size to identify the number of packets the endpoint should 

send or receive in a Service Opportunity. If more than one async endpoint has 

data to move, the xHC should advance to the next endpoint when Max Burst Size 

packets have been moved for an endpoint. However if there is only one 

endpoint with data to move in the async Pipe Schedule, then the xHC may 

exceed Max Burst Size packets to an endpoint and stream packets to/from the 

endpoint until either the Transfer Ring is exhausted or the device terminates the 

burst by asserting NumP = 0 (OUT pipe ACK TP) or EOB = ‘1’ (IN pipe DP), or fl ow 

controls the pipe by returning an NRDY TP. 

Note: Section 8.13 in the USB3 Spec states, “If the host does not see a response to a 

Data Transaction (either IN or OUT) within 10 μs, it shall assume that the 

transaction has failed and halt the endpoint. No retries shall be performed.” The 

                                                   

50ACK TP Error may be due to one or more of the following conditions: an incorrect Device Address, the Endpoint 

Number and Direction does not refer to an endpoint that is part of the current configuration, or the ACK TP does 
not have an expected sequence number. An ACK TP Error may result in a tHostTransactionTimeout if the expected 
ACK TP is not received. 

51TP Error may be due to one or more of the following conditions: Reserved Type or SubType, an incorrect Device 
Address, or the Endpoint Number and Direction does not refer to an endpoint that is part of the current 
configuration. 
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xHC shall timeout a Burst Transaction if acknowledgements for all packets of the 

burst are not received by 10 μs. after the last packet of the Burst Transaction is 

transferred. e.g. For an OUT pipe if Max Burst Size = 4, then the xHC shall timeout 

the burst if the first framing symbol of the ACK response to the last DP is not 

received with 10 μs. after the last framing symbol of the last DPP (4th) of the burst 

is transmitted. 

Note: Section 8.13 in the USB3 Spec defines tHostACKResponse as the “Time between 

host reception of the last framing symbol for a DPP and the first framing symbol 

of an ACK response”. For a Burst Transaction, the xHC shall not delay the first 

framing symbol of an ACK response for the first DPP of a burst more than 

tHostACKResponse (3 μs.) after the last framing symbol of the last DPP of the 

burst is received. 

Note: When a packet retry occurs, an xHC implementation may choose to limit a Burst 

Transaction to Max Burst Size packets, which may cause a retried packet to be 

transferred in the next Burst Transaction, or it may choose to allow packet retries 

to complete in the Burst Transaction that the error occurred in, possibly 

extending Burst Transaction to more than Max Burst Size packets. 

Note: If a Deferred TP or DP is received during a burst, the xHC should advance to the 

next endpoint in its Pipe Schedule. 

•  For non-ISOC endpoint, the xHC should internally flag the endpoint as being 

flow controlled and wait for an ERDY to place the endpoint back on the Pipe 

Schedule. 

•  For an ISOC endpoint, the xHC should terminate the current Isoch TD and 

advance to the next TD which will be processed during the next ESIT. 

4.15 Suspend-Resume 

The xHC provides an equivalent suspend and resume model as that defined for 

individual ports in a USB Hub. Control mechanisms are provided to allow system 

software to suspend and resume individual ports. The mechanisms allow the 

individual ports to be resumed completely via software initiation. Other control 

mechanisms are provided to parameterize the host controller's response (or 

sensitivity) to external resume events. In this discussion, host-initiated, or 

software initiated resumes are called Resume Events/Actions. Bus-initiated 

resume events are called Wake-up Events. The classes of wakeup events are: 

•  Remote-wakeup enabled device asserts resume signaling, similar to USB Hubs, The 

xHC shall always respond to explicit device resume signaling and wake up the system 

(if necessary). 

•  Port connect and disconnect and over-current events. Sensitivity to these events can 

be turned on or off by using the per-port control bits in the PORTSC registers. 

Selective suspend is a feature supported by every PORTSC register. It is used to 

place specific ports into a suspend mode. This feature is used as a functi onal 
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component for implementing the appropriate power management policy 

implemented in a particular operating system. 

When system software intends to suspend the entire bus, it should selectively 

suspend all enabled ports, then shut off the host controller  by setting the 

Run/Stop (R/S) bit in the USBCMD register to a ‘0’. The xHC can then be placed 

into a lower device state via the PCI power management interface (refer to 

Appendix A and PCI PM). 

When a wake event occurs system software will eventually set the Run/Stop 

(R/S) bit to a ‘1’ and resume the suspended ports by writing a ‘0’ to their PLS 

field. Software shall not set the Run/Stop (R/S) bit to a ‘1’ until it is confirmed 

that the clock to the host controller is stable. This is usually confirmed in a 

system implementation in that all of the clocks in the system are stable before 

the CPU is restarted. So, by definition, if software is running, clocks in the 

system are stable and the Run/Stop (R/S) bit in the USBCMD register can be set 

to ‘1’. There are also minimum system software delays defined in the PCI PM 

Specification. Refer to this specification for more information.  

Note: LTSSM Clock Stopped refers to a condition where the xHC is in a D3 state and a 

Root Hub port is unable to transition a link with a Connect Detect to the Enabled 

state, e.g. the LTSSM clocks are stopped. The occurrence of LTSSM Clock 

Stopped is xHC implementation dependent, e.g. it may occur only while the xHC 

is in the D3cold state, or it may not occur at all. 

Note: Software should transition all Root Hub ports, where it has acknowledged a 

Connect (CCS = '1'), to the U3 or Disabled states before placing the xHC into the 

D3 state, and unless a Device Initiated Resume or a Disconnect occurred the port 

should be in the same state when Main Power is restored. Note, a port is allowed 

to be in the Error state when the xHC is transitioned to the D3 state. 

•  If the port transitioned to the Resume state, CAS shall be asserted when Main 

Power is restored. 

A disconnected Root Hub port may be in a one of several states when Main Power 

is restored. 

•  If no device was attached while in D3 the port will be in the Disconnected 

state when power is restored. 

•  If a device was attached after entering D3 but before entering LTSSM Clock 

Stopped, then when power is restored the CAS bit shall be set and the value 

of the PLS field should be ignored. 

•  If the port had been able to successfully train and transition to the U0 

state before entering LTSSM Clock Stopped then the upstream facing 

port of the attached device should be in the USDPORT.Disabled state, 

and a USB2 Port reset (PR = '1') will be required to cause the USB3 port 

to retrain and transition to the U0 state.  
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•  If the port was not able to successfully train and transition to the U0 state 

before entering LTSSM Clock Stopped then the upstream facing port of 

the attached device may be in one of many states, and USB2 or USB3 

Port reset may be required to cause the USB3 port to retrain and 

transition to the U0 state. 

•  If a device was attached after entering LTSSM Clock Stopped, then when 

power is restored the CAS bit shall be set and the value of the PLS field 

should be ignored. The upstream facing port of the attached device should 

be in the USDPORT.Disabled state, and USB2 Port reset will be required to 

cause the USB3 port to retrain and transition to the U0 state. 

If an overcurrent condition exists (OCA = '1') when Main Power is restored, the 

condition must be cleared before the port will be usable. 

Note: Any Root Hub port that is in the Resume or U3 state when the xHC is transitioned 

to the D0 power state shall require software to drive the port to the U0 state. The 

xHC shall not automatically transition a root hub port from the Resume or U3 

state to the U0 state. 

4.15.1 Port Suspend 

System software places individual ports into suspend mode by writing a ‘3’ into 

the appropriate PORTSC register Port Link State (PLS) field (refer to section 

5.4.8). Software should only set the PLS field to ‘3’ when the port is in the 

Enabled state. 

The xHC may evaluate a PLS field write immediately or wait until a microframe 

or frame boundary occurs. If evaluated immediately, the port is not suspended 

until the current transaction (if one is executing) completes. Therefore, there 

may be several microframes of activity on the port until the xHC evaluates the 

PLS field. The xHC shall evaluate the PLS field at least every frame boundary. 

Refer to the description of PLS in Table 5-26 for more information. 

When the PLS field is written with U3 (‘3’), the status of the PLS bit will not 

change to the target U state U3 until the suspend signaling has completed to the 

attached device (which may be as long as 10 ms.). Software should not attempt 

to suspend a port unless the port reports that it is in the enabled (PED = ‘1’, PLS 

< ‘3’) state (refer to Section 5.4.8 for more information in PED and PLS). Note, 

the Port Link State Write Strobe (LWS) bit shall be set to ‘1’ to write the PLS 

field. 

Software is required to wait for U3 transitions to complete before it puts the 

xHC into a low power state, and before resuming the port. Software can poll the 

PLS field for the completion of a U3 transition; however a tight polling loop may 

prevent any other activity on the processor, slowing the power down process. 

Enabling an OS timer can also slow the power down process, because the 

minimum OS timeout (~15 ms.) is long compared to the U3 transition time, so 

software either ends up hogging a CPU, or adding a significant delay to the D3 
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entry of the host controller. The U3 Entry Capability (U3C) eliminates these 

delays by asserting PLC when there is a transition of PLS to U3, where the 

assertion of PLC generates a Port Status Change Event. If the U3 Entry Capability 

(U3C) is supported (U3C = '1') in the HCCPARAMS2 register, then software may 

enable the assertion of PLC on a transition of PLS to U3 by setting the U3 Entry 

Enable (U3E) flag to '1' in the CONFIG register. 

Note: U3 Entry Capability support (i.e. U3C = '1') shall be mandatory for all xHCI 1.1 

compliant xHCs. 

4.15.1.1 Selective Suspend 

Software shall stop all endpoints of a device using the Stop Endpoint Command 

and setting the Suspend (SP) flag to ‘1’ prior to selectively suspending a device. 

After the device is resumed software shall ring an endpoint’s doorbell to restart 

it. Refer to section 3.3.8 for more information on the use of the Stop Endpoint 

Command. 

4.15.1.2 Function Suspend 

Software shall stop the endpoints of a device associated with the function by 

using the Stop Endpoint Command and setting the Suspend (SP) flag to ‘1’ prior 

to issuing a SetFeature(FUNCTION_SUSPEND) request to a device. After the 

function is resumed software shall ring an endpoints’ doorbell to restart it. Refer 

to section Sto for more information on the use of the Stop Endpoint Command. 

4.15.2 Port Resume 

The following subsections describe typical device initiated and host initiated 

resume process 

4.15.2.1 Device Initiated 

The following steps describe a typical device initiated port resume process: 

1. When a port is in the U3 state and resume signaling is detected from a 

device, the port transitions to the Resume state (PLS = ‘15’) and the Port 

Link State Change (PLC) flag is set to ‘1’. If the assertion of PLC results in 

a ‘0’ to ‘1’ transition of PSCEG (4.19.2), the xHC shall generate a Port 

Status Change Event. 

 

Note that an LFPS Handshake52 is required for a USB3 U3 wakeup. A 

device generates LFPS to initiate the resume process. The detection of 

LFPS while in the U3 state shall transition a USB3 port to the Resume 

                                                   

52Refer to section 6.9.2 in the USB3 spec for more information on the LFPS Handshake. 
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state53. The xHC shall not respond with LFPS to the device, which would 

allow the LFPS Handshake to complete, until directed by software.  

2. Upon receipt of a Port Status Change Event system software evaluates 

the Port ID field to determine the port that generated the event.  

3. System software then reads the PORTSC register of the port that 

generated the event. 

PLC = ‘1’ and PLS = Resume if the event was due to a device initiated 

resume: 

a. For a USB3 protocol port, software shall write a ‘0’ to the PLS 

field to direct the xHC to initiate LFPS to the device and initiate 

the LFPS Handshake. 

b. For a USB2 protocol port, when a resume signaling is detected 

from a device the xHC shall transmit the resume signaling within 

1 ms (TURSM). Software shall ensure that resume is signaled for at 

least 20 ms (TDRSMDN). Refer to section 7.1.7.7 of the USB2 spec. 

Software shall start timing TDRSMDN from the notification of the 

transition to the Resume state. After TDRSMDN is complete, 

software shall write a ‘0’ to the PLS field. 

4. The completion of the resume signaling shall cause the port to transition 

to the U0 state, i.e. the PORTSC register PLS field shall to be set to U0 

(‘0’) and PLC flag to ‘1’. If the assertion of PLC results in a ‘0’ to ‘1’ 

transition of PSCEG (4.19.2), the xHC shall generate a Port Status Change 

Event. 

Note: Software shall ensure that the xHC is in Run (R/S = ‘1’) mode prior to transitioning 

a root hub port from the Resume to the U0 state. This action ensures that the 

xHC is capable of transmitting ITPs and immediately receiving packets when the 

device enters the U0 state. 

4.15.2.2 Host Initiated 

System software can initiate a resume on a selectively suspended port by writing 

the PLS field (refer to section 4.15.2). Software shall not attempt to resume a 

port that it has initiated the suspend process on, unless the port reports that it 

is in the suspended (PED = ‘1’, PLS = ‘3’) state (refer to Section 5.4.8).  

If system software writes the PLS field with a ‘0’ when the port is not in the 

suspended state (U3), but in a low power link state (e.g. U2 or U1), the port shall 

                                                   

53Refer to section 4.19.1.2.13 for more information on the Resume state. 
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generate the appropriate signaling and if successful, shall then transition to the 

U0 state (PLS = ‘0’). 

A U3 to U0 transition of the PLS field shall cause the Port Link State Change 

(PLC) bit to transition from ‘0’ to ‘1’. If the assertion of PLC results in a ‘0’ to ‘1’ 

transition of PSCEG (Port Status Change Generation), a Port Status Change Event 

shall be generated to reflect the change in link state. If Interrupter 0 is not 

masked the generation of the event will also result in an interrupt to the host.  

The following steps describe a typical host initiated port resume process: 

1. When a port is in the U3 state: 

a. For a USB3 protocol port, software shall write a ‘0’ (U0) to the PLS 

field to initiate resume signaling. The port shall transition to the 

U3Exit substate and the xHC shall immediately initiate LFPS 

generation to the device. 

b. For a USB2 protocol port, software shall write a ‘15’ (Resume) to 

the PLS field to initiate resume signaling. The port shall transition 

to the Resume substate and the xHC shall transmit the resume 

signaling within 1 ms (TURSM). Software shall ensure that resume 

is signaled for at least 20 ms (TDRSMDN). Software shall start 

timing TDRSMDN from the write of ‘15’ (Resume) to PLS. After 

TDRSMDN is complete, software shall write a ‘0’ (U0) to the PLS 

field. 

2. The completion of the resume signaling shall cause the port to transition 

from the U3 to the U0 state, i.e. the PORTSC register PLS field shall to be 

set to U0 (‘0’) and PLC flag to ‘1’. If the assertion of PLC results in a ‘0’ to 

‘1’ transition of PSCEG (Port Status Change Generation), the xHC shall 

generate a Port Status Change Event . 

4.15.2.3 Wakeup Events 

An external USB event may also initiate a system level resume. The system 

wake-up events are defined below. When resume signaling is detected by a 

suspended port, a system wake-up event occurs and the port transitions to the 

Resume state. 

For a USB2 protocol port: 

•  If the resume signaling is detected it is reflected downstream by the xHC to all 

enabled ports within 1 ms. (TURSM), and maintained until software transitions the 

port from the Resume state to the U0 state. 

For a USB3 protocol port: 
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If the resume signaling (reception of a LFPS that meets the valid t12-t10 

specification in Table 6-22 of the USB3 spec) is detected, the port shall 

transition to the Resume state immediately, and the Port Link State Change 

(PLC) bit is set to a ‘1’. 

Software may determine that the port is enabled (not suspended) by sampling 

the PORTSC register and observing that the Port Enabled/Disabled (PED) flag is 

‘1’ and the Port Link State (PLS) field is < ‘3’. 

Table 4-9 summarizes the system wake-up events, defining the state of the Port 

Link State (PLS), Current Connect Status (CCS), Port Enabled/Disabled (PED), 

Over-Current Active (OCA) fields in the PORTSC register and the Port Change 

Detect (PCD) bit in the USBSTS register as function of the respective Wake 

Enable flag (WDE, WCE, WOE). The table values indicate the state of the fields 

after the respective event. The xHC State column indicates the response of the 

xHC to the system as function of its (PCIe) power state when the event occurs.  

Note: A port resume is not gated by a Wake Enable flag. 

Table 4-9: Behavior During System Wake-up Events  

Port Status and 
Signaling Device State Type 

Port State After Event 
xHC State 

Note 

PLS CCS PED OCA PCD D0 not 
D0 

Port is in the Disabled state. Resume 

signaling received. 

No Effect N/A N/A 

Port is in the U3 substate. Resume 

signaling is received. 

Resume 1 1 0 1 [10-

1] 

[10-
2] 

[10-

2] 

A port is in a state that may detect a 
disconnect54, and the port's WDE bit 

is ‘1’. A disconnect is detected. 

RxDetect 0 0 0 1 [10-
1] 

[10-
2] 

[10-
2] 

A port is in a state that may detect a 
disconnect54, and the port's WDE bit 

is ‘0’. A disconnect is detected. 

RxDetect 0 0 0 1 [10-
1] 

[10-
3] 

[10-
3] 

                                                   

54A USB2 port may detect a disconnect when the port is in the Disabled, Enabled, or Reset states. A USB3 port may 

detect a disconnect when the port is in the Loopback, Compliance, Error, Polling, Enabled, or Reset states. 
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Port is in the Disconnected state and 

the port's WCE bit is ‘1’. A connect is 
detected. 

U0 

(SS) 

Polling 
(USB2) 

1 1 

(SS) 

0 
(USB2) 

0 1 [10-

1] 

[10-
2] 

[10-

2] 

Port is in the Disconnected state and 
the port's WCE bit is ‘0’. A connect is 

detected. 

U0 
(SS) 

Polling 
(USB2) 

1 1 
(SS) 

0 
(USB2) 

0 1 [10-
1] 

[10-
3] 

[10-
3] 

If a port is in a state that may detect 
an over-current condition55 and the 

port's WOE bit is ‘1’.An over-current 
condition occurs. 

Disabled 0 0 1 1 [10-
1] 

[10-
2] 

[10-
2] 

If a port is a state that may detect an 
over-current condition55 and the 
port's WOE bit is a ‘0’. An over-

current condition occurs. 

Disabled 0 0 1 1 [10-
1] 
[10-

3] 

[10-
3] 

 

4.16 Bandwidth Management 

In past generations of USB host controller implementations, there was a 1:1 

correspondence between a host controller interface and USB bandwidth. The 

xHCI diverges from this model in that it enables vendors to tailor the bandwidth 

available through its root hub ports to the needs of the vendor’s target 

application space. The xHCI can support the legacy model where the bandwidth 

of a single USB is shared across all its root hub ports, a “bus per port” model 

where the full bandwidth of a USB is available on every root hub port, or any 

combination in between.  

The determination of the bandwidth available through an xHCI is further 

complicated because the interface is capable of supporting multiple USB 

speeds, each with their own bandwidth constraints. Computation of the 

bandwidth available when enumerating a USB device depends on which internal 

                                                   

55A port may detect an over-current condition in any state except Powered-off. 

Note 10-1:If the assertion of change bit results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a Port Status Change Event 

is generated. 

Note 10-2:PME# asserted if enabled (i.e. the PCI PM PMCSR PME_En bit = ‘1’). Note: The PCI PM PMCSR PME_Status 

bit shall be written with a ‘1’ to stop asserting PME#. 

Note 10-3:PME# not asserted. 
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USB instance of the xHCI that a root hub port is allocated to, and the bandwidth 

requirements of the other devices already connected to that USB instance.  

An example xHC implementation may define an 8 port implementation with 1 

SS, 4 HS, and 8 LS/FS USB instances, for a total of 13 independent USB 

instances. Or if an implementation chose to focus on performance, it may define 

a “bus per port”, i.e. 8 SS, 8 HS and 8 LS/FS USB instances, i.e. 24 independent 

USB instances. 

The xHCI architecture hides the internal complexities of a host controller 

implementation from system software. Given the set of USB instances supported 

by an xHC, it is responsible for managing and allocating the available USB 

bandwidth. Software uses the Configure Endpoint Command  to ask the xHC if 

the bandwidth required for a specific device configuration is available. The xHC 

is responsible for evaluating the request as a function of its internal 

organization and the bandwidth available on the particular USB instance that 

the device is attached to. 

If a Configure Endpoint Command  fails due to a Bandwidth Error or a Secondary 

Bandwidth Error, system software may retry the command with other endpoint 

settings, or issue a Negotiate Bandwidth Command. The Negotiate Bandwidth 

Command allows software to identify the devices with periodic endpoints 

attached to the same USB instance in the xHC. The Negotiate Bandwidth 

Command generates a Bandwidth Request Event  for each device attached to the 

same USB instance which is currently consuming periodic bandwidth, i.e. 

declared Isoch or Interrupt endpoints. Using this information, software may 

target the reassignment of bandwidth to allow the initial device to be 

configured. 

Refer to section 4.6.13 for more information on the Negotiate Bandwidth 

Command and section 6.4.2.4 for more information on the Bandwidth Request 

Event TRB. 

A Disable Slot Command will cause any bandwidth allocated to the periodic 

endpoints of a device slot to be freed. 

4.16.1 Bandwidth Negotiation 

Many USB devices offer multiple configurations and/or alternate interface 

settings to meet a variety of bandwidth demands. For instance, a USB camera 

may present a dozen Alternate Interface settings that match the various 

resolutions and frame rates that it supports. Typically the Video Class Driver will 

select an interface setting that will provide the highest quality image for the 

user, however if this setting is rejected, because there is not enough bandwidth 

available, the Class Driver will attempt to set a lower quality setting that 

requires less bandwidth. If all alternate settings are tried and the Class Driver is 

still unable to enumerate the camera, it may decide to issue a Negotiate 

Bandwidth Command. 
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The Negotiate Bandwidth Command generates a Bandwidth Request Event for 

each device slot with periodic endpoints on the same USB instance.  

When a Bandwidth Request Event is received for a device slot, system software 

should treat it as a request to evaluate the current bandwidth requirements of 

device and free some of the bandwidth if the device is able to effectively 

perform its tasks on a reduced bandwidth budget. There is no requirement that 

a device give up bandwidth due to a Bandwidth Request Event, however a “good 

citizen” will do their best to comply. To free bandwidth, the software may select 

another configuration or an alternate interface setting for the periodic 

endpoints of the device. As devices reconfigure themselves they will issue 

Configure Endpoint Commands  which will free part or all of their currently 

assigned bandwidth. As the xHC processes the commands it shall recompute the 

available bandwidth of the USB instance. The Negotiate Bandwidth command 

may allow a device to enumerate that would not have been able to without it. 

The Negotiate Bandwidth Command  uses the value of the Slot ID field in the 

Negotiate Bandwidth Command TRB to identify the USB instance that the device 

requiring the bandwidth is attached to. 

The Negotiate Bandwidth command does not block Command Ring execution, 

e.g the command should not wait for all BW Requests to be delivered before 

generating the associated Command Completion Event.  

The Negotiate Bandwidth Command is acknowledged by the xHC with a Success 

Completion Code. Bandwidth Request Events  shall be generated for the selected 

device slots. The selection of the device slots that are targeted by Bandwidth 

Request Events shall be determined by an xHC implementation specific 

algorithm. 

After a system defined delay, the software that initiated the negotiation process 

may reissue the Configure Endpoint Command that failed, to test whether 

enough bandwidth has been freed to allow a successful completion.  

Note: The initiator of the Negotiate Bandwidth Command should allow enough time 

for system software to receive the Bandwidth Request Events and to reconfigure 

or choose alternate interface settings for the target device, before attempting to 

issue a Configure Endpoint Command. 

Whether an xHC implementation supports Bandwidth Negotiation, is identified 

by the BW Negotiation Capability  (BNC) flag in the HCCPARAMS1 register.  

Note: A important use of the Negotiate Bandwidth Command is with virtualization. It 

allows one VF to ask the other VFs for BW. Which means that an OS shall expect 

to receive a Bandwidth Request Event asynchronously, e.g. without having 

previously issued a Negotiate Bandwidth Command. 
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Refer to section Negotiate Bandwidth Command TRB (Optional Normative)  for 

more information on the Negotiate Bandwidth Command TRB  and Bandwidth 

Request Event TRB . 

4.16.2 Bandwidth Domains 

Each Bus Instance (BI) represents a “unit” bandwidth at the speed that the BI 

supports or a Bandwidth Domain. The Transaction Translator (TT) of a USB2 

hub creates one or more Secondary Bandwidth Domains on its downstream 

facing ports. For a High-speed hub, a Secondary Bandwidth Domain is 

equivalent to a Full-speed BI, or for a SuperSpeedPlus hub, a Secondary 

Bandwidth Domain is equivalent to a SuperSpeed BI . The downstream facing 

ports of a single-TT hub creates a single Secondary Bandwidth Domain, whose 

bandwidth is shared across all Full- or Low-speed devices attached to the hub. A 

multi-TT hub creates a separate Secondary Bandwidth Domain for each 

downstream facing port attached to a Full- or Low-speed device. 

The xHC bandwidth allocation algorithm shall comprehend Secondary 

Bandwidth Domains and reject a Configure Endpoint Command  with a Secondary 

Bandwidth Error if the configuration would have exceeded the Total Available 

Bandwidth of the domain. e.g. if a Full-speed isochronous Device A that requires 

60% of the FS bandwidth is attached to a HS Hub which supports a single TT 

and already has a FS isoch Device B attached to one of its ports that has been 

allocated 50% of the TT bandwidth, the configuration request for Device A will 

be rejected by the xHC. Note that the HS Bandwidth Domain above the hub may 

have plenty of bandwidth available to service the configuration. 

A Configure Endpoint Command  shall return an event with the Completion Code 

set to Secondary Bandwidth Error if there was insufficient bandwidth in the 

Secondary Bandwidth Domain to enable the configuration. Refer to section 3.3.5 

for more information on the Configure Endpoint Command . 

Software may determine the bandwidth available in a Secondary Bandwidth 

Domain by issuing a Get Port Bandwidth Command with the Hub Slot ID field set 

to the Slot ID of the target hub. Refer to section 4.6.15 for more information on 

the Get Port Bandwidth Command . Note that if the hub specified by the Hub Slot 

ID does not reside on a Secondary Bandwidth Domain boundary (e.g. the hub 

does not contain a TT), undefined behavior may occur, e.g. the values in the Port 

Bandwidth Context may be invalid. 

Note: When evaluating a Configure Endpoint Command, the xHC shall check the 

upstream High-speed Bandwidth Domain of a hub first. If there is enough 

bandwidth available in the primary (HS) Bandwidth Domain then the xHC shall 

check the Secondary (FS) Bandwidth Domain of the hub. 
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4.17 Interrupters 

An Interrupter manages events and their notification to the host. The xHCI 

supports up to 1024 Interrupters. The MaxIntrs field in HCSPARAMS1 

determines the Number of Interrupters implemented in the xHC. Each Interrupter 

consists of an Interrupter Management Register, an Interrupter Moderation 

Register and an Event Ring. Each Interrupter shall be mapped to a single MSI or 

MSI-X interrupt vector. An Interrupter shall assert an interrupt if it is enabled 

and its associated Event Ring contains Event TRBs that require an interrupt.  

 IMPLEMENTATION NOTE 

PCI MSI and MSI-X Interrupts 

MSI-X defines a separate optional extension to basic PCI MSI functionality. 

Compared to MSI, MSI-X supports a larger maximum number of vectors per 

function, the ability for software to control aliasing when fewer vectors are 

allocated than requested, plus the ability for each vector to use an independent 

address and data value, specified by a table that resides in Memory Space. 

However, most of the other characteristics of MSI-X are identical to those of 

MSI. For more information on MSI-X, refer to the PCI Specification. 

MSI-X maps each of the xHC Interrupters to an interrupt vector that is conveyed 

by xHC as a posted-write PCI Express (PCIe) transaction. Each MSI-X interrupt 

vector has some attributes assigned to it, such as the address and data for its 

posted-write message. These are described in section 5.2.8.2 that described the 

PCI aspects on MSI-X configuration. 

Interrupters and PCI Interrupt Mechanisms 

When the PCI Pin Interrupt is activated: 

•  Interrupter 0 may assert the INTx# pin. 

•  Interrupters 1 to MaxIntrs-1 shall be disabled. 

When MSI is activated: 

•  If MaxIntrs > 32, then Interrupters 0 to 31 may each trigger a unique interrupt vector, 

and Interrupters 32 to MaxIntrs-1 shall be disabled. 

•  If MaxIntrs <= 32, then Interrupters 0 to MaxIntrs-1 may each trigger a unique 

interrupt vector. 

•  The MSI Message Control register Multiple Message Capable field reported by the 

xHC shall be equal to or less than MaxIntrs. 

The Interrupt Vector associated with an Interrupter shall be defined as function 

of the value of the MSI Message Control register Multiple Message Enable  field 

using the following algorithm. 

 



 

 

 

  279 

Interrupt Vector = (Index of Interrupter) MODULUS (MSI Message 

Control:Multiple Message Enable)When MSI-X is activated: 

•  Interrupters 0 to MaxIntrs-1 may each trigger a unique interrupt vector. i.e. there is a 

1:1 mapping of the index of an Interrupter to the index of the MSI-X vector in the 

MSI-X Table Structure or to the associated Pending Bit in the MSI-X PBA Structure. 

Refer to section 6.8.2 in the PCI spec for more information. 

•  The value of the MSI-X Message Control register Table Size field reported by the xHC 

shall be equal to the value of MaxIntrs. 

•  The allocation of MSI-X vectors is set by the enabling of the respective Interrupter 

using the MSI-X Enable field in the Vector Control Dword of the MSI-X Table 

Structure. (If Interrupter 0 is enabled, the vector defined by MSI-X Table[0] is 

allocated, if Interrupter 1 is enabled, the vector defined by MSI-X Table [1] is 

allocated, etc.). 

 

The Number of Interrupters  (MaxIntrs) is implementation dependent. An xHC 

implementation shall implement at least one Interrupter.  

xHC generated interrupts to the system may be enabled by setting the 

Interrupter Enable (INTE) flag in the USBCMD register to ‘1’.  

An xHC implementation that supports virtualization shall implement at least one 

Interrupter for the Physical Function and a minimum of one Interrupter per 

Virtual Function. Refer to section 8 for more information on virtualization.  

Note: The xHC is not required to maintain event ordering across Event Rings. e.g. If 

events that are generated sequentially within the xHC target separate Event 

Rings, the events may not be placed on the respective Event Rings in the same 

temporal order. 

4.17.1 Interrupter Mapping 

An xHC implementation may support Interrupter Mapping. Interrupter Mapping 

is the ability to target an Interrupter and its Event Ring, with the Transfer Events 

generated by a specific Transfer Request Block.  

If the Number of Interrupters (MaxIntrs) field is greater than 1, then Interrupter 

Mapping shall be supported. 

The value of the Interrupter Target field in the Transfer TRB determines which 

Interrupter shall receive the Transfer Events generated by the respective Device 

Slot or Transfer TRB. 

If Interrupter Mapping is not supported, the Interrupter Target field shall be 

ignored by the xHC and all Events targeted at Interrupter 0.  
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Valid values for a Slot Context or TRB Interrupter Target field are between 0 and 

MaxIntrs-1. If an Interrupter Target field is out of range for a TRB the behavior of 

the xHC shall be undefined. It is recommended that the xHC does not generate 

any event if this condition is detected, and let software timeouts detect the error 

for the endpoint. If virtualization is supported, an xHC implementation shall 

ensure that this “undefined behavior” does not affect another function (PF0 of 

VFx). 

The Slot Context Interrupter Target value shall be checked for a valid range 

when a command inputs the Input Slot Context.  

Refer to section 6.4.1 for more information on the Interrupter Target field. 

This mechanism may be used to facilitate distribution of interrupts across cores 

in a multi-core platform. 

4.17.2 Interrupt Moderation 

Interrupt Moderation allows multiple events to be processed in the context of a 

single Interrupt Service Request (ISR), rather than generating an ISR for each 

event. 

The interrupt generation that results from the assertion of the Interrupt Pending 

(IP) flag may be throttled by the settings of the Interrupter Moderation  (IMOD) 

register of the associated Interrupter. The IMOD register consists of two 16-bit 

fields: the Interrupt Moderation Counter  (IMODC) and the Interrupt Moderation 

Interval (IMODI). 

Software may use the IMOD register to limit the rate of delivery of interrupts to 

the host CPU. This register provides a guaranteed inter-interrupt delay between 

the interrupts of an Interrupter asserted by the host controller, regardless of 

USB traffic conditions. 

The following algorithm converts the inter-interrupt interval value to the 

common 'interrupts/sec' performance metric:  

Interrupts/sec = (250×10-9sec × IMODI) -1 

For example, if the IMODI is programmed to 512, the host controller guarantees 

the host will not be interrupted by the xHC for at least 128 microseconds from 

the last interrupt. The maximum observable interrupt rate from the xHC should 

not exceed 8000 interrupts/sec. 

Inversely, inter-interrupt interval value can be calculated as:  

Inter-interrupt interval = (250×10-9sec × interrupts/sec) -1 

The optimal performance setting for this register is very system and 

configuration specific. An initial suggested range for the moderation Interval is 

651-5580 (28Bh - 15CCh). 
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The IMODI field shall default to 4000 (1 ms.) upon initialization and reset. It may 

be loaded with an alternative value by software when the Interrupter is 

initialized. 

The xHC implements interrupt moderation to reduce the number of interrupts 

that SW processes. The moderation scheme is based on the IMOD register and 

the ERDP Event Handler Busy (EHB) flag56. When an Interrupter is enabled it 

begins looking for two conditions: 1) Interrupt Pending Enable (IPE = ‘1’) and 2) 

the Event Handler not busy (EHB = ‘0’). If these conditions are true, the Interrupt 

Pending (IP) bit in the Interrupter Management (IMAN) register and the Event 

Handler Busy (EHB) flag in the Event Ring Dequeue Pointer (ERDP) register are 

set to ‘1’, IMODC is loaded with IMODI, and moderation counter starts counting 

down. Another interrupt message will not be asserted to the host bus by the xHC 

until 1) the IMODC of the associated Interrupter has counted down to ‘0’, 2) the 

Interrupt Pending Enable  is asserted (IPE = ‘1’), and 3) the Event Handler is not 

busy (EHB = ‘0’). When all three conditions are met, IMODC is reloaded with the 

value of the IMODI and the process repeats again. Refer to section 5.5.2.2 for 

more information on the IMOD register and the IMODC clocking rate. The 

interrupt flow should follow the diagram below: 

                                                   

56EHB enables Interrupt Mitigation. High-speed serial interface operation  can create thousands of interrupts per 
second, all of which tell the system something it already knew: it has lots of TRBs to process. The EHB allows the 
driver to run with interrupts disabled during times of high traffic, with a corresponding decrease in system load. 
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Figure 4-22: Interrupt Throttle Flow Diagram 
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If PCI Message Signaled Interrupts (MSI or MSI-X) are enabled, then the 

assertion of the Interrupt Pending (IP) flag in Figure 4-22 generates a PCI Dword 

write. The IP flag is automatically cleared by the completion of the PCI write.  

If the PCI Interrupt Pin mechanism is enabled, then the assertion of Interrupt 

Pending (IP) asserts the appropriate PCI INTx# pin. And the IP flag is cleared by 

software writing the IMAN register.  
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Figure 4-23: Heavy load, interrupts moderated 
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Under heavy load conditions (Figure 4-23), Interrupt Pending Enable (IPE) is 

asserted almost constantly, so if IPE = ‘1’ when the IMODC counts down to ‘0’ 

and the Event Handler is not busy (EHB = ‘0’), an interrupt is generated 

immediately, i.e. Interrupt Pending (IP) is set to ‘1’. When IP is asserted, the 

IMODC is reloaded with the IMODI and the IMODC begins counting down again. 

Thus, the next interrupt event will be delayed by the IMODI delay. Also note that 

in this example, the assertion of Interrupt Pending (IP) triggers the Interrupt 

Service Routine (ISR). The ISR schedules a Deferred Procedure Call (DPC) that 

will process the events on the Event Ring at a later time. The DPC processes 

events until Event Ring is empty then clears the Event Handler Busy (EHB) flag. 

Interrupt Pending Enable is cleared when the Event Ring goes empty, i.e. the 

DPC writes the Event Ring Dequeue Pointer (ERDP) register with a value that is 

equal to the Event Ring Enqueue Pointer.  
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Figure 4-24: Light load, interrupts not moderated 
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Under light load conditions (Figure 4-24) it is desirable to fire off interrupts with 

minimum latency. In this case, when the IMODC counts down to ‘0’ and no 

interrupts are pending (IPE = ‘0’), the IMODC is not reloaded with the IMODI but 

stays at ‘0’. Thus, the next assertion of Interrupt Pending Enable  will trigger an 

interrupt immediately. Triggering the interrupt will also cause the IMODC to be 

reloaded with the IMODI and begin counting down again.  

In the first case where the IMOD Delay Expires, Interrupt Pending (IP) is not set 

(so the ISR is not triggered) because the Event Ring is empty. Since IMODC = 0 

when event 3 is posted, Interrupt Pending (IP) is asserted immediately. 

In the second case, Interrupt Pending (IP) is not set because the Event Handler is 

busy (EHB = ‘1’). The DPC was not able to empty the Event Ring the first time it 

was scheduled (i.e. it only processed event 3), so it rescheduled itself to process 

the remaining events in the ring (i.e. event 4). While waiting for the DPC to be 

scheduled, events 5, 6, and 7 are posted. The rescheduled DPC processes events 

until Event Ring is empty then clears the Event Handler Busy (EHB) flag, re-

enabling an immediate interrupt the next time an event is posted.  

4.17.3 Interrupt Pin Support 

PCI Interrupt Pins are optional. Four Interrupt Pins are supported by PCI, 

however PCI only allows one Interrupt Pin to be assigned to a single PCI 

Function. If an xHC implementation supports a PCI INTx# interrupt pin, xHC 

asserts its INTx# line when requesting attention from its device driver unless the 

xHC is enabled to use Message Signaled Interrupts (MSI, i.e. the MSI Message 

Control MSI Enable or MSI-X Message Control MSI-X Enable flags are true) (refer 

to Sections 5.2.8.1 and 5.2.8.2 for more information). Once the INTx# signal is 

asserted, it remains asserted until the device driver clears the Interrupt Pending 
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(IP) flag. When Interrupt Pending (IP) is cleared, the device deasserts its INTx# 

signal. 

If Interrupt Pin support is enabled, then only Interrupter 0 is enabled and any 

other Interrupters are disabled. 

The Interrupt Pin register in the PCI Configuration Space Header (refer to 

Interrupt Pin description in section 6.2.4 of the PCI specification) identifies 

which interrupt pin the device (or device function) uses. A value of 1 

corresponds to INTA#, 2 corresponds to INTB#, and so on. If the xHC 

implementation does not use an interrupt pin it shall declare a ‘0’ in this 

register. 

4.17.4 Interrupter Target Identification 

The target Interrupter of an event is determined in one of three ways:  

1. Fixed and always the Primary Interrupter. 

2. Defined by the Interrupter Target field in the TRB data structure. 

3. Defined by the Slot Context Interrupter Target field. 

Each Event TRB described in section 6.4.2 specifies which of the three methods 

described above it uses. The exception is the Transfer Event. There are some 

conditions related endpoints or transfers which are reported using a Transfer 

Event TRB, however the condition that they are reporting cannot be associated 

with a specific Transfer Event TRB. In these cases the Slot Context Interrupter 

Target field shall be used to identify the Interrupter that shall receive the event.  

These conditions are indicated by the following Completion Codes: 

•  USB Transaction Error - due to detecting a Transaction Timeout while in the Stream 

Protocol HISPSM Prime Pipe state or HOSPSM Prime Pipe or Start Stream End state. 

•  Stall Error - due to detecting a STALL condition while in the Stream Protocol HISPSM 

Prime Pipe state or HOSPSM Prime Pipe or Start Stream End state. 

•  Invalid Stream ID Error. 

•  Invalid Stream Type Error. 

•  Stopped - Length Invalid. Note that the Slot Context Interrupter Target field is only 

applied to the “Stopped while waiting for more TRBs to be posted for TD” Condition 

in Table 4-2, not to the conditions “Stopped on Link TRB within a TD” and “Stopped 

on No Op TRB within a TD”  

•  Ring Overrun. 

•  Ring Underrun. 
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4.17.5 Interrupt Blocking 

Normally, placing an Event TRB on an Event Ring causes an interrupt to be 

asserted to the host immediately if an Event Ring is empty or at the next 

interrupt threshold. However there are cases where software requires the 

Completion Status and TRB Transfer Length of a Transfer TRB reported by a 

Transfer Event TRB, but it does not want the Transfer Event to generate an 

interrupt. To facilitate this usage, The Normal and Isoch Transfer TRBs, and 

Event Data TRBs support a Block Event Interrupt (BEI) flag that allows them to 

place an Event TRB on an Event Ring but not assert an interrupt to the host.  

An example of where the BEI flag can eliminate unwanted system interrupts is 

with Isoch transfers. For a USB microphone that declares ESIT of 1 ms. and 

generates 16-bit samples at a 44.1 KHz rate, software may post 10 Isoch TDs at 

a time to the device’s Isoch IN Transfer Ring. The fractional sample rate means 

that over a 10 ms. period, the microphone completes 9 Isoch TDs with 44 

samples (88 bytes) each, and a 10th TD with 45 samples (90 bytes). Since the 

number of samples per Isoch TD varies software must set the ISP or IOC flag in 

each Isoch TD to generate a Transfer Event to report the number of bytes 

transferred. However since software is able to schedule 10 TDs at a time, it only 

needs an interrupt every 10th TD. By setting the BEI flag in 9 of every 10 TDs, 

the interrupt rate due to the Isoch transfers can be reduced.  

Note that software could drop the interrupt rate by adjusting the Interrupt 

Moderation Interval (IMODI) of the Interrupter, however this would affect the 

interrupt latency for all endpoints that shared an Event Ring. The BEI flag allows 

software to selectively reduce interrupt rates of transfers, without affecting 

latency sensitive transfers. 

•  If BEI = ‘1’ in a TRB, then the event generated by the TRB is considered to be a 

“Blocking Event”. 

•  If BEI = ‘0’, then the event generated by the TRB is considered to be a “Non-blocking 

Event”. 

•  Any TRB type that does not define a BEI flag always generates Non-blocking Events. 

•  If an error is detected which generates an event while processing a TRB with BEI = '1', 

then BEI shall be ignored and the event generated by the TRB shall be a Non-blocking 

Event. 

•  Any Transfer Event TRB that is not associated with a Transfer or Event Data TRB shall 

be a Non-blocking Event. 

To facilitate Interrupt Blocking an Interrupt Pending Enable (IPE) flag may be 

implemented by the xHC for each Interrupter. IPE is an internal Interrupter flag 

that is not exposed through any register. Refer to section Interrupt Moderation 

for how IPE affects interrupt generation and the Interrupt Moderation 

mechanism. 
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The IPE flag of an Interrupter is managed as follows:  

•  IPE shall be cleared to ‘0’: 

•  When the Event Ring is initialized. 

•  If the Event Ring transitions to empty. 

•  When an Event TRB is inserted on the Event Ring and BEI = ‘0’ then: 

•  IPE shall be set to ‘1’. 

Note: Only Normal, Isoch, and Event Data TRBs support a BEI flag. 

The Interrupt Pending (IP) flag of an Interrupter shall be managed as follows:  

•  When IPE transitions to ‘1’: 

•  If Interrupt Moderation Counter (IMODC) = ‘0’ and Event Handler Busy (EHB) = ‘0’, 

then IP shall be set to ‘1’. 

•  When IMODC transitions to ‘0’: 

•  If EHB = ‘0’ and IPE = ‘1’, then IP shall be set to ‘1’. 

•  If MSI or MSI-X interrupts are enabled, IP shall be cleared to ‘0’ automatically when 

the PCI Dword write generated by the Interrupt assertion is complete. 

•  If PCI Pin Interrupts are enabled then, IP shall be cleared to ‘0’ by software. 

Note: A Transfer Event not associated with a Transfer TRB (i.e. a Transfer Event that 

uses the Slot Context Interrupter Target) is always a Non-blocking Event. 

4.18 Transfer Definition and Attributes 

4.18.1 No snoop 

This feature is optional for PCIe implementations. 

If the Enable No Snoop bit (Bit Location 11, Table 7-12) in the PCI Express 

Capability Structure (5.2.8) Device Control Register (PCIe spec section 7.8.4) is 

set, the xHC is permitted to set the No Snoop bit in the Requester Attributes of 

PCIe transactions it initiates that do not require hardware enforced cache 

coherency (refer to Section 2.2.6.5 of the PCIe spec). Note that setting this bit to 

‘1’ will not cause the xHC to set the No Snoop attribute on all PCIe transactions 

that it initiates. Even when this bit is ‘1’, the xHC is only permitted to set the No 

Snoop attribute on a PCIe transaction when it can guarantee that the address of 

the transaction is not stored in any cache in the system.  

If Enabled in the PCI Express Capability Structure  and directed by software in 

(e.g. TRB No Snoop (NS) flag is set to ‘1’), then the xHC may set the No Snoop bit 

in the Requester Attributes of PCIe transactions it initiates that do not require 
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hardware enforced cache coherency. Refer to Table 4-10 for recommended No 

Snoop behavior. 

The xHC shall not assert the No Snoop attribute on PCIe transactions for 

memory requests that are Message Signaled Interrupts, and Message Requests 

(except where specifically permitted). 

4.18.2 No Snoop and Relaxed Ordering for USB Traffic 

SW may configure the No Snoop/Relaxed Ordering PCIe attributes for each TRB 

by setting the respective No Snoop (NS) flag in the TRB. 

Table 4-10 defines the recommended behavior of the No Snoop and Relaxed 

Ordering PCIe Requester Attributes for PCIe transactions generated by the xHC. 

xHC implementations may choose other settings for these PCIe Requester 

Attributes. The PCIe Transaction No Snoop attribute is also conditioned for IN 

Data Writes by the TRB No Snoop (NS) bit. 

Table 4-10: xHC Traffic Attributes  

Transfer Type No 
Snoop 

Relaxed 
Ordering Comments 

TRB Read N Y Command, Transfer IN or OUT 

IN Data Write, 

TRB No Snoop 
flag = 1 
TRB No Snoop 

flag = 0 

 

Y 
N 

 

N 
N 

Refer to section 4.18.2.1. 

Snooping is dynamically controlled by the 
Transfer TRB No Snoop flag. 

OUT Data Read, 

TRB No Snoop 
flag = 1 
TRB No Snoop 

flag = 0 

 

Y 
N 

 

Y 
Y 

Snooping is dynamically controlled by the 

Transfer TRB No Snoop flag. 

Command Data 
Write 

N N e.g. Port Bandwidth Context 

TRB Write N N Events 

Context Read N Y Any Context read, including Opaque area 

Context Write N N Any Context write, including Opaque area 

Opaque Read Y Y Scratchpad Opaque area read 

Opaque Write Y N Scratchpad Opaque area write 
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Note: “N” means that the respective Requester Attribute is not set in the PCIe 

Transaction. “Y” means that the respective Requester Attribute is set in the PCIe 

Transaction. 

Section 2.2.6.4 of the PCIe spec describes the Relaxed Ordering Attribute field. 

And this attribute is discussed further in section 2.4 of the PCIe spec. 

4.18.2.1 No Snoop option for payload 

Under certain conditions, system software knows that it is safe to DMA a new 

data into a certain buffer without snooping. This scenario would occur when 

software is posting an IN buffer to the xHC that the CPU has not accessed since 

the last time it was owned by the xHC. This might happen if the data was 

transferred to an application buffer by the xHC DMA engine. In this case, 

software should be able to set a bit in the IN TRB indicating that the xHC should 

perform a “no-snoop” DMA when it eventually writes a packet to this buffer. 

When a non-snoop transfer is activated, the TRB will have a non-snoop flag in 

the TRB Control field. This is triggered by the No Snoop (NS) bit in the IN TRB. 

4.18.2.2 No Snoop option for Scratchpad references 

The Scratchpad Buffer Array and the Scratchpad Buffers that it references are 

exclusively owned by the xHC. To eliminate unnecessary system bus operations, 

the xHC should perform a “no-snoop” DMA when accessing the Scratchpad 

Buffer Array or Scratchpad Buffers. 

4.19 Root Hub 

This section describes the Root Hub and Root Hub Port operational models. 

The protocols supported by a xHC implementation are identified by the declared 

xHCI Supported Protocol Capability  structures, Refer to section 7.2. The xHCI 

Supported Protocol Capability  structures identify the number of Port Status and 

Control (PORTSC) registers supported by an xHC implementation. Refer to 

section 4.19.7 for more information on xHCI protocol to PORTSC register 

mapping. 

Note: Refer to section Suspend-Resume for how to manage a port when Main Power is 

removed. 

4.19.1 Root Hub Port State Machines 

The following state machines utilize the following notation:  
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State Name

Port Link State

Signal State

 

Where the State Name is an informative name defined by the xHCI spec., the 

Port Link State identifies the possible values for the PORTSC PLS field, and 

Signal State values are: 

Port Power (PP), Current Connect Status  (CCS), Port Enabled/Disabled (PED), 

and Port Reset (PR), respectively, e.g. 0,0,0,0 all signals are ‘0’.  

Note: Transitions associated with the large bubble may occur from any state defined 

within the bubble as long as the Conditions match. 

Refer to Appendix E for state machine notation. 

Note: In each state, the Signal State values defined by the state are forced when 

entering the state, so actions are not declared for changing the respective bits 

when transitioning from another state. e.g. If the Disconnected State is entered 

from the Enabled state, the CCS and PED flags are cleared. If the Disconnected 

State is entered from the Reset state, the CCS and PR flags are cleared. Notice 

that the big bubble to Disconnected state transition does define any actions 

related to these flags. 

Note: For transition Actions: The notation Wr(Field Name=value) indicates a software 

write to the PORTSC register of “value” to the respective field, and Field 

Name=value without the “Wr()” wrapper indicates a transition of the respective 

field to the “value”. 

Note: The figures in this section are provided to illustrate state transition conditions 

and actions, however refer to the textual descriptions of the respective states for 

their explicit definition. 

Note: The Root Hub Port state machines in the following subsections only references 

the Port Link State Change (PLC) flag, refer to section 4.19.2 for information on 

how the remaining change flags are affected by the Root Hub Port state 

machines. 

Note: The xHCI state machines describe the exit conditions from a state and entry 

conditions to a state. Only conditions specifically described as an entry or exit 

condition shall result in a state transition, e.g. setting the PR flag in the 

Disconnected state has no effect on the state of a port because that condition is 

not cited in section 4.19.1.1.2. 

Refer to section 5.4.8 for the details of change bit operation 
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4.19.1.1 USB2 Root Hub Port 

Figure 4-25: USB2 Root Hub Port State Machine 
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Figure 4-25 illustrates the top level transitions in a USB2 Protocol Root Hub 

state machine. 

Note: The “Change” flags (CSC, PEC, POCC, PRC, PLC, and CEC) are set to ‘1’ upon the 

detection of the respective condition. Refer to Table 5-26 for the definition of 

the change flags. 

The initial state is Disconnected. 

4.19.1.1.1 Powered-off 

A write to the PORTSC register with PP set to ‘0’ or an Over-current condition 

shall transition from any state to the Powered-off state. 

A write to the PORTSC register with PP set to ‘1’ shall transition from the 

Powered-off state to the Disconnected state. 

A write to the USB2 PORTPMSC register with Test Mode greater than ‘0’ shall 

transition from the Powered-off state to the Test Mode state. 

A write to the PORTSC register with PP cleared to ‘0’, or an over-current 

condition (OCA => ‘1’) shall transition from the port from any state to the 

Powered-off state. 

4.19.1.1.2 Disconnected 

This is the initial state after initial xHC Aux Power-up or HCRST. 
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A device connect detect (CCS = ‘1’) shall transition the port from the 

Disconnected state to the Disabled state and set the CSC flag to ‘1’. 

A disconnect detect (CCS = ‘0’) in the Disabled or Enabled state57 shall 

transition the port to the Disconnected state, set the CSC flag to ‘1’, and if PR or 

PED flags are set to ‘1’, they shall be cleared to ‘0’.  

4.19.1.1.3 Disabled 

A write to the PORTSC register with PR set to ‘1’ shall transition the port from 

the Disabled state to the Reset state. 

4.19.1.1.4 Reset 

When the Reset operation completes (PR = ‘0’), the port shall automatically 

advance to the Enabled state, setting PED and PRC to ‘1’. 

Software shall ignore the value of the Port Link State (PLS) field while in the 

Reset state. 

4.19.1.1.5 Test Mode 

Refer to section Port Test Modes for operation of Port Test Modes. 

Note: The Current Connect Status (CCS) and Port Enabled/Disabled (PED) Signal States 

vary as function of the selected Test Mode. 

4.19.1.1.6 Enabled 

While in the Enabled state a write to the PORTSC register with PED set to ‘1’, or 

a Port_Error (refer to section 11.8.1 of the USB2 spec for conditions that may 

cause a Port_Error) shall transition the port from any Enabled substate to the 

Disabled state. If the transition was due to a Port_Error the PEC flag shall be set 

to ‘1’. 

                                                   

57Note that a disconnect cannot be detected by a USB2 port in the Reset state because the host is driving the bus. 

 



 

 

 

  293 

Figure 4-26: USB2 Root Hub Port Enabled Substate Diagram 
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Figure 4-26 illustrates the Enabled substate transitions in a USB2 Protocol Root 

Hub state machine. 

While in any of the Enabled substates: 

•  If the PORTSC register is written with PP = ‘0’ or and over-current condition is 

detected (OCA = ‘1’) then the respective substate shall exit to the Powered-off state. 

•  If a Disconnect condition is detected (CCS = ‘0’) then the respective substate shall 

exit to the Disconnected state. 

•  If the PORTSC register is written with PR = ‘1’ then the respective substate shall exit 

to the Reset state. 

4.19.1.1.7 U0 

Entry to the Enabled state always transitions to the U0 substate. 

A write to the PORTSC register with the PLS field set to U2 and LWS set to ‘1’ 

shall cause the xHC to issue an LPM transaction to the device and transition the 

port to the U2Entry substate. 

A write to the PORTSC register with the PLS field set to U3 and LWS set to ‘1’ 

shall cause the xHC to suspend the device, and transition the port  to the 

U3Entry substate. 

If the entry to the U0 state was from the U2Exit substate due to a write to the 

PORTSC register with the PLS field set to U3 and LWS set to ‘1’ in the U2 
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substate, then the port shall automatically transition the port to the U3Entry 

substate, and suspend the device. 

4.19.1.1.8 U2Entry 

In this state the xHC shall attempt to transition the device to the L1 suspend 

state by issuing an LPM transaction to the device:  

•  If the device responds with an ACK handshake (the L1 suspend attempt was 

successful), the port shall set the L1S field to Success (‘1’) and transition to the U2 

substate, and the device shall enter the L1 standby state. 

•  If the device responds with a NYET handshake (the L1 suspend attempt was rejected 

by the device), the port shall set the L1S field to Not Yet (‘2’) and transition to the U0 

substate and set the PLC flag to ‘1’ (PLC Condition: L1 Entry Reject), and the device 

shall remain in the L0 state. Note that in this case there is no PLS transition, it shall 

remain in the U0 state. 

•  If the device responds with a STALL handshake (the L1 suspend attempt was not 

recognized by the device), the port shall set the L1S field to Not Supported (‘3’), 

transition to the U0 substate, and set the PLC flag to ‘1’ (PLC Condition: L1 Entry 

Reject). 

•  If a Timeout occurs or a Transaction Error is detected (the L1 suspend attempt was 

unsuccessful), the port shall set the L1S field to Timeout/Error (‘4’), transition to the 

U0 substate, and set the PLC flag to ‘1’ (PLC Condition: L1 Entry Reject). 

Note that when the STALL, Timeout, or transaction Error cases above occur 

software may inspect the USB2 PORTPMSC register L1S field to determine the 

specific cause of the transition. Refer to section 4.23.5.1.1 for more information 

on the L1S result values. 

Refer to sections 4.15.2 and 4.23.5 for more information on USB2 LPM 

operation. 

4.19.1.1.9 U2 

The port is in the L1Suspended state and shall remain in the U2 substate until a 

Host or Device Initiated Resume occurs.  

Host Initiated L1 Resume - A write to the PORTSC register with the PLS field set 

to U0 or U3 and LWS set to ‘1’ shall cause the port to initiate resume signaling to 

the device and transition to the U2Exit substate. 

Device Initiated L1 Resume - If Resume Signaling is generated by the device, 

then the port shall transition to the U2Exit substate. 

If the entry to the U0 state was from the U2Exit substate due to a write to the 

PORTSC register with the PLS field set to U3 and LWS set to '1' in the U2 

substate, then the port shall automatically transition the port to the U3Entry 

substate, and suspend the device. 
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4.19.1.1.10 U2Exit 

When the resume signaling is complete and the device has entered the L0 state, 

the port shall transition to the U0 substate and set the PLC flag to ‘1’ (PLC 

Condition: USB2 L1 Resume complete).  

4.19.1.1.11 U3Entry 

In this state the xHC shall wait for transfers associated with the current 

microframe or other internal operations to complete before Idling the bus and 

suspending the device. When the enters the Idle state, the port shall transition 

to the U3 substate, and if U3C and U3E = ‘1’, set PLC flag to ‘1’ (PLC Condition: 

U3 Entry complete). 

4.19.1.1.12 U3 

The port is in the Idle state (i.e. suspended) and shall remain in the U3 state 

until a Host or Device Initiated Resume occurs.  

Note: Section 7.1.7.6 of the USB2 specification states that devices begin to transition 

“into the Suspend state after they see a constant Idle state on their upstream 

facing bus lines for more than 3.0 ms. The device must actually be suspended, 

drawing only suspend current from the bus, after no more than 10 ms of bus 

inactivity on all its ports.“ 

 

The PLS field of a USB2 Root Hub port reflects the Idle state of the port’s bus 

lines, not whether the attached device has actually transitioned to the Suspend 

state. 

Host Initiated Resume - A write to the PORTSC register with the PLS field set to 

Resume and LWS set to ‘1’ shall cause the xHC to initiate resume signaling to the 

device and transition to the Resume substate. 

Device Initiated Resume  - If Resume Signaling is generated by the device, the 

port shall transition to the Resume substate, initiate resume signaling to the 

device, and set the PLC flag to ‘1’ (PLC Condition: Wakeup signaling from a 

device). 

4.19.1.1.13 Resume 

A write to the PORTSC register with the PLS field set to U0 and LWS set to ‘1’ 

shall cause the port to transition to the RExit substate and complete the resume 

signaling. 

Note: Software shall time the duration of the Resume state. Software shall remain in 

the Resume state long enough to ensure the resume sequence, as specified in 

the USB2 spec, completes successfully. 
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4.19.1.1.14   RExit 

When the resume signaling is complete and the device has entered the L0 state, 

the port shall transition to the U0 substate and set the PLC flag to ‘1’ (PLC 

Condition: USB2 Device Resume complete).  

4.19.1.2 USB3 Root Hub Port 

Figure 4-27 illustrates the top level transitions in a USB3 Protocol Root Hub 

state machine. 

Refer to Table 5-26 for the conditions that affect the change flags.  

Figure 4-27: USB3 Root Hub Port State Machine 
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The initial state is Disconnected. 

Note: The dashed arrows represent optional state transitions that may occur if the 

Debug Capability is supported. Refer to section 4.19.1.2.4.3  for more 

information. 

Note: Figure 4-27 does not illustrate a transition from the Enabled state to the 

Loopback state, which may occur. Refer to note in section 4.19.1.2.14 for 

additional information on transitions to the Loopback state. 

4.19.1.2.1 Disabled 

A write to the PORTSC register with the PED field set to ‘1’ shall transition the 

port, from any state except Powered-off, to the Disabled state. 
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A write to the PORTSC register with the PLS field set to RxDetect and LWS set to 

‘1’ shall transition the port to the Disconnected state. 

A write to the USBCMD register with the HCRST flag set to ‘1’ shall transition the 

port to the Disconnected state. 

A write to the PORTSC register with PP cleared to ‘0’ or an over-current 

condition (OCA = ‘1’) shall transition the port to the Powered-off state. 

4.19.1.2.2 Powered-off 

A write to the PORTSC register with PP cleared to ‘0’ shall transition from the 

port from any state to the Powered-off state. 

An over-current condition (OCA = ‘1’) shall transition from the port from any 

state to the Powered-off state, and if the CCS, PR or PED flags are set to ‘1’, they 

shall be cleared to ‘0’.  

A write to the PORTSC register with PP set to ‘1’ shall transition the port to the 

Disconnected state. 

A write to the USBCMD register with the HCRST flag set to ‘1’ shall transition the 

port to the Disconnected state. 

4.19.1.2.3 Disconnected 

This is the initial state after initial xHC Aux Power-up. 

Note: If a port has transitioned to this state from the Powered-off or Disabled states 

due to the assertion of HCRST by software, then a Hot or Warm Reset shall be 

issued by the port when its LTSSM enters to the Rx.Detect state or after a receiver 

detection in the Rx.Detect state. 

Note: The completion of Host Controller Reset (i.e. the HCRST ‘1’ to ‘0’ transition) does 

not depend on the completion of any port activity other than entering the 

Disconnected state. 

The assertion of HCRST = ‘1’ shall cause the port to remain in the Disconnected 

state. 

Note: An xHC implementation may assert WPR or PR to reflect the associated reset 

operation if HCRST is asserted while the port is in the Disconnected state. 

A device Connect Detect58 shall transition the port to the Polling state. 

                                                   

58SuperSpeed far-end receiver terminations are detected. Refer to section 6.11 in the USB3 spec. 
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A Disconnect Detect59 in the any state, except Powered-off or Disabled shall 

transition the port to the Disconnected state. 

4.19.1.2.4 Polling 

While in the Polling state the port may transition between the Training, 

CfgExcg, and DbC substates. 

Figure 4-28: USB3 Root Hub Port Polling Substate Diagram 
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Figure 4-28 illustrates the Polling substate transitions in a USB3 Protocol Root 

Hub state machine. 

Note: The dashed arrows represent optional state transitions that may occur if the 

Debug Capability is supported. Refer to section     DbC for more information. 

4.19.1.2.4.1     Training 

Entry to the Polling state always transitions to the Training substate. 

A Connect Detect shall cause the port to transition to the Training substate. 

If Training completes successfully, the substate shall transition to the CfgExcg 

substate. 

                                                   

59A LTSSM transition from the any state to the Rx.Detect state due to Removal(DS Port Only). Refer to section 7.5 in 
the USB3 spec. 
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If Training fails due to a Link Timeout60 or a Disconnect Detect59, the substate 

shall exit to the Disconnected state. 

If the Compliance Transition Capability  (CTC) flag in the HCCPARAMS2 register = 

‘1’, then the xHC supports software control of the transition to the Compliance 

state and Compliance Transition Enabled  (CTE) flags. The CTE flag is an internal 

xHCI flag associated with each Root Hub port, i.e. CTE is not software visible. If 

CTE = ‘1’ then the transition path to the Compliance substate shall be enabled, 

otherwise the transition is disabled. Upon Chip Hardware Reset, the assertion of 

HCRST = ‘1’, or a Warm Reset (WPR = ‘1’), CTE shall be cleared to ‘0’. Only if the 

port is in the Disconnected state, then a write to the PORTSC register with the 

PLS field set to Compliance Mode and LWS set to ‘1’ shall set CTE to ‘1’. 

If CTE = ‘1’, then the detection of the first LFPS Timeout shall transition the 

substate to the Compliance state. 

The reception of a TS2 Ordered Set with the Loopback bit set shall transition 

the substate to the Loopback state. 

4.19.1.2.4.2     CfgExcg 

In this state, the Port Capabilities and Port Configuration LMPs are exchanged as 

described in sections 8.4.5 and 8.4.6 of the USB3 spec. 

If the port is successfully configured as a downstream facing port (Downstream 

Config Successful), the substate shall exit to the Enabled state. 

If the port is successfully configured as an upstream facing port (Upstream 

Config Successful), the substate shall transition to the DbC substate. Note that 

this transition shall never occur if the xHC does not support the xHCI Debug 

Capability. 

Note: If the xHCI Debug Capability is enabled and a Debug Host has not been detected 

yet, the Direction field of the Port Capabilities LMP shall be set to ‘3’ for all ports, 

indicating that the Root Hub port is both upstream and downstream capable. An 

Upstream Config Successful condition indicates that a downstream facing port is 

attached to a Root Hub port and implies that a Debug Host is attached. Once a 

port is mapped to the Debug Capability, all remaining ports shall assert ‘1’ (i.e. 

the port shall only be configured as downstream) in the Direction field of 

subsequent Port Capabilities LMPs. Refer to section 7.6 for more information on 

the operation of the xHCI Debug Capability. 

Note: If a Debug Host and a Debug Target are cabled together, but the xHCI Debug 

Capability has not yet been enabled, then the Direction field of the Port 

                                                   

60Refer to section 7.5.4 in the USB3 spec for the LTSSM conditions that shall transition a downstream port from the 
Polling to the Rx.Detect state. Note, the LTSSM Rx.Detect state maps to the USB3 Port state machine 
Disconnected state. 
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Capabilities LMP shall be set to ‘1’ for all ports, indicating that the Root Hub ports 

on both the Debug Host and the Debug Target are only downstream capable. 

After the link trains, a Config Error condition will occur because two downstream 

ports are connected together (i.e. an undefined Port Type selection occured), 

causing the port to transition to the Error state. If software resets the port to 

recover from the error, this Config Error scenario will repeat until the cable is 

disconnected or the DbC is enabled. 

If the port fails to successfully configure (Config Error), the substate shall set the 

CEC flag to ‘1’ and exit to the Error state. 

Note: In Figure 4-28, the Upstream and Downstream “Config Successful” transitions 

may require the resolution of a “Tiebreaker” with the exchange of one or more 

Port Capability LMPs if the link partner also asserts the Upstream and 

Downstream Direction flags in the Port Capability LMP and the Tiebreaker fields 

are equal, refer to section 8.4.5 in the USB3 spec.61 

4.19.1.2.4.3     DbC 

In this substate, the port is mapped to the Debug Capability and the DbgCap 

substates shall emulate a port that never detects an attach 

Note: This substate is optional, and shall only exist for xHC implementations that 

support the xHCI Debug Capability. 

While in the DbC (Debug Capability) substate the port may transition between 

the DbC Disconnected, DbC Disabled, and the DbC Powered-off substates. 

Note: Section 7.5 of the USB3 spec describes the behavior of the LTSSM for upstream 

and downstream facing ports. The default behavior of an xHC Root Hub is that 

of a downstream facing port. However, while in the DbC state the LTSSM of a 

Root Hub port is mapped to the Debug Capability and shall behave as an 

upstream facing port. 

                                                   

61A DbC enabled port may bias the Port Capability LMP exchange so that it becomes an upstream facing port by 
randomly choosing low Tiebreaker values, e.g. < 8. 
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Figure 4-29: USB3 Root Hub Port DbC Substate Diagram 

CfgExcg
Disconnected

DbC

Disconnected

RxDetect

1,0,0,0

DbC 

Powered-off

Disabled

0,0,0,0

DbC 

Disabled

Disabled

1,0,0,0

Disabled

Powered-off

 

 

Figure 4-29 illustrates the DbC substate transitions in a USB3 Protocol Root Hub 

state machine. 

4.19.1.2.4.3.1     DbC Disconnected 

Entry to the DbC substate always transitions to the DbC Disconnected substate. 

A write to the PORTSC register with the PED field set to ‘1’ shall transition the 

port to the DbC Disabled substate. 

A write to the PORTSC register with the PP field set to ‘0’ shall transition the 

port to the DbC Powered-off substate. 

A write to the DCCTRL register with the DCE field set to ‘0’ or a Disconnect 

Detect59, shall transition the port to the Disconnected state. 

4.19.1.2.4.3.2     DbC Disabled 

A write to the PORTSC register with the PLS field set to RxDetect and LWS set to 

‘1’ shall transition the port to the DbC Disconnected substate. 

A write to the PORTSC register with the PP field set to ‘0’ shall transition the 

port to the DbC Powered-off substate. 

A write to the DCCTRL register with the DCE field set to ‘0’ or a Disconnect 

Detect59, shall transition the port to the Disabled state. 
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4.19.1.2.4.3.3     DbC Powered-off 

A write to the PORTSC register with the PP field set to ‘1’ shall transition the 

port to the DbC Disconnected substate. 

A write to the DCCTRL register with the DCE field set to ‘0’ or a Disconnect 

Detect59, shall transition the port to the Disconnected state. 

4.19.1.2.5 Reset 

A write to the PORTSC register with PR or WPR set to ‘1’ or a write to the 

USBCMD register with HCRST set to ‘1’, shall transition the port from any state 

except the Disconnected , Powered-off, or Disabled states, to the Reset state. 

If the Reset operation completes successfully, the port shall transition to the 

Enabled state, clearing PR to ‘0’ and setting PED to ‘1’. 

If the Reset operation does not complete successfully, the port shall transition 

to the Disconnected state.  

Note: If a port has transitioned to this state due to the assertion of HCRST by software, 

then a Hot or Warm Reset shall be issued by the port when its LTSSM enters to 

the Rx.Detect state. Depending on the link state when HCRST is asserted, an xHC 

implementation may choose to issue a Hot Reset rather than a Warm Reset to 

accelerate the USB recovery process. 

Note: PRC shall be set upon exiting the Reset state. However the WRC flag shall also 

be set, if software set the PR flag and the “Hot” Reset transitioned to a Warm 

Reset or if software set the WPR flag initially to enter the Reset state. Refer to the 

note section 10.3.1.6 of the USB3 spec for more information on a Hot Reset to 

Warm Reset transition. 

A Disconnect Detect59 shall transition the port to the Disconnected state. 

Software shall ignore the value of the Port Link State (PLS) field while in the 

Reset state. 

4.19.1.2.6 Error 

The port shall transition to the Error state if a serious error condition (SError) 

occurs while attempting to operate the link, i.e. the LTSSM transitions to the  

SS.Inactive state, an unsuccessful LTSSM Loopback.Exit, etc. Refer to section 

10.3.1.4 “DSPORT.ERROR” of the USB3 spec for the SError conditions that shall 

cause a Root Hub port to transition to the Error state. 

The transition to the Error state shall set the PLC flag to ‘1’ (PLC Condition: 

Error). 

A Disconnect Detect59 shall transition the port to the Disconnected state. 



 

 

 

  303 

4.19.1.2.7 Compliance 

A write to the PORTSC register with the PED field set to ‘1’ shall transition the 

port, to the Disabled state. 

A write to the PORTSC register with WPR set to ‘1’ or the assertion of HCRST = 

‘1’ shall transition the port to the Reset state. 

Refer to section 4.19.1.2.2 for the conditions that shall transition the port to the 

Powered-off state. 

4.19.1.2.8 Loopback 

A successful Exit (LFPS handshake in the LTSSM Loopback.Exit state) or a 

Disconnect Detect59 shall transition the port to the Disconnected state. 

Refer to section 4.19.1.2.2 for the conditions that shall transition the port to the 

Powered-off state. 

A Timeout in the LTSSM Loopback.Exit state (tLoopBackExitTimeout) shall 

transition the port to the Error state. 

Note: Refer to note in section     Recovery for additional information on transitions to 

the Loopback state. 

4.19.1.2.9 Enabled 

While in the Enabled state a the port may transition between the U0, U1’, U2’, 

U3’ and Recovery substates. 
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Figure 4-30: USB3 Root Hub Port Enabled Substate Diagram 
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Figure 4-30 illustrates the Enabled substate transitions in a USB3 Protocol Root 

Hub state machine. 

While in any Enabled substates: 

•  If the PORTSC register is written with PP = ‘0’ or and over-current condition is 

detected (OCA = ‘1’), then the respective substate shall exit to the Powered-off state. 

•  If a Disconnect condition is detected (CCS = ‘0’), then the respective substate shall 

exit to the Disconnected state. 

•  If the PORTSC register is written with PR = ‘1’ or WPR = ‘1’, then the respective 

substate shall exit to the Reset state. 

•  If a condition62 transitions the Port Link State (PLS) to the Inactive state, then the 

respective substate shall exit to the Error state. 

Refer to sections 4.19.1.2.10, 4.19.1.2.11, 4.19.1.2.12, 4.19.1.2.13, and 

4.19.1.2.14 for more information on the Enabled substates. 

Note: Figure 4-30 does not illustrate a transition from the Recovery or U3’ states to 

the Loopback state, however they may occur. Refer to note in section     Recovery 

for additional information on transitions to the Loopback state. 

                                                   

62e.g. if a Ux_EXIT_TIMER timeout occurs in the Recovery state while attempting to transition from the U1’ or U2’ 
state to the U0 state. 
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4.19.1.2.10     U0 

Entry to the Enabled state always transitions to the U0 substate. 

The reception of an LGO_U1 from the link partner or a U1 Timeout shall cause 

the port to transition to the U1’ substate. 

The reception of an LGO_U2 from the link partner, or a U2 Timeout shall cause 

the port to transition to the U2’ substate. 

A write to the PORTSC register with the PLS field set to U3 and LWS set to ‘1’ 

shall cause the port to transition to the U3’ substate. 

If the entry to the U0 state was from the Recovery substate due to a write to the 

PORTSC register with the PLS field set to U3 and LWS set to '1' in the U1 or U2 

substate, then the port shall automatically transition the port to the U3' 

substate, and suspend the device. 

The port shall transition to the Recovery substate if errors defined in section 7.3 

of the USB3 spec occur. 

4.19.1.2.11     U1’  

Figure 4-31: USB3 Root Hub Port U1’ Substate Diagram 
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Figure 4-31 illustrates the U1’ substate transitions in a USB3 Protocol Root Hub 

state machine. 

If the transition to the U1’ substate was due to an LGO_U1 received from the 

device, the xHC shall transition to the U1_Rx substate. 

If the transition to the U1 substate was due to a U1 Timeout, the xHC shall 

transition to the U1_Tx substate. 
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Refer to sections 4.19.1.2.11.1 , 4.19.1.2.11.2 , and 4.19.1.2.11.3  for more 

information on the U1’ substates. 

4.19.1.2.11.1     U1_Rx 

xHC implementation specific power management policies determined whether 

to accept or reject the LGO_U1 request. If the request is accepted the xHC shall 

transmit an LAU and transition to the U1 substate. If the request is rejected the 

xHC shall transmit an LXU and transition to the U0 substate. 

4.19.1.2.11.2     U1_Tx 

Device implementation specific power management policies determined 

whether the LGO_U1 request from the host shall be accepted or rejected. If the 

request is accepted the xHC shall receive an LAU and transition to the U1 

substate. If the request is rejected the xHC shall receive an LXU and transition to 

the U0 substate. 

4.19.1.2.11.3     U1 

The port is in the LTSSM U1 state. 

Host Initiated U1 Resume - A write to the PORTSC register with the PLS field set 

to U0 or U3, and LWS set to ‘1’ shall cause the xHC to initiate an LFPS 

Handshake with the device. If the handshake is successful, the device has 

entered the U0 state, the port shall exit the U1’ substate machine and transition 

to the U0 substate. 

Device Initiated U1 Resume - If an LFPS Handshake is initiated by the device 

completes successfully, the port shall exit the U1’ substate machine, and 

transition to the U0 substate. 

A U2 Timeout shall cause the port to transition to the U2’ substate. 

An SError shall cause the port to transition to the Error state. 
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4.19.1.2.12     U2’  

Figure 4-32: USB3 Root Hub Port U2’ Substate Diagram 

&

U2

U2 

1,1,1,0

U2_Tx

U0 

1,1,1,0

U2_Rx

U0 

1,1,1,0

U1'

U0

U0

Recovery

Error

 

Figure 4-32 illustrates the U2’ substate transitions in a USB3 Protocol Root Hub 

state machine. 

If the transition to the U2’ substate was due to an LGO_U2 received from the 

device, the xHC shall transition to the U2_Rx substate. 

If the transition to the U2’ substate was due to a U2 Timeout, the xHC shall 

transition to the U2_Tx substate. 

If the transition to the U2’ substate was from the U1’ state (due to an L2 

Timeout), the xHC shall transition to the U2 substate. 

Refer to sections 4.19.1.2.12.1 , 4.19.1.2.12.2 , and 4.19.1.2.12.3  for more 

information on the U2’ substates. 

4.19.1.2.12.1     U2_Rx 

xHC implementation specific power management policies determined whether 

to accept or reject the LGO_U2 request. If the request is accepted the xHC shall 

transmit an LAU and transition to the U2 substate. If the request is rejected the 

xHC shall transmit an LXU and transition to the U0 substate. 

4.19.1.2.12.2     U2_Tx 

Device implementation specific power management policies determined 

whether the LGO_U2 request from the host shall be accepted or rejected. If the 

request is accepted the xHC shall receive an LAU and transition to the U2 

substate. If the request is rejected the xHC shall receive an LXU and transition to 

the U0 substate. 
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4.19.1.2.12.3     U2 

The port is in the LTSSM U2 state. 

Host Initiated U2 Resume - A write to the PORTSC register with the PLS field set 

to U0 or U3, and LWS set to ‘1’ shall cause the xHC to initiate an LFPS 

Handshake with the device. If the handshake is successful, the device has 

entered the U0 state, the port shall exit the U2’ substate machine, and transition 

to the U0 substate. 

Device Initiated U2 Resume - If an LFPS Handshake is initiated by the device 

completes successfully, the port shall exit the U2’ substate machine, and 

transition to the U0 substate. 

An SError shall cause the port to transition to the Error state. 

4.19.1.2.13     U3’  

Figure 4-33: USB3 Root Hub Port U3’ Substate Diagram 
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Figure 4-33 illustrates the U3’ substate transitions in a USB3 Protocol Root Hub 

state machine. 

Upon entry into the U3’ substate machine transitions to the U3Entry substate. 

Refer to sections 4.19.1.2.13.1 , 4.19.1.2.13.2 , 4.19.1.2.13.3 , and 4.19.1.2.13.4  

for more information on the U3 substates. 

Note: Figure 4-33 does not illustrate a transition from the RExit or U3Exit 

states to the Loopback state, however it may occur. Refer to note in section 

4.19.1.2.14 for additional information on transitions to the Loopback state. 
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4.19.1.2.13.1     U3Entry 

The port shall remain in this substate until a LAU is received from the device, 

then transition to the U3 substate, and if U3C and U3E = ‘1’, set PLC flag to ‘1’ 

(PLC Condition: U3 Entry complete). 

4.19.1.2.13.2     U3 

The port is suspended and shall remain in the U3 substate until a Host or Device 

Initiated Resume occurs. 

Host Initiated Resume - A write to the PORTSC register with the PLS field set to 

U0 and LWS set to ‘1’ shall cause the xHC to initiate Link Activity (LFPS 

Handshake) with the device and transition to the U3Exit substate. 

Device Initiated Resume  - If Link Activity (LFPS Handshake) is initiated by the 

device, the port shall not respond, exit the U3 substate machine, transition to 

the Resume substate, and set the PLC flag to ‘1’ (PLC Condition: Wakeup 

signaling from a device). 

4.19.1.2.13.3     Resume 

A write to the PORTSC register with the PLS field set to U0 and LWS set to ‘1’ 

shall cause the xHC to initiate Link Activity (LFPS Handshake) with the device 

and transition to the RExit substate. 

4.19.1.2.13.4     RExit 

The LTSSM is in the Recovery state. Refer to section 7.5.10 in the USB3 spec. 

When the handshake is successful; the port shall exit the U3’ substate machine, 

transition to the U0 substate, and set PLC flag to ‘1’ (PLC Condition: USB3 

Device Resume completion). Note that a USB device is not allowed to reject a 

resume request from the host. 

If a TS2 Ordered Set is received with the Loopback bit set, the port shall 

transition to the Loopback state. 

If a TS2 Ordered Set is received with the Reset bit set, the port shall transition to 

the Reset state. 

Note: Refer to note in section     Recovery for additional information on transitions to 

the Loopback state. 

4.19.1.2.13.5     U3Exit 

The LTSSM is in the Recovery state. Refer to section 7.5.10 in the USB3 spec. 

When the handshake is successful; the port shall exit the U3’ substate machine, 

transition to the U0 substate, and set PLC flag to ‘1’ (PLC Condition: USB3 
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Software Resume complete). Note that a USB device is not allowed to reject a 

resume request from the host. 

If a TS2 Ordered Set is received with the Loopback bit  set, the port shall 

transition to the Loopback state. 

If a TS2 Ordered Set is received with the Reset bit set, the port shall transition to 

the Reset state. 

Note: Refer to note in section     Recovery for additional information on transitions to 

the Loopback state. 

4.19.1.2.14     Recovery 

The LTSSM is in the Recovery state. Refer to section 7.5.10 in the USB3 spec. 

If the recovery completes successfully; the port shall transition to the U0 

substate. 

If the recovery does not complete successfully; the port shall transition to the 

Error state. 

If a TS2 Ordered Set is received with the Loopback bit set, the port shall 

transition to the Loopback state. 

Note: The xHC USB3 Root Hub Port state machine figures do not illustrate a transition 

from the Enabled, Recovery, RExit, or U3Exit to Loopback state transition, 

however they may occur. 

 

The LTSSM shall transition from the Recovery.Idle state to the Loopback state if 

a TS2 Ordered Set is received with the Loopback bit set. A xHC Root Hub port is 

a Loopback Slave. To perform loopback tests a specialized Test Device is 

required. The Test Device, which acts as Loopback Master, may transition a port 

to the Enabled state before transitioning the port to Loopback state. However, 

typically a Loopback Master will only assert the Loopback bit in a TS2 Ordered 

Set when it is initially connected, asserting an LTSSM Polling.Idle to Loopback 

transition. 

4.19.2 Port Status Change Generation 

The xHC defines a Port Status and Control (PORTSC) register for each Root Hub 

port. 

There are seven status change bits in the PORTSC register Connect Status 

Change (CSC), Port Enabled/Disabled Change  (PEC), Warm Port Reset Change 

(WRC), Over-current Change (OCC), Port Reset Change (PRC), Port Link State 

Change (PLC), and Port Config Error Change (CEC), Refer to section 5.4.8 for 

more information on these bits. 
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Root Hub port status change bits may be set due to hardware or software 

initiated conditions. When set, these bits remain set until cleared by a system 

software write to the PORTSC register with the appropriate status change bit(s) 

set to ‘1’, or the assertion of a Chip Hardware Reset or HCRST. 

When a status change bit is set in a PORTSC register, if the assertion of a status 

change bit results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), the xHC responds by 

generating a Port Status Change Event (as described in section 6.4.2.3) and/or 

asserting a Power Management Event (PME#). Refer to Table A-2 for more 

information on Port Status Change Event and PME# generation. The host system 

normally receives Root Hub port status change notifications through Port Status 

Change Events , however the “Wake on” flags in the PORTSC register can be used 

to manage the assertion of PME# due to port status changes. Refer to section 

4.15 for more information on wake operation. 

The Connect Status Change  (CSC) bit shall be asserted if there is any connection 

change, i.e. connect or disconnect, i.e. a ‘1’ to ‘0’ or ‘0’ to ‘1’ transition of CCS or 

CAS. 

The Port Enabled/Disabled Change (PEC) shall be asserted only by a USB2 

protocol port when the Port Enabled/Disabled (PED) flag transitions to Disabled 

due to a Port_Error, i.e. a ‘1’ to ‘0’ transition of PED. 

The Warm Port Reset Change (WRC) bit is set only when a warm reset completes, 

i.e. a ‘1’ to ‘0’ transition of WPR. 

The Over-current Change (OCC) bit is set when an over-current condition is 

detected, i.e. a ‘0’ to ‘1’ transition of OCA. 

The Port Reset Change (PRC) bit is set when any reset (hot or warm) completes, 

i.e. a ‘1’ to ‘0’ transition of PR or WPR. 

Note: The definition of PRC states that it is set “when any reset processing (Warm or 

Hot) on this port is complete”. If an over-current condition (OCA => ‘1’) occurs 

while a port is in the Reset state, then reset processing is aborted and the PR flag 

shall be cleared. Hardware may or may not set the PRC and WRC flags under 

these conditions. If the OCC flag is set, then the PRC and WRC flags should be 

ignored by software. 

The Port Link State Change (PLC) bit is asserted for specific Port Link State (PLS) 

field transitions. Refer to section 4.19.1 for the specific Root Hub port state 

transitions that will assert PLC. 

The Port Config Error Change  (CEC) bit is set only when a Port Configuration 

error is detected. Note that there is no corresponding port config status or error 

flag in the PORTSC register, so the assertion of CEC is the only means of 

flagging this error condition. 
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The Port Status Change Event reports port status changes on a per-port basis. 

The Port ID field of the Port Status Change Event TRB (shown in Table 88), 

indicates which port has experienced a status change.  

System software shall acknowledge status change(s) by clearing the respective 

PORTSC status change bit(s). The acknowledgment clears the change state for 

that port so future status changes may be reported.  

Note: There are no coherency guarantees between a software read of PORTSC 

register and corresponding Events reflecting PORTSC changes, i.e.,   If software 

reads the PORTSC and sees a change bit set, there is no guarantee that the 

corresponding event has been written into the Event ring.  

Figure 4-34 shows an example creation mechanism for Port Status Change Event  

and PME# generation. 

A ‘0’ to ‘1’ transition of the Port Status Change Event Generation (PSCEG) signal 

shall cause a Port Status Change Event to be generated. PSCEG is an internal 

xHC variable, not directly exposed to software.  

Note: The generation of a Port Status Change Event is triggered by the assertion of the 

PSCEG signal. Due to internal xHC scheduling and system delays, there will be a 

lag between a change bit being set and the Port Status Change Event that it 

generated being written to the Event Ring. If SW reads the PORTSC and sees a 

change bit set, there is no guarantee that the corresponding Port Status Change 

Event has already been written into the Event Ring. 

Note: There are no ordering requirements between Transfer Events and Port Status 

Change Events. e.g. a due to a disconnect, transfer events for the disconnected 

device may be placed on an Event Ring after the Port Status Change Event 

generated by the port. 

The change bits (CSC. PEC, etc.) of each port are ORed together and gated by the 

HCHalted (HCH) flag to form the Port Status Change Event Generation  signal. A 

port shall generate a Port Status Change Event when there is ‘0’ to ‘1’ transition 

of the PSCEG signal. 

The PME wake events detected by each port (PEx) are ORed together and gated 

by the PCI PM PMSCR.PME_En flag. Refer to Appendix A.1.1 for more 

information. PME# shall be asserted when there is a ‘0’ to ‘1’ transition of the 

PME# Generation signal. 



 

 

 

  313 

Figure 4-34: Example Port Change Bit Port Status Change Event Generation 
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Note: A Port Status Change Event may be the result of multiple status change bits 

being set. 

Note: Port Status Change Events for a port are blocked until all status change bits are 

cleared (‘0’), i.e. PSCEG = ‘0’. 

Note: Under some conditions the xHC may not be capable of generating Port Status 

Change Events, i.e. if HCHalted (HCH) = ‘1’ or the Event Ring is full. If the HCHalted 

(HCH) = ‘0’ and the Event Ring is not full, the xHC shall generate Port Status 

Change Events. 

Note: For USB2 ports the Connect Detect signal is identical to CCS. 

For USB3 ports the Connect Detect signal is asserted when SuperSpeed far-end 

receiver terminations are detected, and negated if there is a LTSSM transition 

from the any state to the Rx.Detect state due to Removal(DS Port Only). Refer to 

section 7.5 in the USB3 spec. 

4.19.3 Connect Status Change Reporting 

The xHC shall perform the following operations when Port Power is asserted (PP 

= ‘1’) and a USB Device attach is detected on a Root Hub port: 

1. The CCS bit in the respective PORTSC register is set to ‘1’, indicating that 

a device presence has been detected. 
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2. The CSC bit in the respective PORTSC register is set to ‘1’, indicating that 

a transition has been detected in the CCS bit. 

3. If the assertion of CSC results in a ‘0’ to ‘1’ transition of PSCEG, post a 

Port Status Change Event TRB with the following field values to the Event 

Ring. 

•  TRB Type = Port Status Change Event. 

•  Port ID = Port Number of the Root Hub Port that detected the device attach 

•  Completion Code = Success 

•  Cycle bit = Current Event Ring Producer Cycle State. 

When software parses the Port Status Change Event, it can evaluate the Port ID 

field to determine the Root Hub port that was the source of the change event. 

And examine the port’s PORTSC register to determine that the event was 

generated by a Connect Status Change (CSC = ‘1’) and that the change was an 

Attach (CCS = ‘1’). 

For a USB2 Protocol port, “device presence” is indicated by the PORTSC PLS 

field transitioning from the RxDetect to the Polling state. Software shall reset 

the port to transition it to the U0 state. 

For a USB3 Protocol port, “device presence” is indicated by the PORTSC PLS 

field transitioning from the Polling to the U0 state.  

4.19.4 Port Power 

The Port Power Control (PPC) flag indicates whether the xHC supports port 

power switches. 

Whether an xHC implementation supports port power switches or not, it shall 

automatically enable VBus on all Root Hub ports after a Chip Hardware Reset or 

HCRST. The initial state of an xHCI Root Hub ports shall be the Disconnected 

state, i.e. Port Power (PP) is asserted, and the port is waiting for signaling on the 

USB that indicates a device is attached. 

Note: After a Chip Hardware Reset the xHC is allowed to delay the assertion of the Port 

Power (PP) flag until after the software sets Max Device Slots Enabled 

(MaxSlotsEn) field in Configure (CONFIG) register. This feature allows an 

implementation to hold off device and link power consumption until a driver is 

loaded. 

This requirement means that Root Hub port may report a device is connected 

(CCS and CSC = ‘1’) before the xHC is running (i.e. HCHalted (HCH) = ‘0’), and that 

when software enables the xHC and HCHalted (HCH) transitions to ‘0’, PSCEG 

shall be asserted for each port with a connected device, generating a respective 

Port Status Change Event. In this case: 

•  A USB2 protocol port shall be in the Disabled state. 
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•  A USB3 protocol port shall be in the Enabled state. 

When PP = ‘0’: 

•  The port is forced to the Powered-off state. 

•  CSC shall be asserted if the PP transitioned to ‘0’ due to an over-current condition. If 

PP transitions to ‘0’ for any other condition no status change flags or wake-up events 

shall be asserted. 

•  The port’s receiver and transmitter are disabled, however the port’s receiver 

terminations shall be maintained. 

When PP transitions from ‘0’ to ‘1’: 

•  If device is not connected, then a USB2 or USB3 protocol port shall transition to the 

Disconnected state. 

•  If a device is connected: 

•  A USB2 protocol port shall transition to the Disabled state. 

•  A USB3 protocol port shall transition to the Disconnected state, detect the 

device and immediately transition to the Polling state. 

•  If training is successful, the port sets the CSC flag to ‘1’ and transitions to the 

Enabled state. 

•  If training is not successful63, the port transitions to the Disconnected state. 

•  If a timeout is detected on the first LFPS handshake, the port transitions to 

the Compliance state and no change flag is set. 

•  If the Loopback bit is set in a TS2 Ordered set, the port transitions to the 

Loopback state and no change flag is set. 

Note: While Chip Hardware Reset or HCRST is asserted, the value of PP is undefined. If 

the xHC supports power switches (PPC = ‘1’) then VBus may be deasserted during 

this time. PP (and VBus) shall be enabled immediately upon exiting the reset 

condition. 

Note: Before the xHC driver is unloaded, the driver should clear the Port Power (PP) 

flag of all Root Hub ports to place them into the Disabled state and reduce port 

power consumption. 

4.19.4.1 Enabled U0 States 

There are 4 Enabled state U0 pseudo-states that differ only in the values that 

are configured for the U1 and U2 timeouts. The U1 Timeout and U2 Timeout 

                                                   

63Refer to section 7.5.4 in the USB3 spec for the LTSSM conditions that shall transition a downstream port from the 
Polling to the Rx.Detect state. Note, the LTSSM Rx.Detect state maps to the USB3 Port State Machine 
Disconnected state. 
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values for the port default to ‘0’. The U1 Timeout and U2 Timeout values may be 

set by software by writing the PORTPMSC register at any time.  

Each Root Hub port maintains a logical PM Timers for keeping track of when the 

U1 or U2 inactivity timeout are exceeded. The U1 or U2 timeout values may be 

set by software writing the U1 Timeout and U2 Timeout fields of the USB3 

PORTPMSC register at any time. The PM timers are reset to ‘0’ every time the 

USB3 PORTPMSC register is written. The timers shall be reset every time a 

packet of any type except an isochronous timestamp packet is sent or received 

by the port’s link. The U1 PM Timer shall be accurate to +1/- 0 µs. The U2 PM 

Timer shall be accurate to +500/-0 µs. 

The port behaves as follows for the various combinations of U1 Timeout and U2 

Timeout values: 

U1 Timeout = 0, U2 Timeout = 0 

•  This is the default state before the PORTPMSC register is written. 

•  The port’s link shall reject all U1 or U2 transition requests by the link partner. 

•  The PM Timers may be disabled and the PM Timer values shall be ignored. 

•  The port’s link shall not attempt to initiate transitions to U1 or U2. 

U1 Timeout = X64 > 0, U2 Timeout = 0 

•  The port’s link shall reject all U2 transition requests by the link partner. 

•  The PM timers shall be reset when this state is entered and the link is active. 

•  The port’s link shall accept U1 entry requests by its link partner unless the xHC has 

one or more packets/link commands to transmit on the port. 

•  If the U1 Timeout = FFh, the port shall be disabled from initiating U1 entry but shall 

accept U1 entry requests by the link partner unless the xHC has one or more 

packets/link commands to transmit on the port. 

•  If the U1 Timeout < FFh and the U1 PM Timer reaches X, the port’s link shall initiate 

a transition to U1. In this case the delay defined by the U1 Timeout field represents 

an amount of inactive time in U0. 

U1 Timeout = 0, U2 Timeout = Y65 > 0 

•  The port’s link shall reject all U1 transition requests by the link partner. 

•  The PM Timers shall be reset when this state is entered and the link is active. 

                                                   

64The value defined by the U1 Timeout field. Refer to Table 5-28 for U1 Timeout values. 

65The value defined by the U2 Timeout field. Refer to Table 5-28 for U2 Timeout values. 
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•  The port’s link shall accept U2 entry requests by its link partner unless the xHC has 

one or more packets/link commands to transmit on the port. 

•  If the U2 Timeout = FFh, the port shall be disabled from initiating U2 entry but shall 

accept U2 entry requests by the link partner unless the xHC has one or more 

packets/link commands to transmit on the port. 

•  If the U2 Timeout < FFh and the U2 PM Timer reaches Y, the port’s link shall initiate 

a direct transition from U0 to U2. In this case the delay defined by the U2 Timeout 

field represents an amount of inactive time in U0. 

U1 Timeout =X > 0, U2 Timeout = Y > 0 

•  The PM Timers shall be reset when this state is entered and is active. 

•  The port’s link shall accept U1 or U2 entry requests by its link partner unless the xHC 

has one or more packets/link commands to transmit on the port. 

•  If the U1 Timeout = FFh, the port shall be disabled from initiating U1 entry but shall 

accept U1 entry requests by the link partner unless the xHC has one or more 

packets/link commands to transmit on the port. 

•  If the U1 Timeout < FFh and the U1 PM Timer reaches X the port’s link shall initiate a 

transition to U1. 

•  If the U2 Timeout < FFh and the U2 PM Timer reaches Y the port’s link shall initiate a 

direct transition from U1 to U2. In this case the delay defined by the U2 Timeout field 

represents an amount of time in U1. 

•  If the U2 Timeout = FFh, the port shall be disabled from initiating U2 entry but shall 

accept U2 entry requests by the link partner unless the xHC has one or more 

packets/link commands to transmit on the port. 

A port transitions to one of the Enabled U0 states (depending on the U1 Timeout 

and U2 Timeout values) in any of the following situations:  

•  From any state if software writes the PORTSC register and sets the PLS field to U0 

(‘0’). 

•  From U1 if the link partner successfully initiates a transition to U0. 

•  From U2 if the link partner successfully initiates a transition to U0. 

•  From U1 if the xHC successfully initiates a transition to U0 after receiving a packet 

routed to the port. 

•  From U2 if the xHC successfully initiates a transition to U0 after receiving a packet 

routed to the port 

•  From an attempt to transition from the U0 to the U1 state if the downstream port’s 

link partner rejects the transition attempt 

•  From an attempt to transition from the U0 to the U2 state if the downstream port’s 

link partner rejects the transition attempt 
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•  From U3 if software writes the PORTSC register and sets the PLS field to U3 (‘3’) and 

the Root Hub port received wakeup signaling while it was in U3. 

4.19.5 Port Reset 

Resetting a Root Hub port resets the attached USB device, and if successful; the 

port logic reports the speed of the attached device and transitions the port to 

the Enabled state. Whether successful or not a change bit is set (‘1’). And if 

setting the change bit results in a ‘0’ to ‘1’ transition of PSCEG, then a Port 

Status Change Event shall be generated. 

When system software writes the PORTSC register with the PR bit set to ‘1’, the 

xHC shall: 

1. Update the PORTSC register: 

•  Set the PR bit (‘1’). 

•  Clear the PED bit to the disabled state (‘0’). 

2. Execute the appropriate reset signaling to the device attached to the 

port. 

If the bus reset sequence completes successfully, the xHC shall update the 

PORTSC register: 

•  Set the PLS field to U0 (‘0’). 

•  Clear the PR bit (‘0’). 

•  Set PED to the enabled state (‘1’). 

•  Set the PRC bit (‘1’). 

•  For a USB3 protocol port, if a Hot Reset transitioned to a Warm Reset, set the 

WRC bit (‘1’). 

•  Set Port Speed field to the speed of the newly attached device. 

If the bus reset sequence does NOT complete successfully, the xHC shall update 

the PORTSC register: 

•  Set the PLS field to RxDetect (‘5’). 

•  Clear the PR bit (‘0’). 

•  Set the PRC bit (‘1’). 

•  For a USB3 protocol port, if a Hot Reset transitioned to a Warm Reset, set the 

WRC bit (‘1’). 

•  Set the Port Speed field to Undefined Speed (‘0’). 

•  Clear the CCS bit (‘0’). 

If setting PRC results in a ‘0’ to ‘1’ transition of PSCEG, then generate a Port 

Status Change Event with the following field values. 

•  TRB Type = Port Status Change Event. 
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•  Port ID = Port Number of the Root Hub Port that detected the Reset change 

transition. 

•  Completion Code = Success. 

•  Cycle bit = Current Event Ring Producer Cycle State. 

Note: Only a USB3 protocol port may fail the bus reset sequence. USB2 protocol ports 

never fail the bus reset sequence. 

Note: When PR transitions from ‘1’ to ‘0’, the USB device is in the “Default state” (i.e. 

Responding to USB Device Address 0). System software should immediately 

transition the device to the Address state (with an Address Device Command) or 

disable the port, to allow the enumeration of other newly attached USB devices. 

Note: Speed detection is performed by the port hardware during the bus reset 

sequence, hence the Port Speed field of the PORTSC register shall not be 

considered valid by software until after the PR bit transitions from a ‘1’ to a ‘0’. 

Note: A “Successful Reset” is determined by the xHC hardware for the attached device. 

4.19.5.1 Warm Port Reset 

The USB3 specification distinguishes between “Hot” and “Warm” port reset 

sequences. A Warm Reset performs all the functions of Hot Reset, e.g. 

transitioning a port to the Enabled state and resetting the USB device to the 

Default state, however it also resets a USB3 link, forcing the link to enter the 

Rx.Detect state and re-exchange link configuration information. A Warm Reset 

also takes longer than a Hot Reset to execute.  

The operations performed during a Hot Reset are described in the section above 

(4.19.5). The operations performed for a Warm Reset are similar, except that 

software initially writes the PORTSC register with the Warm Port Reset (WPR) bit 

set to ‘1’. The Port Reset (PR) flag shall be ‘1’ while Hot or Warm Reset is being 

executed. The Port Reset Change (PRC) flag shall be set (‘1’) when the reset 

execution is complete and PR transitions to ‘0’. 

If the ‘1’ to ‘0’ transition of PR was due to a software initiated Warm Reset, or 

Hot Reset that transitioned to a Warm Reset because of errors 66, the Warm Reset 

Change (WRC) flag (and PRC) shall be asserted (‘1’).  

Note: The PORTSC WPR and WRC bits only apply to USB3 protocol ports. The bits shall 

be RsvdZ for USB2 protocol ports. 

                                                   

66Refer to section 10.3.1.6 of the USB3 spec, “Note: If the port initiates a hot reset on the link and the hot reset 
TS1/TS2 handshake fails a warm reset is automatically tried.” 
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4.19.6 Port Test Modes 

For USB2 protocol Root Hub ports, the xHC shall implement the port test modes 

Test_J_State, Test_K_State, Test_Packet, Test_Force_Enable, and 

Test_SE0_NAK as described in the USB2 Specification. For USB3 protocol Root 

Hub ports, no test modes are supported. System software is allowed to have at 

most one port in test mode at a time. Placing more than one port in test mode 

may yield undefined results. The required, per port test sequence is:  

•  Disable all Device Slots. 

•  All ports shall be in the Disabled state (PP = ‘0’). 

•  Set the Run/Stop (R/S) bit in the USBCMD register to a ‘0’ and wait for the 

HCHalted (HCH) bit in the USBSTS register, to transition to a ‘1’. Note that an xHC 

implementation shall not allow port testing with the R/S bit set to a ‘1’. 

•  Set the Port Test Control field in the port under test PORTPMSC register to the 

value corresponding to the desired test mode. 

•  For USB2 ports, if the selected test is Test_Force_Enable, then after 

selecting the test the Run/Stop (R/S) bit in the USBCMD register shall then 

be transitioned back to ‘1’ by software, in order to enable transmission of 

SOFs out of the port under test. 

•  When the test is complete, if the xHC is running system software shall clear the 

R/S bit and ensure the host controller is halted (HCHalted (HCH) bit is a ‘1’). 

•  Terminate and exit test mode by setting HCRST to a ‘1’. 

4.19.7 Port Routing and Control 

A USB3 hub is the logical combination of two hubs: a USB 2.0 hub and an 

Enhanced SuperSpeed hub, where each hub operates on a separate upstream 

facing connection (data bus). When a USB3 Hub is attached to a Root Hub port it 

may actively utilize both the USB2 and Enhanced SuperSpeed connections, 

depending on the speed of the devices attached to the hub’s downstream facing 

ports. Note that a USB Peripheral Device is required to only utilize one 

connection at a time. 

In a USB3 hub, two independently addressable hub ports exist for each physical 

down stream connector; a USB2 compatible port accessed through the USB2 

connection and a USB3 compatible port accessed through the SuperSpeed 

connection. The Root Hub of the xHCI emulates this operation by defining a 

Root Hub PORTSC register for each connection type; USB2 (Low-/Full-/High-

Speed) or USB3 (Enhanced SuperSpeed).  

Due to pin-out, power, or other implementation issues an xHC implementation 

may support a different number of USB2 connections than USB3. The “type” of a 

USB connection is defined by the protocol that it supports. The xHCI Supported 

Protocol Extended Capability  (defined in section 7.2) identifies the set of Root 



 

 

 

  321 

Hub Ports associated with a specific protocol. Refer to Table 7-11 for a list of 

the supported protocols. 

Note: A Root Hub port that supports the USB3 protocol is comprised of a PORTSC, a 

USB3 PORTPMSC, and PORTLI register (sections 5.4.8, 5.4.9.1, and 5.4.10.1), and 

Root Hub port that supports the USB2 protocol is comprised of a PORTSC and a 

USB2 PORTPMSC register (refer to sections 5.4.8 and 5.4.9.2). 

The mapping of xHCI Root Hub Ports to the physical USB connectors of a system 

is defined by platform implementations and outside the scope of this 

specification. Refer to Appendix D for a method of mapping xHCI Root Hub ports 

to system USB connectors. 

Note: xHC Root Hub ports are numbered from 1 to MaxPorts. MaxPorts is defined in 

the HCSPARAMS1 register (5.3.3). 

Consider the example of an xHC implementation illustrated in Figure 4-35 that 

supports two protocols (USB2 and USB3) and 6 connections, where 4 

connections are USB2 compatible and 2 are USB3 compatible. In this case, two 

xHCI Supported Protocol Extended Capability  data structures would be declared. 

If the USB2 xHCI Supported Protocol Extended Capability  data structure defined 

the Compatible Port Offset equal to ‘1’ and the Compatible Port Count equal to 

‘4’, and the USB3 xHCI Supported Protocol Extended Capability  data structure 

defined the Compatible Port Offset equal to ‘5’ and the Compatible Port Count 

equal to ‘2’, then Root Hub Ports 1 through 4 would reflect the attachment of 

USB2 devices, and Root Hub Ports 5 and 6 would reflect the attachment of USB3 

devices. 

Figure 4-35: Port Routing Example 

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6

USB2 Ports

USB2 Compatible Port Count = 4

USB3 Ports

USB3 Compatible Port Count = 2

USB2 Compatible Port Offset = 1 USB3 Compatible Port Offset = 5

1 2 3 4
Physical USB 

Connectors

Root Hub 

PORTSC 

Registers

USB Cables

USB3 compatible 

connectors

USB2 compatible 

connectors
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 IMPLEMENTATION NOTE 

Port Power 

Implementations shall OR together the output of the PORTSC register Port Power pins 

for Root Hub Ports that map to the same Physical USB Connector. Refer to section 

10.10 in the USB3 spec for more information on hub port power control. 

In Figure 4-35, asserting the Port Power flag in Root Hub Port 3 or 5 shall assert Vbus to 

Physical USB Connector 3, asserting the Port Power flag in Root Hub Port 4 or 6 shall 

assert Vbus to Physical USB Connector 4, etc. 

4.19.8 Cold Attach Status 

For USB2 protocol ports the Current Connect Status (CCS) flag is capable of 

reporting a device attach in any xHC power state. However, for USB3 protocol 

ports CCS is asserted only after the link has successfully trained and advanced 

to the U0 state. This is a problem if an xHC implementation is incapable of 

advancing a link to U0 while in the D3 state, which can occur if the LTSSM clocks 

required to train the link are not running. And without clocks, CCS cannot be 

used to assert PME#. 

The Cold Attach Status (CAS) flag addresses this issue by asserting itself (‘1’) if:  

•  SuperSpeed Far-end Receiver Terminations are detected, 

•  The xHC is placed into the D3 state, and is in a low power state where the LTSSM and 

the controller clocks are stopped, or the controller is powered down (e.g. the LTSSM 

is unable to Train)), and 

•  The LTSSM is not in the Error, U3, or Disabled state. 

Note that CAS is only asserted under these circumstances. It is not a general 

purpose indicator that a USB3 device is attached. Also, CAS does not apply to 

USB2 protocol ports and shall always be ‘0’.  

A transition of CAS shall assert Connect Status Change (CSC). 

Before software places the xHC into the D3 state it should perform the following 

operations: 

•  Halt any device activity. 

•  For each USB3 device that it wants to be awakened by: 

•  Issue a SetFeature(FUNCTION_SUSPEND, Function Remote Wake Enable) 

request. 

•  For all connected devices: 

•  Transition their Root Hub ports to the Enabled:U3 state (suspend). 
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•  Set the PORTSC Wake On Disconnect Enable (WDE) flag, if wake on disconnect 

is desired. 

•  For all ports in the Disconnected state: 

•  Set the PORTSC Wake On Connect Enable (WCE) flag, if wake on connect is 

desired. 

•  For all ports: 

•  Set the PORTSC Wake On Over-current Enable (WOE) flag, if wake on over-

current is desired. 

The state of any port in the Disconnected , Powered-off, or Disabled state is not 

changed. 

This approach allows wake enabled devices to wake up the system, provides 

suspend current to all other devices, and enables PME# to be asserted if a 

disconnect, connect, or overcurrent condition is detected.  

When software is awaked by a PME it should:  

•  Turn on the Core Power Well to transition the xHC from the D3cold to the D0 state. 

•  Restore the Scratchpad, and all xHC register values and memory data structures that 

were saved before the xHC was placed in the D3cold state. 

•  Set the xHC running (R/S = ‘1’). 

•  Follow the recommendations in section 4.15.2.2 for resuming any Root Hub ports 

that it had previously suspended. 

•  Check all remaining xHC Root Hub ports for CAS = ‘1’ and issue a Warm Port Reset 

(WPR) to any port if it is asserted. 

The assertion of WPR clears CAS. 

Note: The assertion of CCS may also clear CAS if, after turning on the Core Power Well, 

the LTSSM of a port is able to successfully transition to the U0 state.  

4.20 Scratchpad Buffers 

The Scratchpad Allocation mechanism of the xHCI allows the xHC to request one 

or more PAGESIZE buffers of system memory for storing internal state. The 

PAGESIZE register is defined in section 5.4.3.  

The number of pages that the xHC requires is identified by the Max Scratchpad 

Buffers Hi and Lo fields in the HCSPARAMS2 register (section 5.3.4). An xHC 

implementation may declare zero Max Scratchpad Buffers. 

A Scratchpad Buffer is a PAGESIZE block of system memory located on a 

PAGESIZE boundary. 
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System software shall allocate the Scratchpad Buffer(s) before placing the xHC 

in to Run mode (Run/Stop (R/S) = ‘1’). 

The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry 

0 of the Device Context Base Address Array points to the Scratchpad Buffer 

Array. The Scratchpad Buffer Array data structure is described in section 6.6.  

Features of xHC Scratchpad Allocation: 

•  The xHC may request multiple Scratchpad Buffers. 

•  When accessing a Scratchpad Buffer the xHC shall not access system memory 

addresses outside of the PAGESIZE memory block allocated by system software. 

•  System software shall not read or write a Scratchpad buffer. System software writes 

to the Scratchpad buffer memory may result in undefined xHC operation. 

•  The content of the Scratchpad Buffers shall remain intact across system power 

events including D3.cold if SPR = ‘1’. Refer to the SPR definition in Table 5-11. 

The following operations take place to allocate Scratchpad Buffers to the xHC:  

1. Software examines the Max Scratchpad Buffers Hi and Lo fields in the 

HCSPARAMS2 register. 

2. Software allocates a Scratchpad Buffer Array with Max Scratchpad 

Buffers entries. 

3. Software writes the base address of the Scratchpad Buffer Array  to the 

DCBAA (Slot 0) entry. 

4. For each entry in the Scratchpad Buffer Array: 

a. Software allocates a PAGESIZE Scratchpad Buffer.  

b. Software clears the Scratchpad Buffer to ‘0’.  

c. Software writes the base address of the allocated Scratchpad 

Buffer to associated entry in the Scratchpad Buffer Array. 

Note: If the Scratchpad Restore (SPR) field in the HSCPARAMS2 register = ‘1’, then the 

xHC shall use Scratchpad Buffers to store its internal state when executing the 

Save State operation. For the Restore State operation to work successfully, the 

content of the Scratchpad Buffers shall be intact when exiting a power down 

state (D3.cold). Refer to section 4.23.2 for more information. 

Note: xHC references to the Scratchpad Buffer Array and Scratchpad Buffers should 

not snoop. Refer to section 4.18.2.2. 
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 IMPLEMENTATION NOTE 

FSC and Context handling by Save and Restore  

The xHC Contexts provide public and private areas, e.g. The EP State, TR Dequeue 

Pointer, etc. fields in the Endpoint Context are public, and the xHCI Reserved (Opaque / 

RsvdO) areas are private. The xHCI spec leaves it as an implementation decision 

whether the Endpoint Context Opaque areas, the Scratchpad, or internal memory is 

used for caching/saving internal endpoint state. 

Section 4.23.2 describes the sequence of events that should take place to save and 

restore the state of the xHC when suspending a system. The 1.0 specification assumes 

that Stop Endpoint Commands would push public and private endpoint state into 

memory, and the Save State operation would push all remaining internal xHC state into 

memory, so that system software could save it, and restore it later. 

If an implementation uses the Scratchpad or non-volatile internal memory to cache 

endpoint state rather than Endpoint Contexts, then the Save State operation can flush 

that state to the Scratchpad and software does not have to issue Stop Endpoint 

Commands as part of the suspend process. The Force Save Context Capability (FSC) 

flag was defined to distinguish between xHCI implementations that require explicit Stop 

Endpoint Commands to all endpoints as part of the suspend process (FSC = ‘0’) , and 

those that only require Stop Endpoint Commands for Running:Busy endpoints (FSC = 

'1'). 

Note that some xHC implementations support FSC-like behavior but predate the 

definition of the flag, as a result, some OS drivers assume FSC-like behavior is supported, 

and do not issue Stop Endpoint Commands to all endpoints before executing a Save 

State operation. It is highly recommended that all new xHC implementations support FSC 

to ensure compatibility with legacy OS drivers. 

 

4.21 PCI Express 

Note: This section utilizes PCI Express (PCIe) terminology and refers to PCIe constructs 

(Physical Layer, Receiver Errors, Data Link or Transaction layers, etc.). Refer to the 

PCIe Specification for more information on Error Events and Error Reporting and 

Configuration Registers. 

4.21.1 Configuration sharing among PCI functions 

An xHC contains a single physical PCIe core interface. In Normal mode, the xHCI 

is designed so that all USB devices (Device Slots 0-n) appear in a single function. 

In Virtualization mode, the xHCI is designed to appear as distinct Virtual 

Functions, where each of the USB devices (Device Slots 0-n) may be mapped 

exclusively to a specific Virtual Function. In Normal case, the xHCI implements, 
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amongst other registers, the PCIe device header space as described in section 

5.2. In Virtualization case, the VMM implements the PCIe device header space 

through emulation. 

4.21.2 Bus Master Enable (BME) 

System software may occasionally need to disable the bus mastering capability 

of the xHC. In a PCI system, this is accomplished by setting the Bus Master 

Enable (BME) bit of the Device Control Register in PCI Configuration register 

space, to '0'. The xHC should be Halted, i.e. with the Run/Stop (R/S) bit set to '0', 

and HCHalted (HCH) verified as being '1' before system software disables bus 

master activity by clearing the BME bit. If the BME bit is set to '0' when the xHC is 

running, the xHC may treat this as a Host Controller Error, asserting HCE (‘1’) and 

immediately halt (R/S = ‘0’ and HCH = ‘1’). Recovery from this state will require 

an HCRST. Refer to section Internal Errors for more information. 

4.22 xHCI Extended Capabilities 

4.22.1 Pre-OS to OS Handoff Synchronization 

A system configuration may include support in the BIOS (also referred herein as 

Pre-OS software) for control of the xHC. The OS Handoff Synchronization 

capability provides the mechanisms to allow a BIOS to enable SMI support for 

xHC events and also a set of registers that are used to implement a semaphore 

to synchronize ownership changes of the xHC. The hand-off mechanism should 

be clean and precise and each participant shall adhere to the protocol defined 

below. Failure to do so will result in two software agents believing they each 

have exclusive ownership of the xHC and attempt to use the controller 

concurrently. 

The OS Handoff Synchronization xHCI extended capability  includes two 

contiguous, 32-bit registers in xHC MMIO space. The first register is the USB 

Legacy Support Extended Capability register (USBLEGSUP), refer to section 7.1.1 

for the field definitions. This register is a standard xHCI extended capability 

pointer, including an xHCI Extended Capability ID field and a link to the next 

xHCI extended capability. 

The upper 16 bits of this register contain ownership semaphores. One 

semaphore is for the operating system (OS) and one is for the BIOS. These 

semaphores are readable and writable. These fields are in adjacent bytes, which 

allows each agent (OS or BIOS) to update their respective semaphore without 

overwriting the other ownership semaphore. 

The second 32-bit register is the USB Legacy Support Control/Status  register 

(USBLEGCTLSTS), refer to section 7.1.2 for the field definitions. This register 

defines a set of control bits that BIOS can use to enable SMIs and a set of read-
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only bits that shadow a subset of the bits from the USBSTS register. The specific 

USBSTS register bits that are shadowed represent all of the xHC events that can 

be detected and enabled to generate an interrupt. The USBLEGCTLSTS register 

provides the mechanism for BIOS to map all xHC events, all necessary 

reconfiguration events and OS ownership requests to SMIs. 

Following are two state machines that illustrate the proper protocol (e.g. 

updates to the ownership semaphores) that BIOS and OS shall adhere to in 

order to coherently request and/or relinquish ownership of the xHC. The 

conventions used in these figures are: 

•  Solid arcs denote single or multiple events that result in a state change. 

•  Dotted lines with arrows indicate side effects that take place. When attached to a 

solid arc, interpretation is that as a result of the event, the side effect occurs. 

Figure 4-36 illustrates the protocol state machine for the BIOS ownership. The 

OS Handoff Synchronization registers are located in the Aux Power well, so  any 

system event that removes power from the Aux Power well will result in these 

registers being reset to their default values when the Aux Power well is restored.  

Figure 4-36: BIOS Ownership State Machine 

BIOS Not Owned

Aux Well 

power on
HC BIOS Owned semaphore = 0

HC OS Owned semaphore = 0

BIOS Owned
1

POST

HC BIOS Owned semaphore = 0

HC BIOS Owned semaphore = 1HC BIOS Owned semaphore = 1

SMI on OS Ownership Change = 1

. and. HC OS Owned semaphore = 0

Notes:
1
 The BIOS is allowed to claim control of the xHCI as a result of POST (Power On System Test) or as

   a result of the OS relinquishing control of the xHCI. The BIOS must never attempt to claim the xHCI

   once it has relinquished control.

SMI on OS Ownership Change = 1

. and. HC OS Owned semaphore = 1

 

When power is applied to the Aux Power well, the BIOS Owned and OS Owned 

semaphores in the USBLEGSUP go to their default values (e.g. ‘0’s). BIOS may 

take ownership of the xHC by setting the BIOS Owned semaphore to a ‘1’. BIOS is 

only allowed to take ownership of the xHC when the OS Owned bit is a ‘0’. BIOS 

then may configure the SMI events it needs including the SMI on OS Ownership 

Change. The BIOS now owns the xHC, so it can configure the controller, 

enumerate the bus and use the devices found as necessary. 
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Eventually, the operating system will load. If the operating system has support 

for the xHC, it will need exclusive control over the xHC. The OS driver shall 

utilize the protocol defined in Figure 4-37 to request ownership of the xHC 

before it takes ownership and uses the controller. The OS driver initiates an 

ownership request by setting the OS Owned semaphore to a ‘1’. The OS waits for 

the BIOS Owned bit to go to a ‘0’ before attempting to use the xHC. The time 

that OS shall wait for BIOS to respond to the request for ownership should not 

exceed ‘1’ second. Note that there is no similar SMI-type of event defined 

allowing BIOS to request ownership from the OS. 

If the BIOS has set SMI on OS Ownership Enable in the USBLEGCTLSTS register 

to a ‘1’, it receives an SMI when the OS Driver sets the OS Owned semaphore to a 

‘1’ (above). BIOS observes that OS has  changed the value of the OS Owned bit to 

a ‘0’, there-by notifying BIOS that it intends to relinquish control of the xHC.  

Below are some recommended steps for software implementers to consider just 

prior to the transition of xHC ownership. 

1. Gracefully pause any outstanding bus activity. (e.g. allow completion of 

in-flight transactions, suspend signaling, reset signaling, etc.)  

2. Disable all interrupts,  

3. Save all critical state from the xHC and relevant USB devices (e.g. Human 

Interface Device, Mass Storage, etc.) 

4. Enable “Wake” events from USB devices (e.g. Human Interface Device, 

Network, etc.) before suspending platform. 

5. Disable all other USB root ports not enabled for wake events in step 4.  
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Figure 4-37: OS Ownership State Machine 

OS Not Owned

Driver Load

OS Owned

(DX)

HC OS Owned semaphore = 1
1

HC BIOS Owned semaphore = 1

Notes:
1
 Modifications to the OS Owned semaphore results in an SMI when the SMI on OS Ownership Enable

  bit in the USBLEGCTLSTS is set to a one.

OS Request

Ownership

HC BIOS Owned semaphore = 0

HC OS Owned semaphore = 0
1

 

In the event that the OS driver unloads and/or wants to relinquish ownership of 

the xHC, it shall set the OS Owned semaphore to a ‘0’. Again, if BIOS has set SMI 

on OS Ownership Enable  in the USBLEGCTLSTS register to a ‘1’, it receives an 

SMI when the OS Driver sets the OS Owned semaphore to a ‘0’. The BIOS 

observes that the OS has relinquished control and can then take over control of 

the xHC as appropriate. Once system software has relinquished control of t he 

controller, it shall then request ownership as described above.  

Note that this mechanism is intended only to ensure that an exchange of 

ownership of the xHC can be accomplished in a very deterministic and reliable 

manner. 

4.22.2 Debug Capability Operational Model 

Refer to section 7.6. 

4.22.3 Virtualization 

Refer to section 8. 

4.23 Power Management 

This section summarizes the various power management capabilities of the 

xHCI. 

Throughout this specification particular registers and features will be identified 

as requiring special consideration from a power delivery prospective. Any 

discussion of power delivery in this specification is with the primary objective of 

improving interoperability across a wide range of implementations without 
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specifying a specific method of power delivery. The phrase “required to maintain 

state across power cycles”; or reference to configuration, command and status 

registers defined expressly for support of the host controller’s power 

management features will help the reader identify those constructs that require 

special attention. 

The reader should also remain aware that common industry specifications may 

impose particular power delivery requirements that the design shall conform to 

for compliance under that industry standard. 

Note: The specification and white paper references provided in this section do not 

represent an exhaustive list and the reader is encouraged to refer to other 

specifications that may be relevant to the designer’s specific implementation. 

4.23.1 Power Wells 

This section describes the expected feature of the Core Power and Aux Power 

(Auxiliary) Wells.  

The power well requirements on a system board/add-in card xHC 

implementation include: 

•  A common ground plane across the entire system. 

•  Split voltage (i.e. Aux Power and Core Power) wells are allowed. 

•  The Aux Power well voltage supply shall be present whenever AC power is applied 

to the system (if supported). 

•  Core power may be switched off by the system. 

Registers in the Aux Power well are reset under different conditions than the 

registers in the Core well. The Aux Power well, memory-space registers are 

initialized to their default values in the following cases:  

•  Initial power-up of the Aux Power well, or 

•  a value of ‘1’ in HCRST (refer to Section 5.4.1) 

Note: The USB Legacy Support Capability registers are an exception to the Aux Power 

well reset rule. Refer to section Pre-OS to OS Handoff Synchronization for more 

information. 

The Core well, memory-space registers are initialized to their default values in 

the following cases: 

•  Assertion of Chip Hardware Reset, or 

•  a value of ‘1’ in HCRST, or 

•  transition from the PCI PM D3hot state to the D0 state 
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PCI configuration-space registers implemented in the Aux Power well are reset 

under different conditions than the registers in the Core well. The Aux Power 

well, configuration-space registers are initialized to their default value in the 

following case: 

•  Initial power-up of the Aux Power well. 

The Core well PCI configuration-space registers are initialized to their default 

values in the following cases: 

•  Assertion of the system (Core-well) hardware reset, or 

•  transition from the PCI PM D3hot state to the D0 state. 

After initial power-on or HCRST (Chip Hardware Reset or via HCRST bit in the 

USBCMD register), all of the Operational and Runtime Registers shall be at their 

default values, as defined in sections 5.4 and 5.5. After a “light” hardware reset 

(via the Light Host Controller Reset  (LHCRST) bit in the USBCMD register), only 

the Operational and Runtime Registers not contained in the Aux Power well shall 

be at their default values. And all registers in the Aux Power well shall maintain 

the values that had been asserted prior to asserting Light Host Controller Reset  

(LHCRST). Refer to section 5.4.1 for more information.  

Exceptions to these reset conditions will be defined in the associated register 

section. 

Note: The method for enabling or disabling the Core Power well voltage supply (e.g. to 

transition from a D3hot to a D3cold state) is outside the scope of this 

specification. Typically a platform level power control mechanism is used. 

4.23.2 xHCI Power Management 

When system software decides to power down the xHC with the intent of 

resuming operation at a later time, it shall read the xHC registers and save their 

state. After powering up the xHC, but before placing the xHC into Run mode 

(Run/Stop (R/S) = ‘1’), system software shall restore all xHC registers.  

Additionally, xHC implementations maintain internal state that is not visible to 

software through its register set. This state shall also be saved and restored for 

the xHC to correctly recover from a power event, e.g. the internal Ring Cycle 

State (RCS) flag associated with the ERDP, the set of Enabled Device Slots, etc. 

The xHCI provides two control flags to enable this operation: Save State and 

Restore State. These flags reside as bits in the USBCMD register.  

The Save State and Restore State flags may only be set when the xHC is Stopped 

(Run/Stop (R/S) = ‘0’). 

Required system software steps for saving xHC state and powering it down are:  
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1. Stop all USB activity by issuing Stop Endpoint Commands for Busy 

endpoints in the Running state. If the Force Save Context Capability  (FSC 

= '0') is not supported, then Stop Endpoint Commands shall be issued for 

all Idle endpoints in the Running state as well. The Stop Endpoint 

Command causes the xHC to update the respective Endpoint or Stream 

Contexts in system memory, e.g. the TR Dequeue Pointer, DCS, etc. fields. 

Refer to Implementation Note “0”. 

Note: Force Save Context Capability support (i.e. FSC = '1') shall be mandatory for all 

xHCI 1.1 compliant xHCs. 

2. Ensure that the Command Ring is in the Stopped state (CRR = '0') or Idle 

(i.e. the Command Transfer Ring is empty), and all Command Completion 

Events associated with them have been received.  

3. Stop the controller by setting Run/Stop (R/S) = ‘0’. 

Note: If FSC = '1', then software shall ensure that any Running endpoint that did not 

receive a Stop Endpoint Command is Idle when Run/Stop (R/S) is cleared. 

4. Read the Operational and Runtime registers in the following order: 

USBCMD, DNCTRL, DCBAAP, CONFIG, ERSTSZ, ERSTBA, ERDP, IMAN, and 

IMOD and save their state. 

5. Set the Controller Save State (CSS) flag in the USBCMD register (5.4.1) 

and wait for the Save State Status (SSS) flag in the USBSTS register 

(5.4.2) to transition to ‘0’. 

Note: The Save State operation shall save all internal xHC Slot, Endpoint, Stream or 

other state to the memory locations described in steps 6 and 7 that is necessary 

for the successful restoration of xHC state, as described below. 

6. If Max Scratch Pad Buffers  is > ‘0’ and Scratchpad Restore (SPR) = ‘1’, 

then save an image of the Scratchpad Buffers.  

7. Save a memory image of the DCBAA, Contexts and other data structures 

referenced by the xHC. 

8. Remove Core Well power. 

Note: The DCBAA and the complete tree of data structures that it references (Device 

Contexts, Transfer Rings, Stream Arrays, etc.), as well as the Command and Event 

Rings, and Scratchpad Buffers shall be preserved by system software. 

Required system software steps for powering up and restoring xHC state are:  

1. Enable Core Well power. 

2. Restore the saved memory image of the DCBAA, Contexts and other data 

structures to their original physical locations in system memory, so that 

any addresses saved in steps 4 and 6 above reference valid objects. 
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3. If an image of the Scratchpad Buffers was saved, restore it. 

4. Restore the Operational and Runtime Registers with their previously 

saved state in the following order: DNCTRL, DCBAAP, CONFIG, ERSTSZ, 

ERSTBA, ERDP, IMAN, and IMOD. 

5. Set the Controller Restore State  (CRS) flag in the USBCMD register (5.4.1) 

to ‘1’ and wait for the Restore State Status (RSS) flag in the USBSTS 

register (5.4.2) to transition to ‘0’.  

6. Reinitialize the Command Ring, i.e. so its Cycle bits are consistent with 

the RCS value to be written to the CRCR. 

7. Write the CRCR with the address and RCS value of the reinitialized 

Command Ring. Note that this write will cause the Command Ring to 

restart at the address specified by the CRCR. 

8. Enable the controller by setting Run/Stop (R/S) = ‘1’. 

9. Software shall walk the USB topology and initialize each of the xHC 

PORTSC, PORTPMSC, and PORTLI registers, and external hub ports 

attached to USB devices. 

10. Restart each of the previously Running endpoints by ringing their 

doorbells. 

Note: It is critical for correct xHC restore operation that all system memory data 

structures referenced by xHC registers when it is stopped are intact and reside 

at the same physical addresses when it is restarted. Software shall not modify 

any Contexts, data structures, or Opaque areas referenced by the xHC when it is 

stopped if the intent is to use the Restore State operation to restart the xHC. 

Note: After a Save or Restore State operation completes, the Save/Restore Error (SRE) 

flag in the USBSTS register should be checked to ensure that the operation 

completed successfully. 

Note: To properly restore the xHC it is critical that the registers are written (step 4) 

before the Restore operation is performed (step 5). The Restore operation 

overwrites internal default values asserted by a xHC reset. 

Note: Some legacy software implementations may not follow the precise ordering of 

the steps described above. 

The internal state of the xHC shall be valid until it enters the D3cold state. When 

the xHC is Stopped, software may issue a Save State operation with the 

expectation of subsequently placing the xHC in the D3cold state. If prior to 

setting the xHC into the D3cold state, software decides to restart the xHC, then a 

Restore State operation is not required. 
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4.23.2.1 Save and Restore Operations 

The xHC Save and Restore State operations shall save and restore any internal 

state necessary to restore the xHC to the same operational state that it is was in 

when the previous Save was performed, irrespective of whether it uses the 

Scratchpad Buffer or a proprietary memory to save the state.  

For example, the BIOS may save the state of xHC before it hands off the xHC to 

the OS, then restore that state when control of the xHC is returned to it. 

However, while the OS has control, it may execute its own Save and Restore 

State operations every time it transitions in and out of  a Suspend or Hibernate 

states. 

The Save and Restore operations may be used to accelerate the initialization 

process of the xHC. Rather than resetting the xHC and issuing multiple 

commands to bring Device Slots on line, software could take a “snapshot” of the 

xHC state after set of Device Slots is configured. The snapshot could then be 

used to bring the xHC to the same state, without having to run through the initial 

command sequence. This approach may be useful to quickly bring a set of 

permanently attached USB devices on a motherboard on line, i.e. the USB 

topology is fixed. 

If the Scratchpad Restore (SPR) flag is set in the HCSPARAMS2 register, the xHC 

Save and Restore State operations use the Scratchpad Buffer space for storing 

the internal xHC state while it is powered down, and it is critical that the system 

maintain the integrity of the Scratchpad Buffer space across power events if the 

xHC is to be restored correctly. Refer to section 5.3.4 for more information.  

Note: An xHC implementation is responsible for checking the saved state during a 

Restore State operation. If the saved state is corrupted, the Save/Restore Error 

(SRE) flag in the USBSTS register shall be set to ‘1’, the Restore operation 

terminated, and the Restore State Status (RSS) flag cleared to ‘0’. 

Note: An xHC implementation shall report if the integrity of a Save/Restore State 

operation sequence has been compromised, i.e. after a Save State operation 

(CSS = '1') is executed, if the xHC is placed into Run mode (R/S = '1') before a 

Restore State operation (CRS = '1') is executed, then this condition shall be 

reported by the assertion of SRE upon the completion of the Restore State 

operation. This condition shall be reported only if the Aux Power well has been 

maintained between the Save State and Restore State operations. The reporting 

of this condition shall not be affected by the assertion of HCRST between the 

Save State and Restore State operations. 

Note: The state of a Root Hub port is not covered by a Save or Restore operation. Refer 

to sections 5.4.8, 5.4.9, and 4.19 for more information on how xHC ports are 

managed during power events. 

Note: When xHC state (e.g. Scratchpad Buffers, Contexts, Transfer Rings, etc.) is saved 

by system software, the data structures must be restored to the same physical 
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addresses that they were at when they were saved, otherwise undefined 

behavior may occur. 

 

This also implies that any USB devices that were attached when the Save State 

took place should still be attached and in the same internal state (i.e. their USB 

Device Address is unchanged) when the Restore State takes place. If these 

conditions are not true, then software is responsible for doing any "fix-ups" that 

may be required. 

4.23.3 PCI Power Management 

Refer to Appendix A. 

4.23.3.1 Standard PCI Power Management 

Refer to PCI and PCIe specifications. 

4.23.3.2 PCI Extended Power Management 

Refer to PCI Power Management (PCI PM) specification. 

4.23.4 USB Power Management 

4.23.4.1 USB2 

Refer to USB2 Specification. 

4.23.4.2 USB3 

Refer to USB3 Specification. 

4.23.4.3 USB Power Delivery 

Unlike USB Hubs, there are no xHCI port register extensions defined for Root 

Hubs to support USB Power Delivery (PD). Platform level PD supported is 

provided through ACPI mechanisms that are outside the scope of this 

specification. Refer to the USB PD and ACPI Specifications for more information. 

4.23.5 USB Link Power Management 

The xHCI provides independent mechanisms for managing Link Power 

Management (LPM). One mechanism allows the xHC Root Hub ports to provide 

all the features defined by the USB2, USB2 LPM, and USB3 specifications for 

hub downstream port management. And the other mechanism, enabled through 

the Slot Context Max Exit Latency field, provides the xHC with the information it 

needs to most effectively schedule USB transfers, maximizing bus bandwidth 

utilization. 
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Note: xHC implementations shall support Link Power Management for all USB 

protocols that it supports. Refer to the xHCI Supported Protocol Capability 

(section 7.2.2.1.3) for the specific Link Power Management features supported 

by the xHC. 

4.23.5.1 Root Hub Port LPM Support 

There are two different Link Power Management (LPM) approaches defined by 

the USB specifications, one for USB3 (SuperSpeed) devices and another for 

USB2 (Legacy High-, Full- and Low-speed) devices. The xHCI defines 

mechanisms to support the Link Power Management approaches defined for 

both the USB3 and USB2 protocols. 

Refer to the section 11 of the USB3 spec for more information on Link Power 

Management. 

Refer to the USB2 LPM ECN and errata for more information on USB2 Link Power 

Management. 

USB2 defines 3 ‘L’ link states and USB3 defines 4 “U” link states.  

 Table 4-11: LPM State Mapping 

Link State 
Encoding 

Description 
USB267 USB3 

On L0 U0 This is the normal link operational state. All packet 
communication, whether for control or data transfers, occurs in 

this state. 

A USB2 port in L0 is either actively transmitting or receiving data 
(L0-Active) or able to do so but not currently transmitting or 

receiving information (L0-Idle). 

Fine-grain 

LPM 

NA U1 U1 is a low exit latency standby state. Refer to section 7.2.4.2 of 

the USB3 spec for more information. In this state the port is 
capable exiting to the On state in less than ~10 μs. 

Coarse-
grain LPM 

L168 
(Sleep) 

U2 U2 is a low to medium range exit latency standby state. Refer to 
section 7.2.4.2 of the USB3 spec for more information. In this 

state the port is capable exiting to the On state in ~1 ms. 

                                                   

67This table provides USB3 extensions to Table 1-1 in the USB2 LPM ECN. 

68The USB2 L1 state is mapped to the USB3 U2 state because both represent coarse-grain LPM modes, i.e. they take 

approximately 1 ms. to enter. 
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Suspend L2 U3 This is a deep power saving state where interface (e.g., Physical 

Layer) power may be removed, except as needed to perform the 
various functions such as reset signaling, connect/disconnect 
detection, and wakeup. 

This is the formalized name for USB Suspend. 

Entry in to this state is nominally triggered by a command to a 
hub or root hub port to transition to suspend, at which point the 

port ceases signaling to the downstream port. 

This state also imposes power draw requirements (from VBUS) on 
the attached device. Exit from this state is via remote wake, 

resume signaling, reset signaling or disconnect. 

VBUS remains on in this state. 

Refer to section 11.4.1.4 of the USB3 spec for more information. 

Refer to Section 7.1.7.6 in the USB2 specification.  

Off L3 Not 
defined 

In this state, the port is not capable of performing any data 
signaling. It corresponds to the powered-off, disconnected, and 

disabled states. 

VBUS is off in this state. 

 

The xHCI reports the current Link State in the Port Link State (PLS) field of the 

PORTSC register. The interpretation of the PLS field depends on the PORTSC 

Port Speed field. If Port Speed reports Low-, Full-, or High-speed, then the PLS 

field shall never report a U1 state. 

4.23.5.1.1 USB2 LPM Support 

This section applies only if a USB2 xHCI Supported Protocol Capability structure 

(section 7.2) is declared (i.e. the Major Revision field = 02h). 

When system software is ready to transition a USB2 port from L0 to a deeper 

power savings state, it writes a ‘2’ (U2) to the Port Link State (PLS) field, which 

results in setting the L1 Status (L1S) field to Invalid (‘0’), and an LPM transaction 

on the USB2 bus. While a USB2 link is attempting to transition to the L1 state, 

the PLS field shall continue to report the previous state (U0).  

Note: The device responds to the LPM transaction with an ACK if it is ready to make 

the transition or a NYET if it is not currently ready to make the transition, usually 

because it has data pending for the host. 

L1 Status (L1S) results for a LPM Transaction: 

•  Success - Upon receipt of an ACK, the xHC shall set the PLS field in the PORTSC 

register to the L1 state (U2) and the L1S field in the USB2 PORTPMSC register to 

Success (‘1’). The Port Link Status Change bit is not set and no Port Status Change 

Event is generated. 
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•  Not Yet - Upon receipt of a NYET, the xHC shall set the L1S field in the USB2 

PORTPMSC register to Not Yet (‘2’), set the Port Link Status Change (PLC) bit to ‘1’. If 

the assertion of PLC results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a Port Status 

Change Event shall be generated for the port. 

•  Not Supported - A USB2 device shall transmit a STALL handshake if it does not 

support the requested link state (Lx, refer to the bmAttributes field of the extended 

LPM transaction, Table 2-3 in the USB2 LPM ECR). Upon the receipt of a STALL 

handshake the xHC shall set the L1S field in the USB2 PORTPMSC register to Not 

Supported (‘3’), disable hardware USB2 LPM (HLE = '0'), and set the PLC flag to ‘1’. If 

the assertion of PLC results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a Port Status 

Change Event shall be generated for the port. 

•  Timeout/Error - If the xHC detects a transaction error (including timeout), it shall retry 

the LPM transaction up to two more times. If there are three consecutive errors then 

the xHC shall set the L1S field in the USB2 PORTPMSC register to Timeout/Error (‘4’), 

disable hardware USB2 LPM (HLE = '0'), and set the PLC bit to ‘1’. If the assertion of 

PLC results in a ‘0’ to ‘1’ transition of PSCEG (4.19.2), a Port Status Change Event shall 

be generated for the port. 

Note: The PLC flag is not set (and an event is not generated) if the port successfully 

enters the L1 state. In the latter two cases above, the port asserts the PLC flag 

(PLC Condition: USB2 L1 Entry Reject), however the PLS field does not change, 

i.e. the port’s link remains in the U0 state. Software may examine the L1 Status 

(L1S) field of the PORTPMSC register when the Port Status Change Event is 

received for the port to determine the problem with entering the L1 state. 

This information allows software to tune its use of the L1 state, identify 

misbehaving device, etc. For example, software could identify a device which 

consistently NAKs L1 entry but rarely moves data and notify the end user.  

The xHC shall meet the following requirements: 

•  If the port is enabled (PED = ‘1’) and in the L1 (PLS = ‘2’) state, the xHC shall treat an 

L1 request (write of ‘2’ to PLS field) as a functional no-operation and set the L1S field 

in the USB2 PORTPMSC register to Success (‘1’). 

•  If the device detects errors in either of the token packets or does not understand the 

protocol extension transaction, no handshake shall be returned. In this case the xHC 

shall timeout and the L1S field in the USB2 PORTPMSC register shall be set to 

Timeout/Error (‘3’). Refer to the USB2 LPM ECR for L1 timeout details. 

The L1 state may be reset to the L0 state by a software request or from the 

device attached to the port. To accommodate this operation, software may write 

a ‘0’ (U0) to the PLS field of a USB2 protocol port attached to a Low-, Full-, or 

High-Speed device that supports LPM. Refer to the definition of the PLS field in 

Table 5-26 for more information. 

Note: The Remote Wake Enable (RWE) flag (Table 5-29) shall be used to enable or 

disable xHC remote wake from L1. 
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Note: The L1 Device Slot field in the USB2 PORTPMSC register references a Device Slot 

that is the target for the LPM Token. The USB Device Address field in the Slot 

Context of the referenced Device Slot, specifies the value of the ADDR field in the 

generated LPM Token. The ENDP field of the LPM Token shall be set to ‘0’69. 

4.23.5.1.1.1     Hardware Controlled LPM 

USB 2 ports may support hardware controlled Link Power Management, as 

indicated by the Hardware LPM Capability (HLC) flag equal ‘1’ in the USB2 xHCI 

Supported Protocol Capability structure (7.2.2.1.3.2). If Hardware USB2 LPM is 

supported, then the Hardware LPM Enable (HLE) bit in the USB2 PORTPMSC 

register (5.4.9.2) may be used to enable or disable it.  

Each Port Hardware LPM Control (PORTHLPMC) register provides an inactivity 

timeout that shall be configured by software, the L1 Timeout field. Refer to 

section 5.4.11 for more information on the PORTHLPMC register.  

Each USB2 Root Hub port maintains a logical Link Power Management Timer 

(LPM Timer) for keeping track of when the inactivity timeout is exceeded. If 

Hardware LPM is enabled and the LPM Timer reaches the L1 Timeout value, the 

port's link shall initiate a transition to L1.  

Two methods of Hardware USB2 LPM are supported by the xHCI; HIRD and BESL. 

If HLC is set to '1' and the BESL LPM Capability (BLC) flag in the USB 2.0 Protocol 

Defined field of the USB2 xHCI Supported Protocol Capability  structure 

(7.2.2.1.3.2) is cleared to '0', then the HIRD70 LPM method is supported. If HLC is 

set to '1', then the PORTHLPMC register exists. And if HLC and BLC are both set 

to '1', then the BESL LPM method is supported. 

If HIRD LPM is supported (HLC = '1' and BLC = '0'), then the Best Effort Service 

Latency value should be programmed by software in the BESL field of the USB2 

PORTPMSC register. Refer to Table 4-12 for the encoding of the BESL field. 

If BESL LPM is supported (HLC = '1' and BLC = '1') then there are two values of 

Best Effort Service Latency that should be programmed by software; the BESL 

field in the USB2 PORTPMSC register and the BESL Deep (BESLD) field in the 

USB2 PORTHLPMC register. The BESLD field is programmed with a value that is 

much larger than the BESL value, allowing both the host platform and the device 

to go into deeper low power states. The BESL field shall be programmed to a 

value smaller than the BESLD field for mode 1 (HIRDM = ‘1’), in which both the 

BESL and BESLD fields are used. Refer to Table 4-12 for the encoding of the 

BESL and BESLD fields. 

                                                   

69The value of ENDP is not specified in the USB2 LPM ECR, however there is errata against the ERC that clarifies the 

use of ENDP = ‘0’. 
70Refer to Section 4.1 of the USB2 LPM spec for more information on the use of the HIRD field. 
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Prior to enabling hardware controlled USB2 LPM, software shall initialize the 

BESL and RWE fields of the USB2 PORTPMSC register and if BLC = ‘1’ the BESLD, 

HIRD Mode (HIRDM), and L1 Timeout fields of the USB2 PORTHLPMC register.  

The optimal values for programming the BESL and BESLD fields depend on the 

overall latency characteristics of a platform. If an xHC is an integrated 

component of a platform, then a vendor may specify the preferred default BESL 

and BESLD values using the PCIe Config space Default Best Effort Service 

Latency (DBESL) and the Default Best Effort Service Latency Deep  (DBESLD) 

fields. If these fields are non-zero, software may use their values to program the 

respective BESL and BESLD values in the xHC Port registers. Refer to Table 4-12 

for the encoding of the DBESL and DBESLD fields. 

If HIRD LPM is supported (HLC = '1' and BLC = '0'), the DBESL and DBESLD 

registers are not implemented. 

Note that the hardware management mechanism may use modified BESL, BESLD, 

and RWE values in the LPM Transactions that it generates to a device.  

Note that xHC is required to retain the last BESL duration that it used to 

generate a USB2 LPM transaction to a device, and to drive resume signaling for 

that time minus 50 µs. when waking the device.  

While Hardware USB2 LPM (HLE = ‘1’) is enabled, software shall not modify the 

BESL or RWE fields of the USB2 PORTPMSC register or the BESLD, HIRD Mode 

(HIRDM), and L1 Timeout fields of the USB2 PORTHLPMC register, or attempt to 

transition the port to the L1 (PLS = U2) state, i.e. shall not write the PORTSC 

register with PLS = ‘2’ and LWS = ‘1’. 

Note: BESL LMP support (i.e. HLE = ‘1’ and BLC = ‘1’) shall be mandatory for all xHCI 1.1 

compliant xHCs. 

Note: If Hardware USB2 LPM (HLE = '1') is enabled the Slot Context Max Exit Latency 

field shall be initialized to a non-zero value. Refer to section (4.23.5.2) for more 

information. 

Note: The port behavior described below only applies to devices that are attached 

to a Root Hub port. 

The port behaves as follows: 

•  If Hardware LPM is disabled (HLE = '0'), then the port's LPM Timer shall be disabled. 

•  When resume signaling is complete and the link transitions to L0 state, due to an xHC 

initiated L1 exit, or a Device Initiated L1 Exit, the PLS field shall be set to U0. 

•  The L1 Timeout value represents the amount of inactive time in L0 prior to initiating 

the transition to the L1 state (PLS = U2). 

•  If Hardware LPM is disabled (i.e. HLE transitions from '1' to '0') and the port's link is in 

the L1 (PLS = U2) state: 
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•  The port shall automatically initiate a L1 exit. 

Note: Software may select different values for BESL, BESLD and L1 Timeout based on 

device's class, type of endpoints, poll interval (for periodic endpoints), etc. 

Note: If Hardware LPM is enabled (HLE = '1'), the Hardware LPM state machine 

automatically transitions a port in the Enabled state between the U0, U2Entry, 

U2, and U2Exit substates. Refer to the USB2 Root Hub Port Enabled Substate 

Diagram (4.19.1.1.6). The notable differences are: 

•  The U0 to U2Entry transition is initiated by a L1 Timeout. 

•  For U2Enty to U0 transitions, the PLC flag shall not be set ('1') if a NYET 

response occurs. The PLC flag shall be set ('1') for STALL or timeout/error 

response 

•  The U2 to U2Exit transition is initiated by an xHC initiated L1 exit, or a Device 

Initiated L1 Exit. 

•  The PLC flag shall not be set ('1') by a U2Exit to U0 transition. 

Note: A USB2 link transitions through L-states, and these states are reflected in the 

associated USB PORTSC register as U-states in the PLS field. Refer to Table 4-11 

for the mapping of USB2 L-states to PLS field U-states. 

The following Cases apply only if BESL LPM is supported.  

Case 1: For Devices supporting Device Initiated L1 Exit  

Note: For devices that support Device Initiated L1 Exit, when HW LPM is enabled (HLE 

= '1'), software should set the RWE bit of USB2 PORTPMSC register to '1'. 

•  When Hardware LPM is enabled (i.e. HLE transitions from '0' to '1'): 

•  The port's LPM Timer shall be reset to '0' and start counting up. 

•  If Hardware LPM is enabled (HLE = '1'), then: 

•  The port's LPM Timer shall be reset to '0' and start counting up, every time a data 

packet is sent or received by the port's link. 

•  When resume signaling completes, the LPM Timer shall be reset to '0' and start 

counting up. 

•  If HIRD Mode (HIRDM) = '0': 

•  When the LPM Timer equals the L1 Timeout value: 

•  The PLS field shall be set to U2. 

•  The port's link shall initiate a transition to L1 by issuing an LPM Token to 

the device, where the HIRD71 field of the LPM Token shall be set to the 

value of the PORTPMSC BESL field. 

                                                   

71In the USB2 LPM ECN the parameter TL1HubDrvResume is represented by the HIRD field in the LPM Token. 
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•  If the LPM Token (using the BESL value) is accepted by the device: 

•  The LPM Timer shall be stopped. 

•  The link then waits for an xHC initiated L1 exit, or a remote wake to 

be initiated by the device. 

•  If the LPM Token is rejected by the device (NYET response): 

•  The PLS field shall be set to U0. 

•  The LPM Timer shall be reset to '0' and start counting up. 

•  HIRD Mode (HIRDM) = '1': 

•  When the LPM Timer equals the L1 Timeout value: 

•  The PLS field shall be set to U2. 

•  The port's link shall initiate a transition to L1 by issuing an LPM Token to 

the device, where the HIRD field of the LPM Token shall be set to the 

value of the PORTHLPMC BESLD field. 

•  If the LPM Token (using the BESLD value) is accepted by the device: 

•  The LPM Timer shall be stopped. 

•  The port then waits for an xHC initiated L1 exit, or a remote wake to 

be initiated by the device. 

•  If the LPM Token (using BESLD) is rejected by the device (NYET 

response): 

•  The port's link shall initiate a transition to L1 by issuing an LPM 

Token to the device, where the HIRD field of the LPM Token shall be 

set to the value of the PORTPMSC BESL field. 

•  If LPM token (using BESL) is accepted by device: 

•  The LPM Timer shall be stopped. 

•  The link then waits for an xHC initiated L1 exit, or a remote wake 

to be initiated by the device. 

•  If the LPM Token (using BESL) is rejected by the device (NYET 

response): 

•  The PLS field shall be set to U0. 

•  The LPM Timer shall be reset to '0' and start counting up. 

•  HIRD Mode (HIRDM) = '2' or '3': 

•  Reserved. Undefined behavior may occur if HIRDM is set to a reserved value. 

 

Note:   For Bulk OUT, Interrupt OUT, an Isoch IN, an Isoch OUT EP, or a Control EP the 

xHC shall initiate a L1 exit if it needs to move data, i.e. a doorbell for a non-Isoch 
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endpoint has been rung, or if an Isoch Interval has expired and an Isoch TD is 

available. 

Note: For Interrupt IN endpoints that are actively moving data, the xHC shall initiate L1 

exit when the poll interval has expired and a TD is available. For Interrupt IN 

endpoints which have TD available but have responded with a NAK to a poll, the 

xHC will not poll the device till it has data to move and has initiated an L1 exit 

(Remote wake). 

Note: In the case of a High-speed Bulk OUT Endpoint that has returned a NYET 

handshake for an OUT transaction and then the Hardware LPM mechanism 

transitions the link to the L1 state, the xHC shall not initiate a L1 Exit (i.e. wake 

up the link) to do a PING transaction. The device is expected to initiate an L1 

exit (Remote Wake) when it is ready to accept data. 

 

For instance, mass storage devices are command driven, i.e. any bus activity 

they generate is only due to commands issued by the host. Since asynchronous 

notifications are not associated with these devices they typically do not support 

a Remote Wakeup capability. However, a rotational mass storage device's link 

may be inactive for 10's of milliseconds while it performs a seek operation, 

allowing the link to enter L1. When data is available, the disk must use the 

Remote Wakeup capability to return the link to the L0 state so that it can move 

the data and complete the command. 

 

Case 2: For Devices not supporting Device Initiated L1 Exit  

Note: For devices that do not support Remote Wakeup, if HW LPM is enabled (HLE = 

'1'), software should not set the RWE bit of USB2 PORTPMSC register to '1' 

•  When Hardware LPM is enabled (HLE transitions from '0' to '1'): 

•  The port's LPM Timer shall be reset to '0' and start counting up. 

•  If Hardware LPM is enabled (HLE = '1'), then: 

•  The port's LPM Timer shall be reset to '0' and start counting up, every time a data 

transfer is attempted (IN or OUT tokens). 

•  If HIRD Mode (HIRDM) = '0': 

•  For periodic endpoints (both isochronous and interrupt), the xHC will put the link 

in L1 when the LPM Timer equals L1 Timeout value. The xHC will initiate an L1 

exit prior to the next poll if there are pending TDs. 

•  For Bulk endpoints, the LPM Timer shall be reset to '0' and start counting up, 

every time a data transfer is attempted (IN or OUT transaction).  

Note: For all devices that do not support remote wake, the L1 Timeout value should be 

large enough so that L1 entry is not triggered by delays in PING retries, delays in 

generating IN or OUT tokens due to bandwidth sharing with high bandwidth 

isochronous devices, etc. 
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•  HIRD Mode (HIRDM) = '1': 

•  Software shall not set HIRD Mode to '1' when Remote Wakeup is not supported 

by the device 

•  HIRD Mode (HIRDM) = '2' or '3': 

•  Reserved. Undefined behavior may occur if HIRDM is set to a reserved value. 

If the BESL LPM Capability (Table 7-15) is supported by the xHC (BLC = '1'), then 

the xHC shall support the BESL Duration (as shown in the “BESL Duration BLC = 

1” column of Table 4-12) and resume signaling shall be asserted by the Root 

Hub port for the HIRD Duration (as shown in the “HIRD Duration BLC = 1” column 

of Table 4-12). 

If the BESL LPM Capability is not supported (HLC = ‘1’ and BLC = '0'), i.e. the xHC 

implementation predates the USB2 LPM Errata, then the resume signaling shall 

be asserted for the HIRD Duration (as shown in the “HIRD Duration BLC = 0” 

column of Table 4-12). 

Table 4-12: BESL/HIRD Encoding  

BESL or BESLD Value 
BESL Duration (µs) 

BLC = 1 

HIRD Duration (µs) 

BLC = 1 

HIRD Duration (µs) 

BLC = 0 

0 125 75 50 

1 150 100 125 

2 200 150 200 

3 300 250 275 

4 400 350 35072 

5 500 450 425 

                                                   

72Note: A device may NAK an LPM Token because the resume duration identified by the received LPM Token's 
HIRD/BESL field exceeds its resume latency requirements. Software can determine if a device supports the BESL 

or (legacy) HIRD interpretation of the LPM Token by inspecting the bmAttributes field of a device’s DEVICE 
CAPABILITY:USB 2.0 EXTENSION descriptor. If BLC = '1' and the attached device supports HIRD (i.e. the device 
predates the USB2 LPM Errata), then xHC BESL or BESLD field values less than or equal to '4' result in an xHC 

resume duration that is less than or equal to the resume duration expected by the device, while values greater 
than '4' will exceed the device's expectations.If BLC = '0' and the attached device supports BESL, then xHC BESL 
or BESLD field values greater or equal to '4' result in an xHC resume duration that is less than or equal to the 

resume duration expected by the device, while values less than '4' will exceed the device's expectations.Software 
should choose xHC BESL/BESLD field values that do not violate a device's resume latency requirements, e.g. not 
program values > '4' if BLC = '1' and a HIRD device is attached, or not program values < '4' if BLC = '0' and a BESL 

device is attached. 
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6 1000 950 500 

7 2000 1950 575 

8 3000 2950 650 

9 4000 3950 725 

10 5000 4950 800 

11 6000 5950 875 

12 7000 6950 925 

13 8000 7950 1000 

14 9000 8950 1075 

15 10000 9950 1150 

 

Note: If Hardware USB2 LPM (HLE = '1') is enabled, PLC shall not be affected by LPM 

state transitions, i.e. the L1 Resume complete (U2 -> U0) or L1 Entry Reject (U0 -

> U0) conditions shall not assert PLC. 

4.23.5.2 Max Exit Latency 

The xHC schedules all USB data transfers. If links in the path to a USB device are 

in U1 or U2 state, an additional latency is incurred when accessing a device. It is 

not practical for the xHC to track the state of every link in the USB topology, so 

the Max Exit Latency field in the Slot Context identifies the worst case exit 

latency for the links and hubs between the xHC and the device when scheduling 

transfers to power managed devices. 

Max Exit Latency is a software computed value, which should comprehend the 

following components: 

1. The worst case delay to wake up all links in the path between the Root 

Hub port and the device if they are in their deepest allowable U state, i.e. 

U1 or U2. 

For SuperSpeed devices, the Maximum Exit Latency (MEL) described in 

section C.1.5.2 of the USB3 spec may be used to compute this 

component. 

2. The minimum Interval value set for any Isoch endpoint of the device.  

3. The worst case time it takes to transfer the Isoch data. 

Note that the value of this component may not be determined by the 
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largest Max ESIT Payload declared by a device endpoint. E.g an endpoint 

with a Max ESIT Payload of 48KB and an Interval of 2 microframes allows 

a larger Max Exit Latency value than an endpoint with a Max ESIT 

Payload of 24KB and an Interval of 1 microframe. 

For SuperSpeed Isoch Transaction Limits refer to Appendix F.3. 

A Max Exit Latency value of ‘0’ indicates to the xHC that no links in the path to 

the device are being power managed. 

For USB2 devices, if the attached device supports Link Power Management (as 

described in the USB2 LPM ECN) and LPM is enabled in the device, then the Max 

Exit Latency should be set to the value of BESL. From the BESL value, the actual 

maximum exit latency value (TL1ExitLatency1) may be calculated by the xHC using 

the following formula. Otherwise, the Max Exit Latency shall be set to ‘0’. 

TL1ExitLatency1 = BESL + TL1ExitDevRecovery (10us.) 

For USB3 devices, refer to section C.1.5.2 of the USB3 spec for the method of 

computing the value of Max Exit Latency . 

Note: If Max Exit Latency = ‘0’ and the Slot Context Speed field equals SuperSpeed, 

then the xHC may not schedule any PING TPs for endpoints associated with the 

Device Slot. 

Note: System software sets the allowable U-states for the links in the path to a device. 

Software knows, based on the depth and the exit latencies of the intervening 

links, what the worst case time is for a PING TP to reach a device and the 

PING_RESPONSE TP to be returned. Software shall ensure that a device is 

prevented from entering a U-state where its worst case exit latency (i.e. the delay 

between the transmission of a PING TP and the reception of the 

PING_RESPONSE TP by the xHC) approaches the ESIT. 

If software is going to change device or link related parameters on the bus that 

would result in a shorter Max Exit Latency value for a Device Slot, then it should 

change the Max Exit Latency value in the device’s Slot Context using an Evaluate 

Context Command, before it changes any bus parameters. 

If software is going to change device or link related parameters on the bus that 

would result in a longer Max Exit Latency value for a Device Slot, then it should 

change any bus parameters, before it changes the Max Exit Latency value in the 

device’s Slot Context using an Evaluate Context Command . 

Note: The xHC shall complete any changes to its internal Pipe Schedules before it 

generates a Command Completion Event for Evaluate Context Command that 

modifies Max Exit Latency. 

4.23.5.2.1 No Ping Response Error 

This error only applies to SuperSpeed Isoch endpoints. A No Ping Response 

Error Completion Code indicates that the xHC was unable to complete the data 
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transfer associated with an Isoch TD within the ESIT because it did not receive a 

PING_RESPONSE in time. 

The xHC schedules the data transfer for a SS Isoch endpoint, and if the Slot 

Context Max Exit Latency value is non-zero, it shall send a PING TP to the 

endpoint Max Exit Latency µs. before the scheduled data transfer to wake up all 

the links in the path. If a PING_RESPONSE TP is not received by the time the 

data transfer is scheduled to take place, a No Ping Response Error should be 

generated for the TD. 

If the error occurs, the data associated with the TD in error shall be lost and the 

xHC shall advance to the next TD for the next ESIT.  

In response to a No Ping Response Error Completion Code software should 

reevaluate the value assigned to Max Exit Latency . 

Note: A No Ping Response Error shall utilize the Transfer Event TRB format. The TRB 

Pointer field of No Ping Response Error Transfer Event may be ‘0’. If the TRB 

Pointer = ‘0’, then the TRB Transfer Length field shall be invalid. 

Refer to section 6.2.2 for the definition of the Slot Context the Max Exit Latency 

field. 

Refer to section C.2 in the USB3 spec for U1 and U2 Exit Latency calculation 

examples. 

4.23.5.2.2 Max Exit Latency Too Large Error 

The Max Exit Latency Too Large Error  may be generated by an Evaluate Context 

Command or optionally by a Configure Endpoint Command , and informs 

software that the specified Max Exit Latency value would not allow the xHC to 

reliably schedule Isoch transfers for the Device Slot.  

When software receives this error it knows that it can change some of the link 

power state options in the path to the device to less aggressive settings (which 

allows it to assert a smaller Max Exit Latency value) and retry the configuration 

with the same Interval and Max ESIT Payload size. 

The CMC flag in the HCCPARAMS2 register indicates whether a Configure 

Endpoint Command is capable of generating a Max Exit Latency Too Large Error  

and the CME flag exists. If the CME flag in the CONFIG register is set to ‘1’, then 

the Command Completion Event  generated by a Configure Endpoint Command  is 

allowed to assert a Completion Code of Max Exit Latency Too Large Error .  

Note: In addition to waiting for the PING_RESPONSE and transferring the Isoch data, 

the xHC must include the Isoch Scheduling Delay. The Isoch Scheduling Delay 

comprehends the additional time the xHC requires to parse the PING_RESPONSE 

TP then enable the associated Isoch transfer, and to accommodate schedule 

jitter the PING and the Isoch transfer may incur within the Interval due to the 
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other transfers that it must manage. The Isoch Scheduling Delay is an xHC 

implementation specific value. The Max Exit Latency Too Large Error allows the 

xHC to reject a proposed Max Exit Latency value because it could not be made to 

work after it evaluated the Isoch Scheduling Delay by the other endpoints that it 

had to schedule. 

4.24 Host Controller Management 

4.24.1 Internal Errors 

The Host Controller Error (HCE) flag is asserted when an internal xHC error is 

detected that exclusively affects the xHC. When the HCE flag is set to ‘1’ the xHC 

shall cease all activity. Software response to the assertion of HCE is to reset the 

xHC (HCRST = ‘1’) and reinitialize it.  

Software should implement an algorithm for checking the HCE flag if the xHC is 

not responding. 

Note: HCE may be asserted due to a soft or hard error. An SRAM parity error while 

accessing an internal data structure is an example of a soft error that may assert 

HCE. However a hard error shall cause the xHC to reassert HCE immediately after 

it is reinitialized. In this case, software should employ some heuristics to prevent 

the case where the xHC is continually in an error-reset-reinitialize loop and 

report this condition to the user. 

Note: Host System Error (HSE) shall be used to report errors detected by xHC that may 

affect the system as a whole. Refer to section 4.10.2.6 for more information. 

4.24.2 Port to Connector Mapping 

This section discusses how the xHC Root Hub registers ports shall be mapped to 

the External Ports of the xHC device, and the USB A connectors of a system, 

where a “system” may be a motherboard or a stand alone controller card. 

Consistent mapping is required to ensure that software may effectively manage 

the USB devices attached by the user.  

4.24.2.1 Root Hub Port to External Port Assignment 

This section discusses how the Root Hub registers ports shall be mapped to the 

External Ports of the xHC device. 

An xHC may integrate one or more Tier73 2 USB 2.0 hubs. These hubs shall be 

referred to as Integrated Hubs. An Integrated Hub may be connected to a Root 

Hub port associated with a High-speed Bus Instance to provide Low-speed (LS), 

                                                   

73Refer to section 4.1.1 of the USB2 spec for more information on Tiers and USB Topologies. 
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Full-speed (FS), and High-speed (HS) functionality on External Ports presented 

by the xHC device or to expand the number of USB2 Protocol External Ports. 

A USB3 hub is the logical combination of two hubs: a USB 2.0 hub and an 

Enhanced SuperSpeed hub. Each hub operates independently on a separate 

data bus. Typically, the only shared logic between the two hubs is for controlling 

VBus on their downstream facing ports. The paring of USB 2.0 and Enhanced SS 

hubs means that downstream facing ports of the USB3 hub are at the same Tier. 

Matched Tiers simplify the software management of the shared port power logic 

in a USB3 hub. 

When the xHC External Ports associated with an Integrated Hub and the External 

Ports associated with a USB3 Protocol Root Hub port are assigned to the same 

USB connector, a mismatch is created between the Tiers presented at the 

connector. The USB 2.0 signal pair from the External Hub is at Tier 2 and the 

SuperSpeed signal pairs from the Root Hub port are at Tier 1. To minimize the 

impact on software management of power at the connector, the Tier mismatch 

created by Integrated Hubs is limited to 1. 

•  When Integrated Hub(s) are implemented: 

•  Only a single Integrated Hub (i.e. one additional Hub Tier) shall be allowed 

between a xHC Root Hub port and External Port. 

•  The only allowed USB 2.0/Enhanced SS Hub Tier mismatch case is where the 

USB2 Protocol External Ports are at Tier 2 and USB3 Protocol External Ports are 

at Tier 1. 

•  The xHC vendor shall provide a description of the Root Hub port / Integrated 

Hub / External Port mapping. Refer to Appendix D for an example of how ACPI 

may be used to provide this mapping. 

•  Ports of like protocols shall be grouped when defining External Port numbering. 

e.g. Given n USB2 protocol External Ports and m USB3 protocol External Ports, 

External Ports 1 through n shall be USB2 protocol ports and External Ports n+1 

through n+m shall be USB3 protocol ports. 

•  The USB2 xHCI Supported Protocol Capability Integrated Hub Implemented (IHI) 

flag shall be ‘1’. 

•  When Integrated Hub(s) are not implemented: 

•  There shall be a 1:1 mapping between xHC Root Hub ports and xHC External 

Ports, where the Root Hub port 1 shall map to External Port 1, Root Hub port 2 

shall map to External Port 2, and so on. This mapping means that the protocol of 

each Root Hub port is identical to the protocol of the respective External Port, as 

defined by the USB2 and USB3 xHCI Supported Capabilities, refer to section 7.2. 

•  The USB2 xHCI Supported Protocol Capability Integrated Hub Implemented (IHI) 

flag shall be ‘0’. 
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4.24.2.2 External Port to USB Connector mapping 

•  This section discusses how the External Ports of the xHC device may be mapped 

to the physical USB A connectors of the xHC system. Consistent mapping is 

required to ensure that software may effectively manage the ports. 

A system may incorporate USB2 or USB3 hubs that are external from the device 

that contains the xHC. In this section these hubs will be referred to as 

Embedded Hubs. Embedded Hubs may be used to expand the number of USB2, 

or USG3 A or C connectors presented by a system. 

•  When an Embedded Hub(s) is implemented: 

•  A USB 2.0/Enhanced SS Hub Tier mismatch between the xHC External Ports and 

the USB A connectors is not allowed. 

•  The system shall provide software with a description of the Root Hub port / 

Integrated Hub / External port / Embedded Hub / USB A or C connector mapping 

via ACPI or other method. Refer to Appendix D for an example of ACPI mapping. 

•  When an Embedded Hub is not implemented: 

•  A system may define the mapping of xHC External Ports to USB connectors using 

ACPI or other methods. 

•  Software may assume the following “default” mapping of xHC External Port 

numbers to USB connector numbers if no other method is defined by a system. 

 

Given n USB2 protocol External Ports numbered 1 to n, m USB3 protocol 

External Ports numbered n+1 to n+m, and c USB connectors numbered 1 to c; 

External Ports 1 and n+1 shall map to USB connector 1 to form a USB3 

compatible port, External Ports 2 and n+2 shall map to USB connector 2 to form 

a USB3 compatible port, and so on. If there n is greater than m then there will be 

m USB3 compatible ports and n-m USB2 compatible ports, or vice versa if m is 

greater than n. 

Note: If USB2 and USB3 protocol ports share the same over-current detection logic 

(whether Integrated or Embedded hub(s) are implemented or not), then an over-

current condition shall assert OCA on both ports and transition both ports to the 

Powered-off state. 
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4.24.2.3 Mapping Example 

Figure 4-38: Integrated Hub Example 
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Figure 4-38 illustrates a Integrated Hub xHC example implementation, where: 

•  The motherboard presents 4 user visible connectors C1 – C4. 

•  Motherboard connectors C1 and C2 support USB3 (LS/FS/HS/SS) devices. 

•  Motherboard connectors C3 and C4 support USB2 (LS/FS/HS) devices. 

•  The xHC implements a High-speed Bus Instance associated with one USB2 Protocol 

Root Hub port HCP1. Note that HPC1 provides no Low- or Full-speed support. 

•  The xHC implements 3 Root Hub ports (HCP1 – HCP3, Tier 1), 1 USB2 Protocol and 

2 USB3 Protocol. 

•  Root Hub port 1 (HCP1) is attached to the HS Integrated Hub. The Integrated Hub 

supports 4 ports (IP1 – IP4). 

•  Ports 1 to 4 (IP1-IP4, Tier 2) of the Integrated Hub attach to External Ports 1 

to 4 (P1-P4), respectively. 

•  Root Hub ports 2 and 3 (HCP2, HCP3) attach to External Ports 5 and 6 (P5, P6), 

respectively. 
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•  The xHC presents 6 External Ports (P1 – P6). 

•  External Ports 1 – 4 (P1 – P4) support LS/FS/HS devices. 

•  P1 and P2 are attached to motherboard connectors C1 and C2, respectively, 

providing the LS/FS/HS support for the USB3 connectors. 

•  P3 and P4 are attached to the motherboard USB2 compatible connectors C3 

and C4, respectively. 

•  External Ports 5 and 6 (P5, P6) are attached to motherboard connectors C1 and 

C2 respectively, providing the SS support for the USB3 connectors. 

•  External Ports P1 through P4 present a USB2 data bus (i.e. a D+/D- signal pair). 

External Ports P5 and P6 present a SuperSpeed data bus (i.e. SSRx+/SSRx- and 

SSTx+/SSTx- signal pairs). 

•  The Tier Mismatch occurs at connectors C1 and C2 due to assigning Tier 2 Integrated 

Hub ports and Tier 1 Root Hub ports to the same USB3 connectors. 
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5 Register Interface 

The extensible USB Host Controller contains many software accessible hardware 

registers. A large portion of the registers appear as Memory-mapped Host 

Controller Registers. Other registers may appear using non-memory address 

mechanisms, as in the case of a PCI or PCIe based Host Controller. For these 

designs it is required to implement the required registers as defined by the 

respective specification. 

Note that the xHCI does not require support for exclusive-access mechanisms 

(such as PCI LOCK) for accesses to the memory-mapped register space. 

Therefore, if software attempts exclusive-access mechanisms to the host 

controller memory-mapped register space, the results are undefined.  

Refer to section 3.1 for a summary of the xHCI register architecture.  

Table 5-1: eXtensible Host Controller Interface Register Sets 

Offset Register Set Size Explanation 

0 to 
CAPLENGTH 

Capability 
Registers 

(Section 5.3) 

Up to 

256 

Bytes 

The capability registers specify the limits, restrictions, 
and capabilities of a host controller implementation. 

These values are used as parameters to the host 
controller driver. 

CAPLENGTH to 
CAPLENGTH + 
BFFh 

Operational 
Registers 
(Section 5.4) 

Up to 

3K 
Bytes 

The “low-touch” operational registers are used by 
system software to control and monitor the 
operational state of the host controller. 

Pointed to by 
the Capability 
Registers 

Run-time 
Registers 

(Section 5.5) 

Up to 

32800 
Bytes 

The “high-touch” operational registers are used by 
system software to control and monitor the 
operational state of the host controller. 

Pointed to by 
the Capability 

Registers 

Doorbell Array 
(Section 5.6) 

Up to 

1K 

Bytes 

An array of doorbells, where each 32-bit entry in the 
array represents a doorbell for each device attached 

to the host. Write the ID(s) for a specific endpoint to 
signal the host controller that additional work items 
are available. 

 

Refer to Table 7-2 for a breakdown of the xHCI Extended Capability register 

sets. 
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Table 5-2: Register Alignment Requirement Summary  

Register Alignment in Bytes Section 

Capability Registers Page 5.3 

Operational Registers 4 5.4 

Runtime Registers PF0 = 32 

VFn = Page 

5.5 

Doorbell Array PF0 = 4 

VFn = Page 

5.6 

 

5.1 Register Conventions 

If the xHC supports 64-bit addressing (AC64 = ‘1’), then software should write 

64-bit registers using only Qword accesses. If a system is incapable of issuing 

Qword accesses, then writes to the 64-bit address fields shall be performed 

using 2 Dword accesses; low Dword-first, high-Dword second. 

If the xHC supports 32-bit addressing (AC64 = ‘0’), then the high Dword of 

registers containing 64-bit address fields are unused and software should write 

addresses using only Dword accesses. 

Note: The USB Legacy Support (USBLEGSUP) Extended Capability requires support for 

Byte accesses for Semaphore address, refer to section 7.1. 

All multi-byte register fields follow little-endian ordering; i.e. lower addresses 

contain the least significant parts of the field. Bytes/characters within a field 

shall be in little-endian order, i.e. first char of string in least significant byte, 

second char next significant byte, etc.  

5.1.1 Attributes 

The following notation is used to describe register access attributes:  
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Table 5-3: Register Attributes  

Register 
Attribute Description 

HwInit Hardware Initialized: Register bits are initialized by firmware or hardware mechanisms 
such as pin strapping or serial EEPROM. (System firmware hardware initialization is only 

allowed for system integrated devices.) Bits are read-only after initialization and may only 
be reset (for write-once by firmware) with a HCRST. 

RO Read-only: Register bits are read-only and may not be altered by software. Register bits 
may be initialized by hardware mechanisms such as pin strapping or serial EEPROM. 

RW Read-Write: Register bits are read-write and may be either set or cleared by software to 
the desired state. Note that individual bits in some read/write registers may be Read-Only. 

RW1C Write-1-to-clear status: Register bits indicate status when read, a set bit indicating a 
status event may be cleared by writing a ‘1’. Writing a ‘0’ to RW1C bits has no effect. 

RW1S Write-1-to-set status: Register bits indicate status when read, a clear bit may be set by 

writing a ‘1’. Writing a ‘0’ to RW1S bits has no effect. 

ROS Sticky - Read-only: Register bits are read-only and may not be altered by software. Where 

noted, registers that consume AUX Power shall preserve sticky register values when AUX 
Power consumption (either via AUX Power or PME Enable) is enabled. In these cases, 
registers are not initialized or modified by Chip Hardware Reset. 

RWS Sticky - Read-Write: Register bits are read-write and may be either set or cleared by 
software to the desired state. Where noted, registers that consume AUX Power shall 

preserve sticky register values when AUX Power consumption (either via AUX Power or 
PME Enable) is enabled. In these cases, registers are not initialized or modified by Chip 
Hardware Reset. 

RW1CS Sticky - Write-1-to-clear status: Register bits indicate status when read, a set bit 
indicating a status event may be cleared by writing a ‘1’. Writing a ‘0’ to RW1CS bits has no 

effect. Where noted, registers that consume AUX Power shall preserve sticky register 
values when AUX Power consumption (either via AUX Power or PME Enable) is enabled. In 
these cases, registers are not initialized or modified by Chip Hardware Reset. 

Rsvd Reserved: Reserved for future RO implementations. Registers or memory that shall be 
treated as read-only by system software. Rsvd registers shall return ‘0’ when read. 
Software shall ignore the value read from these bits. 

RsvdO Reserved and Opaque: Reserved for exclusive xHC use, e.g. temporary xHC workspace. 
Register or memory values may be modified by the xHC at any time. Software 
manipulation of this space may cause undetermined results. Software shall not write this 

space unless explicitly allowed by vendor specific instruction. 
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RsvdP Reserved and Preserved: Reserved for future RW implementations. Software shall 

preserve the value read for writes to bits. 

RsvdZ Reserved and Zero: Reserved for future RW1C implementations. Software shall use ‘0’ for 
writes to these bits. 

 

Note: System software shall mask all reserved fields (Rsvd, RsvdP or RsvdZ) to ‘0’ 

before evaluating a register or data structure value. This will enable current 

system software to run with future xHCI implementations that define the 

reserved fields. 

Note: When a Reserved attribute (Rsvd, RsvdP, RsvdO or RsvdZ) is used to define a data 

structure field, system software shall set all reserved register fields to ‘0’ when 

initially allocating the data structure. 

Note: Registers that define “Sticky” bits shall preserve their values when the Aux Power 

well is enabled and the xHC is in the D3cold state. Refer to section 4.23.1 for 

more information on power wells and register initialization. 

5.1.2 Power Well Considerations 

Refer to section 4.23.1. 

5.2 PCI Configuration Registers (USB) 

xHCs designed for operation in PCI-based systems shall implement a PCI 

Configuration Space that conforms to either the PCI Specification or the PCIe 

Specification, as determined by the target operating environment. The 

implementer should refer to the appropriate specification as published by the 

PCI Special Interest Group (SIG) (http://www.pcisig.com) 

5.2.1 Type 0 PCI Header 

Figure 5-1 describes the PCI Configuration Space for an xHC. PCI-based xHCs 

are required to implement a PCI, Type 0 PCI device header as depicted below. 

xHCs are also required to implement at least the first two Base Address 

Registers (BAR 0 and BAR 1) to enable 64-bit addressing. These Base Address 

Registers are used to point to the start of the host controller’s memory-mapped 

Input/Output (MMIO) register space. 

Refer to section 6.1 of the PCI specification for detailed compliance information. 

 

 IMPLEMENTATION NOTE 
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BAR0 Size Allocation 

If virtualization is supported, the Capability and Operational Register sets, and the 

Extended Capabilities may reside in a single page of virtual memory, however the 

RTSOFF and DBOFF Registers shall position the Runtime and Doorbell Registers to 

reside on their own respective virtual memory pages. The BAR0 size shall provide space 

that is sufficient to cover the offset between the respective register spaces (Capability, 

Operational, Runtime, etc.) and the register spaces themselves (e.g. a minimum of 3 

virtual memory pages). 

If virtualization is not supported, all xHCI register spaces may reside on a single page 

pointed to by the BAR0. 

 

Figure 5-1: PCI Type 00h Configuration Space Header 
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Many of the fields of the PCI header space contain hardware default values, 

which are either fixed or, if an implementation permits, may be overridden using 

EEPROM, but may not be independently specified for each logical xHC instance 

in a platform. These fields include: Revision, Header Type, Subsystem ID, 
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Subsystem Vendor ID, Class Code, Capability Pointer, Max Latency, and Min 

Grant. 

The following fields are unique to each xHC instance: Device ID, Command, 

Status, Latency Timer, Cache Line Size74, Memory BAR, and Interrupt Pin. 

5.2.2 Class Code Register 

Address Offset: 09-0Bh 

Default Value: 0C0330h 

Attribute: RO 

Size: 24 bits 

This register contains the device programming interface information related to 

the Sub-Class Code and Base Class Code definition. This register also identifies 

the Base Class Code and the function sub-class in relation to the Base Class 

Code. 

Table 5-4: Class Code Register (CLASSC)  

Bit Description 

7:0 Programming Interface (PI) - RO. 30h = USB3 Host Controller that conforms to this 
specification. 

15:8 Sub-Class Code (SCC) - RO. 03h = Universal Serial Bus Host Controller. 

23:16 Base Class Code (BASEC) - RO. 0Ch = Serial Bus controller. 

 

5.2.3 Serial Bus Release Number Register (SBRN) 

Address Offset: 60h 

Default Value: Refer to Description below 

Attribute: RO 

Size: 8 bits 

This register contains the release of the Universal Serial Bus Specification with 

which this Universal Serial Bus Host Controller module is compliant.  

 

                                                   

74The Cache Line Size is used to align xHC DMA operations. 
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Table 5-5: Serial Bus Release Number Register (SBRN) 

Bit Description 

7:0 Serial Bus Specification Release Number - RO. All other combinations are reserved. 

Bits[7:0]  Release Number 

30h          Release 3.0 

31h          Release 3.1 

 

5.2.4 Frame Length Adjustment Register (FLADJ) 

Address Offset: 61h 

Default Value: 20h 

Attribute: RWS 

Size: 8 bits 

This register is in the Aux Power well. This feature is used to adjust any offset 

from the clock source that generates the clock that drives the SOF counter. 

When a new value is written into these six bits, the length of the frame is 

adjusted for all USB buses implemented by an xHC. Its initial programmed value 

is system dependent based on the accuracy of hardware USB clock and is 

initialized by system software (typically the BIOS). This register should only be 

modified when the HCHalted (HCH) bit in the USBSTS register is ‘1’. Changing 

value of this register while the host controller is operating yields undefined 

results. 
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Table 5-6: Frame Length Adjustment Register (FLADJ)  

Bit Description 

5:0 Frame Length Timing Value - RWS/RsvdP. If NFC = ‘0’, then each decimal value change to this 

register corresponds to 16 high-speed bit times. The SOF cycle time (number of SOF counter clock 

periods to generate a SOF microframe length) is equal to 59488 + value in this field. The default 

value is decimal 32 (20h), which gives a SOF cycle time of 60000. 

 Frame Length 

 (# HS bit times) FLADJ Value 

 (decimal) (decimal) 

 59488 0 (00h) 

 59504 1 (01h) 

 59520 2 (02h 

  … 

 59984 31 (1Fh) 

 60000 32 (20h) 

 … 

 60480 62 (3Eh) 

 60496 63 (3Fh) 

If NFC = ‘1’ then this field shall be RsvdP. 

6 No Frame Length Timing Capability (NFC) - RO. This flag indicates whether the host controller 

implementation supports a Frame Length Timing Value. A ‘1’ in this bit indicates that the Frame 

Length Timing Value is not supported. A ‘0’ in this bit indicates that the Frame Length Timing Value 

is supported. 

7 RsvdP. 

 

Note: A USB3 Bus Interval Adjustment Message is used by the host to adjust its 125 μs. 

bus interval up to +/-13.333 μs. The FLADJ establishes the center point for this 

adjustment. The contents of this register are not affected by the receipt of a 

BUS_INTERVAL_ADJUSTMENT_MESSAGE from a USB3 device. Refer to section 

8.5.6.6 in the USB3 spec. 

5.2.5 Default Best Effort Service Latency (DBESL) 

Address Offset: 62h 

Bit Offset: 0 

Default Value: Refer to Description below 

Attribute: RO 

Size: 4 bits 

This register contains the optimal value for programming the PORTPMSC Best 

Effort Service Latency (BESL) field. Refer to section 4.23.5.1.1.1 for more 

information. 
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If BESL LPM is not supported (HLC = '0' or BLC = '0') then this register is 

reserved. 

Table 5-7: Default Best Effort Service Latency (DBESL) 

Bit Description 

3:0 Default Best Effort Service Latency (DBESL) - RO. Default = Vendor defined. If the value of this 
field is non-zero, it defines the recommended value for programming the PORTPMSC register 

BESL field. Refer to sections 5.4.9.2 and 4.23.5.1.1.1 for more information. 

 

5.2.6 Default Best Effort Service Latency Deep (DBESLD) 

Address Offset: 62h 

Bit Offset: 4 

Default Value: Refer to Description below 

Attribute: RO 

Size: 4 bits 

This register contains the optimal value for programming the PORTPMSC Best 

Effort Service Latency - Deep (BESLD) field. Refer to section 4.23.5.1.1.1 for 

more information. 

If BESL LPM is not supported (HLC = '0' or BLC = '0') then this register is 

reserved. 

Table 5-8: Default Best Effort Service Latency - Deep (DBESLD) 

Bit Description 

7:4 Default Best Effort Service Latency Deep (DBESLD) - RO. Default = Vendor defined. If the value of 

this field is non-zero, it defines the recommended value for programming the PORTPMSC register 

BESLD field. Refer to sections 5.4.9.2 and 4.23.5.1.1.1 for more information. 

 

5.2.7 PCI Power Management Interface 

Figure 5-2 is a depiction of the registers defined in the PCI Power Management 

Capability. xHCI compliant host controllers shall implement the PCI Power 

Management capability registers as defined in the PCI Specification, which is 

nearly identical to the structure defined in PCI PM specification, with some 

additional requirements. Refer to Appendix A.1 for additional xHCI operational 

requirements for PCI Power Management. 
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Figure 5-2: PCI Power Management Capability Structure 

Next Capability PointerPower Management Capabilities (PMC) Capability ID

31 16 15 8 7 0

Data Power Management Control / Status Register (PMCSR)PMCSR_BSE

24 23

03-00H

07-04H  

The following section describes the PCI Power Management capability structure, 

which fields are required or optional for compliance, and how they are 

implemented by the xHC. 

5.2.7.1 PCI Power Management Registers 

All fields are reset on full power-up. All of the PCI PM PMCSR register fields 

except PME_En and PME_Status are reset on exit from D3cold state. If Aux 

Power is not supplied, the PME_En and PME_Status fields also reset on exit from 

D3cold state. 

The PCI Capability List75 is used to provide a standard way for software to find 

and use the PCI Power Management. Refer to section 3.2 in the PCI PM 

specification for the definition of Power Management Register Block. 

 IMPLEMENTATION NOTE 

NO_SOFT_RESET 

If the PCI No_Soft_Reset flag is set to '1', it will also prevent the USB from being reset 

when the controller transitions from to D3hot from D0. Setting the No_Soft_Reset flag 

has the benefit of not having to re-initialize all of the USB devices on the bus. The 

No_Soft_Reset flag does not have any affect on a D3cold (Core power well disabled) to 

D0 transition, since PERST# is required to be asserted when the main power supply is 

removed. Refer to section 3.2.4 PMCSR in the PCI PM specification. 

5.2.8 Message Signaled Interrupts (MSI & MSI-X) Capability 

Below is a depiction of the registers defined in the PCI Message Signaled 

Interrupt (MSI) capability. If an xHC supports PCI or PCIe it shall implement the 

PCI MSI and/or MSI-X capabilities as defined in the PCI Specification.  

5.2.8.1 MSI configuration 

The PCI Capability List is used to provide a standard way for software to find 

and use the PCI MSI capabilities. The following subsections describe xHC related 

MSI implementation issues. 

                                                   

75  PCI Capability List is defined in the PCI Local Bus Specification (Section 6.7) 
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Figure 5-3 illustrates the Message Signaled Interrupt (MSI) Configuration 

capability layout, which consist of seven fields. Refer to section 6.8.1 in the PCI 

specification for the definition of MSI Capability Structure.  

Figure 5-3: PCI MSI Configuration Capability Structure 
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5.2.8.2 MSI-X configuration 

The MSI-X capability structure is illustrated in Figure 5-4. More than one MSI-X 

Configuration Capability Structure  per function is prohibited, but a function is 

permitted to have both an MSI and an MSI-X capability structures. 

In contrast to the MSI capability structure, which directly contains all of the 

control/status information for the function's vectors, the MSI-X capability 

structure instead points to an MSI-X Table structure and a MSI-X Pending Bit 

Array (PBA) structure, each residing in Memory Space.  

Each structure is mapped by a Base Address register (BAR) belonging to the 

function, located beginning at 10h in Configuration Space. A BAR Indicator 

register (BIR) indicates which BAR, and a Qword-aligned Offset indicates where 

the structure begins relative to the base address associated with  the BAR. The 

BAR is permitted to be either 32-bit or 64-bit, but shall map Memory Space. A 

function is permitted to map both structures with the same BAR, or to map each 

structure with a different BAR. 

The MSI-X Table structure typically contains multiple entries, each consisting of 

several fields: Message Address, Message Upper Address, Message Data, and 

Vector Control. Each entry is capable of specifying a unique vector.  

The Pending Bit Array (PBA) structure contains the function’s Pending Bits, one 

per Table entry, organized as a packed array of bits within Qwords.  

The last QWORD will not necessarily be fully populated.  

Figure 5-4: MSI-X Configuration Capability Structure 
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364    

Refer to section 6.8.2 in the PCI specification for the definition of the MSI-X 

Capability and Table Structures. The following subsections describe xHC related 

MSI-X implementation issues. 

5.2.8.3 MSI-X Table 

The MSI-X Capability Table Offset field points to the MSI-X Table. Refer to 

sections 6.8.2.6 through 6.8.2.9 in the PCI specification for the definition of the 

MSI-X Table Entry fields. 

Note: The maximum number of Interrupters supported by the xHC architecture is 

1024. The actual number of MSI-X Table entries required by an implementation 

is determined by the HCSPARAMS1 register MaxIntrs field. 

Refer to section 5.2.8.5 for Table Entry addressing. 

5.2.8.4 MSI-X PBA 

The MSI-X Capability PBA Offset points to the PBA (Pending Bit Array). Refer to 

section 6.8.2.10 in the PCI specification for the definition of the Pending Bits for 

MSI-X Table Entries. 

Note: The maximum number of Interrupters supported by the xHC architecture is 

1024. So only one PBA Qword is implemented, and (at most) only the low order 

1023 bits are implemented. The actual number of Pending bits implemented is 

determined by the HCSPARAMS1 register MaxIntrs field. 

Refer to section 5.2.8.5 for Pending Bit addressing. 

5.2.8.5 Accessing the MSI-X Table and MSI-X PBA 

The MSI-X Table and MSI-X PBA are permitted to co-reside within a naturally 

aligned 4 KB address range, though they shall not overlap with each other.  

MSI-X Table entries and Pending bits are each numbered 0 through N-1, where 

N-1 is indicated by the Table Size field in the MSI-X Message Control register. 

For a given arbitrary MSI-X Table entry K, its starting address can be calculated 

with the formula: 

Entry starting address = Table base + K*16 

For the associated Pending bit K, its address for Qword access and bit number 

within that 

Qword can be calculated with the formulas: 

Qword address = PBA base + (K div 64)*8 

Qword bit# = K MOD 64 

Software that chooses to read Pending bit K with DWORD accesses can use 

these formulas: 
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Qword address = PBA base + (K div 32)*4 

Qword bit# = K 

5.2.9 PCI Express Capability 

The structure depicted below represents a PCI Express Capability structure that 

shall be implemented for any xHC designed to operate as a PCIe device within 

PCIe capable systems. Refer to section 7.8 of the PCIe spec, for details regarding 

implementation of this structure. 

Figure 5-5: PCI Express Capability Structure 
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5.2.10 SR-IOV Extended Capability 

This optional capability is only required for xHC that provides hardware support 

for virtualized system environments. The Single Root I/O Virtualization and 

Sharing Specification (SR-IOV) defines virtualization related extensions to the 

PCI Express (PCIe) specification. SR-IOV is a PCIe Extended Capability.  

Refer to section 8 for details on how to implement this capability.  

5.3 Host Controller Capability Registers 

These registers specify the limits and capabilities of the host controller 

implementation. 
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All Capability Registers are Read-Only (RO). The offsets for these registers are 

all relative to the beginning of the host controller’s MMIO address space. The 

beginning of the host controller’s MMIO address space is referred to as “ Base” 

throughout this document. 

Table 5-9: eXtensible Host Controller Capability Registers 

Base Offset 
Size 

(Bytes) Mnemonic Register Name Section 

00h 1 CAPLENGTH Capability Register Length 5.3.1 

01h 1 Rsvd   

02h 2 HCIVERSION Interface Version Number 5.3.2 

04h 4 HCSPARAMS1 Structural Parameters 1 5.3.3 

08h 4 HCSPARAMS2 Structural Parameters 2 5.3.4 

0Ch 4 HCSPARAMS3 Structural Parameters 3 5.3.5 

10h 4 HCCPARAMS1 Capability Parameters 1 5.3.6 

14h 4 DBOFF Doorbell Offset 5.3.7 

18h 4 RTSOFF Runtime Register Space Offset 5.3.8 

1Ch 4 HCCPARAMS2 Capability Parameters 2 5.3.9 

20h CAPLENGTH-20h Rsvd   

 

5.3.1 Capability Registers Length (CAPLENGTH) 

Address: Base + (00h) 

Default Value: Implementation Dependent 

Attribute: RO 

Size: 8 bits 

This register is used as an offset to add to register base to find the beginning of 

the Operational Register Space. 

5.3.2 Host Controller Interface Version Number (HCIVERSION) 

Address: Base + (02h) 

Default Value: Implementation Dependent 
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Attribute: RO 

Size: 16 bits 

This is a two-byte register containing a BCD encoding of the xHCI specification 

revision number supported by this host controller. The most significant byte of 

this register represents a major revision and the least significant byte contains 

the minor revision extensions. e.g. 0100h corresponds to xHCI version 1.0.0, or 

0110h corresponds to xHCI version 1.1.0, etc.  

Note: Pre-release versions of the xHC shall declare the specific version of the xHCI that 

it was implemented against. e.g. 0090h = version 0.9.0. 

5.3.3 Structural Parameters 1 (HCSPARAMS1) 

Address: Base + (04h) 

Default Value: Implementation Dependent 

Attribute: RO 

Size: 32 bits 

Figure 5-6: Structural Parameters 1 Register (HCSPARAMS1) 

Max InterruptersMax Ports Rsvd Max Device Slots

31 24 23 8 7 01819

 

This register defines basic structural parameters supported by this xHC 

implementation: Number of Device Slots support, Interrupters, Root Hub ports, 

etc. 

Table 5-10: Host Controller Structural Parameters 1 (HCSPARAMS1) 

Bits Description 

7:0 Number of Device Slots (MaxSlots). This field specifies the maximum number of Device 
Context Structures and Doorbell Array entries this host controller can support. Valid values are 
in the range of 1 to 255. The value of ‘0’ is reserved. 

18:8 Number of Interrupters (MaxIntrs). This field specifies the number of Interrupters implemented 
on this host controller. Each Interrupter may be allocated to a MSI or MSI-X vector and controls 
its generation and moderation. 

The value of this field determines how many Interrupter Register Sets are addressable in the 
Runtime Register Space (refer to section 5.5). Valid values are in the range of 1h to 400h. A ‘0’ in 
this field is undefined. 

23:19 Rsvd. 
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31:24 Number of Ports (MaxPorts). This field specifies the maximum Port Number value, i.e. the 

highest numbered Port Register Set that are addressable in the Operational Register Space 
(refer to Table 5-17). Valid values are in the range of 1h to FFh. 

The value in this field shall reflect the maximum Port Number value assigned by an xHCI 

Supported Protocol Capability, described in section 7.2. Software shall refer to these capabilities 
to identify whether a specific Port Number is valid, and the protocol supported by the 
associated Port Register Set. 

 

5.3.4 Structural Parameters 2 (HCSPARAMS2) 

Address: Base + (08h) 

Default Value: Implementation Dependent 

Attribute: RO 

Size: 32 bits 

Figure 5-7: Structural Parameters 2 Register (HCSPARAMS2) 
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This register defines additional xHC structural parameters. 

Table 5-11: Host Controller Structural Parameters 2 (HCSPARAMS2) 

Bit Description 

0:3 Isochronous Scheduling Threshold (IST). Default = implementation dependent. The value in 
this field indicates to system software the minimum distance (in time) that it is required to stay 
ahead of the host controller while adding TRBs, in order to have the host controller process 

them at the correct time. The value shall be specified in terms of number of 
frames/microframes. 

If bit [3] of IST is cleared to '0', software can add a TRB no later than IST[2:0] Microframes before 

that TRB is scheduled to be executed. 

If bit [3] of IST is set to '1', software can add a TRB no later than IST[2:0] Frames before that TRB 
is scheduled to be executed. 

Refer to Section 4.14.2 for details on how software uses this information for scheduling 
isochronous transfers. 

7:4 Event Ring Segment Table Max (ERST Max). Default = implementation dependent. Valid values 
are 0 – 15. This field determines the maximum value supported the Event Ring Segment Table 
Base Size registers (5.5.2.3.1), where: 

              The maximum number of Event Ring Segment Table entries = 2 ERST Max. 

e.g. if the ERST Max = 7, then the xHC Event Ring Segment Table(s) supports up to 128 entries, 
15 then 32K entries, etc. 
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8 Extended TBC Enable (ETE). This flag indicates that the host controller implementation is 

enabled to support Transfer Burst Count (TBC) values greater that 4 in isoch TDs. When this bit 
is ‘1’, the Isoch TRB TD Size/TBC field presents the TBC value, and the TBC/RsvdZ field is RsvdZ. 
When this bit is ‘0’, the TDSize/TCB field presents the TD Size value, and the TBC/RsvdZ field 

presents the TBC value. This bit may be set only if ETC = ‘1’. Refer to section 4.11.2.3 for more 
information. 

20:9 Rsvd. 

25:21 Max Scratchpad Buffers (Max Scratchpad Bufs Hi). Default = implementation dependent. This 
field indicates the high order 5 bits of the number of Scratchpad Buffers system software shall 
reserve for the xHC. Refer to section 4.20 for more information. 

26 Scratchpad Restore (SPR). Default = implementation dependent. If Max Scratchpad Buffers is > 
‘0’ then this flag indicates whether the xHC uses the Scratchpad Buffers for saving state when 
executing Save and Restore State operations. If Max Scratchpad Buffers is = ‘0’ then this flag 

shall be ‘0’. Refer to section 4.23.2 for more information. 

A value of ‘1’ indicates that the xHC requires the integrity of the Scratchpad Buffer space to be 
maintained across power events. 

A value of ‘0’ indicates that the Scratchpad Buffer space may be freed and reallocated between 
power events. 

31:27 Max Scratchpad Buffers (Max Scratchpad Bufs Lo). Default = implementation dependent. Valid 
values for Max Scratchpad Buffers (Hi and Lo) are 0-1023. This field indicates the low order 5 
bits of the number of Scratchpad Buffers system software shall reserve for the xHC. Refer to 

section 4.20 for more information. 

 

 

5.3.5 Structural Parameters 3 (HCSPARAMS3) 

Address: Base + (0Ch) 

Default Value: Implementation Dependent 

Attribute: RO 

Size: 32 bits 

Figure 5-8: Structural Parameters 3 Register (HCSPARAMS3) 

31 16 15 8 7 0

Rsvd U2 Device Exit Latency U1 Device Exit Latency
 

This register defines link exit latency related structural parameters.  
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Table 5-12: Host Controller Structural Parameters 3 (HCSPARAMS3) 

Bit Description 

7:0 U1 Device Exit Latency. Worst case latency to transition a root hub Port Link State (PLS) from U1 

to U0. Applies to all root hub ports. 

The following are permissible values: 

 Value Description 

 00h Zero 

 01h Less than 1 µs 

 02h Less than 2 µs. 

        … 

 0Ah Less than 10 µs. 

 0B-FFh Reserved 

15:8 Rsvd. 

31:16 U2 Device Exit Latency. Worst case latency to transition from U2 to U0. Applies to all root hub 

ports. 

The following are permissible values: 

 Value Description 

 0000h Zero 

 0001h Less than 1 µs. 

 0002h Less than 2 µs. 

        … 

 07FFh Less than 2047 µs. 

 0800-FFFFh Reserved 

 

 

5.3.6 Capability Parameters 1 (HCCPARAMS1) 

Address: Base + (10h) 

Default Value: Implementation Dependent 

Attribute: RO 

Size: 32 bits 

The default values for all fields in this register are implementation dependent.  

Figure 5-9: Capability Parameters 1 Register (HCCPARAMS1) 
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This register defines optional capabilities supported by the xHCI.  
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Table 5-13: Host Controller Capability 1 Parameters (HCCPARAMS1) 

Bits Description 

0 64-bit Addressing Capability76 (AC64). This flag documents the addressing range capability of 

this implementation. The value of this flag determines whether the xHC has implemented the 

high order 32 bits of 64 bit register and data structure pointer fields. Values for this flag have the 

following interpretation: 

 Value Description 

 0 32-bit address memory pointers implemented 

 1 64-bit address memory pointers implemented 

If 32-bit address memory pointers are implemented, the xHC shall ignore the high order 32 bits 

of 64 bit data structure pointer fields, and system software shall ignore the high order 32 bits of 

64 bit xHC registers. 

1 BW Negotiation Capability (BNC). This flag identifies whether the xHC has implemented the 

Bandwidth Negotiation. Values for this flag have the following interpretation: 

 Value Description 

 0 BW Negotiation not implemented 

 1 BW Negotiation implemented 

Refer to section 4.16 for more information on Bandwidth Negotiation. 

2 Context Size (CSZ). If this bit is set to ‘1’, then the xHC uses 64 byte Context data structures. If 

this bit is cleared to ‘0’, then the xHC uses 32 byte Context data structures. 

Note: This flag does not apply to Stream Contexts. 

3 Port Power Control (PPC). This flag indicates whether the host controller implementation 

includes port power control. A ‘1’ in this bit indicates the ports have port power switches. A ‘0’ in 

this bit indicates the port do not have port power switches. The value of this flag affects the 

functionality of the PP flag in each port status and control register (refer to Section 5.4.8). 

4 Port Indicators (PIND). This bit indicates whether the xHC root hub ports support port indicator 

control. When this bit is a ‘1’, the port status and control registers include a read/writeable field 

for controlling the state of the port indicator. Refer to Section 5.4.8 for definition of the Port 

Indicator Control field. 

5 Light HC Reset Capability (LHRC). This flag indicates whether the host controller implementation 

supports a Light Host Controller Reset. A ‘1’ in this bit indicates that Light Host Controller Reset is 

supported. A ‘0’ in this bit indicates that Light Host Controller Reset is not supported. The value 

of this flag affects the functionality of the Light Host Controller Reset (LHCRST) flag in the 

USBCMD register (refer to Section 5.4.1). 

                                                   

76This is not tightly coupled with the USBBASE address register mapping control. The 64-bit Addressing Capability 
(AC64) flag indicates whether the host controller can generate 64-bit addresses as a master. The USBBASE 
register indicates the host controller only needs to decode 32-bit addresses as a slave. 
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6 Latency Tolerance Messaging Capability (LTC). This flag indicates whether the host controller 

implementation supports Latency Tolerance Messaging (LTM). A ‘1’ in this bit indicates that LTM 

is supported. A ‘0’ in this bit indicates that LTM is not supported. Refer to section 4.13.1 for more 

information on LTM. 

7 No Secondary SID Support (NSS). This flag indicates whether the host controller 

implementation supports Secondary Stream IDs. A ‘1’ in this bit indicates that Secondary Stream 

ID decoding is not supported. A ‘0’ in this bit indicates that Secondary Stream ID decoding is 

supported. (refer to Sections 4.12.2 and 6.2.3). 

8 Parse All Event Data (PAE). This flag indicates whether the host controller implementation 

Parses all Event Data TRBs while advancing to the next TD after a Short Packet, or it skips all but 

the first Event Data TRB. A ‘1’ in this bit indicates that all Event Data TRBs are parsed. A ‘0’ in this 

bit indicates that only the first Event Data TRB is parsed (refer to section 4.10.1.1). 

9 Stopped - Short Packet Capability (SPC). This flag indicates that the host controller 

implementation is capable of generating a Stopped - Short Packet Completion Code. Refer to 

section 4.6.9 for more information. 

10 Stopped EDTLA Capability (SEC). This flag indicates that the host controller implementation 

Stream Context support a Stopped EDTLA field. Refer to sections 4.6.9, 4.12, and 6.4.4.1 for more 

information. 

Stopped EDTLA Capability support (i.e. SEC = '1') shall be mandatory for all xHCI 1.1 compliant 

xHCs. 

11 Contiguous Frame ID Capability (CFC). This flag indicates that the host controller 

implementation is capable of matching the Frame ID of consecutive Isoch TDs. Refer to section 

4.11.2.5 for more information. 

15:12 Maximum Primary Stream Array Size (MaxPSASize). This fields identifies the maximum size 

Primary Stream Array that the xHC supports. The Primary Stream Array size = 2MaxPSASize+1. Valid 

MaxPSASize values are 0 to 15, where ‘0’ indicates that Streams are not supported. 

31:16 xHCI Extended Capabilities Pointer (xECP). This field indicates the existence of a capabilities list. 

The value of this field indicates a relative offset, in 32-bit words, from Base to the beginning of 

the first extended capability. 

For example, using the offset of Base is 1000h and the xECP value of 0068h, we can calculated 

the following effective address of the first extended capability: 

1000h + (0068h << 2) -> 1000h + 01A0h -> 11A0h 

 

5.3.7 Doorbell Offset (DBOFF) 

Address: Base + (14h) 

Default Value: Implementation Dependent 

Attribute: RO 

Size: 32 bits 

This register defines the offset of the Doorbell Array base address from the 

Base. 
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Figure 5-10: Doorbell Offset Register (DBOFF) 
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Table 5-14: Doorbell Offset Register (DBOFF)  

Bit Description 

1:0 Rsvd. 

31:2 Doorbell Array Offset - RO. Default = implementation dependent. This field defines the offset in 

Dwords of the Doorbell Array base address from the Base (i.e. the base address of the xHCI 
Capability register address space). 

 

Note: Normally the Doorbell Array is Dword aligned, however if virtualization is 

supported by the xHC then it shall be PAGESIZE aligned. e.g. If the PAGESIZE = 

4K (1000h), and the Doorbell Array is positioned at a 3 page offset from the Base, 

then this register shall report 0000 3000h. 

 

5.3.8 Runtime Register Space Offset (RTSOFF) 

Address: Base + (18h) 

Default Value: Implementation Dependent 

Attribute: RO 

Size: 32 bits 

This register defines the offset of the xHCI Runtime Registers from the Base.  

Figure 5-11: Runtime Register Space Offset Register (RTSOFF) 
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Table 5-15: Runtime Register Space Offset Register (RTSOFF)  

Bit Description 

4:0 Rsvd. 
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31:5 Runtime Register Space Offset - RO. Default = implementation dependent. This field defines the 

32-byte offset of the xHCI Runtime Registers from the Base. i.e. Runtime Register Base Address = 
Base + Runtime Register Set Offset. 

 

Note: Normally the Runtime Register Space is 32-byte aligned, however if virtualization 

is supported by the xHC then it shall be PAGESIZE aligned. e.g. If the PAGESIZE 

= 4K and the Runtime Register Space is positioned at a 1 page offset from the 

Base, then this register shall report 0000 1000h. 

5.3.9 Capability Parameters 2 (HCCPARAMS2) 

Address: Base + (1Ch) 

Default Value: Implementation Dependent 

Attribute: RO 

Size: 32 bits 

The default values for all fields in this register are implementation dependent.  

Figure 5-12: Capability Parameters Register 2 (HCCPARAMS2) 
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This register defines optional capabilities supported by the xHCI.  

Table 5-16: Host Controller Capability Parameters 2 (HCCPARAMS2)  

Bits Description 

0 U3 Entry Capability (U3C) - RO. This bit indicates whether the xHC Root Hub ports support port 
Suspend Complete notification. When this bit is '1', PLC shall be asserted on any transition of PLS 
to the U3 State. Refer to section 4.15.1 for more information. 

1 Configure Endpoint Command Max Exit Latency Too Large Capability (CMC) - RO. This bit 
indicates whether a Configure Endpoint Command is capable of generating a Max Exit Latency 
Too Large Capability Error. When this bit is '1', a Max Exit Latency Too Large Capability Error may 

be returned by a Configure Endpoint Command. When this bit is '0', a Max Exit Latency Too Large 
Capability Error shall not be returned by a Configure Endpoint Command. This capability is 
enabled by the CME flag in the USBCMD register. Refer to sections 4.23.5.2 and 5.4.1 for more 

information. 

2 Force Save Context Capability (FSC) - RO. This bit indicates whether the xHC supports the Force 

Save Context Capability. When this bit is '1', the Save State operation shall save any cached Slot, 
Endpoint, Stream or other Context information to memory. Refer to Implementation Note “FSC 
and Context handling by Save and Restore”, and sections 4.23.2 and 5.4.1 for more information. 
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3 Compliance Transition Capability (CTC) - RO. This bit indicates whether the xHC USB3 Root Hub 

ports support the Compliance Transition Enabled (CTE) flag. When this bit is ‘1’, USB3 Root Hub 
port state machine transitions to the Compliance substate shall be explicitly enabled software. 
When this bit is ‘0’, USB3 Root Hub port state machine transitions to the Compliance substate 

are automatically enabled. Refer to section 4.19.1.2.4.1 for more information. 

4 Large ESIT Payload Capability (LEC) - RO. This bit indicates whether the xHC supports ESIT 
Payloads greater than 48K bytes. When this bit is ‘1’, ESIT Payloads greater than 48K bytes are 

supported. When this bit is ‘0’, ESIT Payloads greater than 48K bytes are not supported. Refer to 
section 6.2.3.8 for more information. 

5 Configuration Information Capability (CIC) - RO. This bit indicates if the xHC supports extended 
Configuration Information. When this bit is 1, the Configuration Value, Interface Number, and 

Alternate Setting fields in the Input Control Context are supported. When this bit is 0, the 
extended Input Control Context fields are not supported. Refer to section 6.2.5.1 for more 
information. 

6 Extended TBC Capability77 (ETC) - RO. This bit indicates if the TBC field in an Isoch TRB supports 
the definition of Burst Counts greater than 65535 bytes. When this bit is ‘1’, the Extended EBC 

capability is supported by the xHC. When this bit is ‘0’, it is not. Refer to section 4.11.2.3 for more 
information. 

7 Extended TBC TRB Status Capability (ETC_TSC) - RO. This bit indicates if the TBC/TRBSts field 
in an Isoch TRB indicates additional information regarding TRB in the TD. When this bit is ‘1’, the 
Isoch TRB TD Size/TBC field presents TBC value and TBC/TRBSts field presents the TRBSts value. 

When this bit is ‘0’ then the ETC/ETE values defines the TD Size/TBC field and TBC/RsrvdZ field. 
This capability shall be enabled only if LEC = ‘1’ and ETC=’1’. Refer to section 4.11.2.3 for more 
information. 

31:8 Reserved. 

 

5.4 Host Controller Operational Registers 

This section defines the xHCI Operational Registers.  

The base address of this register space is referred to as Operational Base. The 

Operational Base shall be Dword aligned and is calculated by adding the value 

of the Capability Registers Length (CAPLENGTH) register (refer to Section 5.3.1) 

to the Capability Base address. All registers are multiples of 32 bits in length.  

                                                   

77The Extended TBC Capability (ETC) was added to enable support for Transfer Burst Count (TBC) values greater 
than 4, which are required to fully support SSP Isoch bandwidths. 
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Unless otherwise stated, all registers should be accessed as a 32-bit width on 

reads with an appropriate software mask, if needed. A software 

read/modify/write mechanism should be invoked for partial writes. 

These registers are located at a positive offset from the Capabilities Registers 

(refer to Section 5.3). 

Table 5-17: Host Controller Operational Registers  

Offset Mnemonic Register Name Section 

00h USBCMD USB Command 5.4.1 

04h USBSTS USB Status 5.4.2 

08h PAGESIZE Page Size 5.4.3 

0C-13h RsvdZ   

14h DNCTRL Device Notification Control 5.4.4 

18h CRCR Command Ring Control 5.4.5 

20-2Fh RsvdZ   

30h DCBAAP Device Context Base Address Array Pointer 5.4.6 

38h CONFIG Configure 5.4.7 

3C-3FFh RsvdZ   

400-13FFh  Port Register Set 1-MaxPorts 

(refer to Table 5-18) 

5.4.8, 5.4.9 

 

Note: The MaxPorts value in the HCSPARAMS1 register defines the number of Port 

Register Sets (e.g. PORTSC, PORTPMSC, and PORTLI register sets). The PORTSC, 

PORTPMSC, and PORTLI register sets are grouped (consecutive Dwords). Refer 

to their respective sections for their addressing. 

The Offset referenced in Table 5-17 is the offset from the beginning of the 

Operational Register space. 

The Operational registers are located at a positive offset from the Capabilities 

Registers (refer to Section 5.3). 
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Table 5-18: Host Controller USB Port Register Set  

Offset Mnemonic Register Name Section 

0h PORTSC Port Status and Control 5.4.8 

4h PORTPMSC  Port Power Management Status and Control 5.4.9 

8h PORTLI Port Link Info 5.4.10 

Ch PORTHLPMC Port Hardware LPM Control 5.4.11 

 

When the Operational Registers are exposed by a Virtual Function (VF), they are 

emulated and managed by the VMM for the xHC instance presented by the 

selected VF. The VMM has full discretion as to how writes to these registers will 

affect the operation of a VF and the value of the read data returned by a VF, 

however recommendations are provided where appropriate. Refer to section 8 

for more information. 

5.4.1 USB Command Register (USBCMD) 

Address: Operational Base+ (00h) 

Default Value: 0000 0000h 

Attribute: RO, RW (field dependent) 

Size: 32 bits 

The Command Register indicates the command to be executed by the serial bus 

host controller. Writing to the register causes a command to be executed. 

Figure 5-13: USB Command Register (USBCMD) 
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Table 5-19: USB Command Register Bit Definitions (USBCMD)  

Bits Description 

0 Run/Stop (R/S) – RW. Default = ‘0’. ‘1’ = Run. ‘0’ = Stop. When set to a ‘1’, the xHC proceeds with 
execution of the schedule. The xHC continues execution as long as this bit is set to a ‘1’. When 

this bit is cleared to ‘0’, the xHC completes any current or queued commands or TDs, and any 
USB transactions associated with them, then halts. 

Refer to section 5.4.1.1 for more information on how R/S shall be managed. 

The xHC shall halt within 16 ms. after software clears the Run/Stop bit if the above conditions 
have been met. 

The HCHalted (HCH) bit in the USBSTS register indicates when the xHC has finished its pending 

pipelined transactions and has entered the stopped state. Software shall not write a ‘1’ to this 
flag unless the xHC is in the Halted state (i.e. HCH in the USBSTS register is ‘1’). Doing so may 
yield undefined results. Writing a ‘0’ to this flag when the xHC is in the Running state (i.e. HCH = 

‘0’) and any Event Rings are in the Event Ring Full state (refer to section 4.9.4) may result in lost 
events. 

When this register is exposed by a Virtual Function (VF), this bit only controls the run state of 

the xHC instance presented by the selected VF. Refer to section 8 for more information. 

1 Host Controller Reset (HCRST) – RW. Default = ‘0’. This control bit is used by software to reset 
the host controller. The effects of this bit on the xHC and the Root Hub registers are similar to a 
Chip Hardware Reset. 

When software writes a ‘1’ to this bit, the Host Controller resets its internal pipelines, timers, 
counters, state machines, etc. to their initial value. Any transaction currently in progress on the 
USB is immediately terminated. A USB reset shall not be driven on USB2 downstream ports, 

however a Hot or Warm Reset78 shall be initiated on USB3 Root Hub downstream ports. 

PCI Configuration registers are not affected by this reset. All operational registers, including port 
registers and port state machines are set to their initial values. Software shall reinitialize the 

host controller as described in Section 4.2 in order to return the host controller to an 
operational state. 

This bit is cleared to ‘0’ by the Host Controller when the reset process is complete. Software 

cannot terminate the reset process early by writing a ‘0’ to this bit and shall not write any xHC 
Operational or Runtime registers until while HCRST is ‘1’. Note, the completion of the xHC reset 
process is not gated by the Root Hub port reset process. 

Software shall not set this bit to ‘1’ when the HCHalted (HCH) bit in the USBSTS register is a ‘0’. 
Attempting to reset an actively running host controller may result in undefined behavior. 

When this register is exposed by a Virtual Function (VF), this bit only resets the xHC instance 

presented by the selected VF. Refer to section 8 for more information. 

2 Interrupter Enable (INTE) – RW. Default = ‘0’. This bit provides system software with a means of 

enabling or disabling the host system interrupts generated by Interrupters. When this bit is a ‘1’, 
then Interrupter host system interrupt generation is allowed, e.g. the xHC shall issue an interrupt 
at the next interrupt threshold if the host system interrupt mechanism (e.g. MSI, MSI-X, etc.) is 

enabled. The interrupt is acknowledged by a host system interrupt specific mechanism. 

When this register is exposed by a Virtual Function (VF), this bit only enables the set of 
Interrupters assigned to the selected VF. Refer to section 7.7.2 for more information. 

                                                   

78Depending on the link state when HCRST is asserted, an xHC implementation may choose to issue a Hot Reset 

rather than a Warm Reset to accelerate the USB recovery process. 
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3 Host System Error Enable (HSEE) – RW. Default = ‘0’. When this bit is a ‘1’, and the HSE bit in 

the USBSTS register is a ‘1’, the xHC shall assert out-of-band error signaling to the host. The 
signaling is acknowledged by software clearing the HSE bit. Refer to section 4.10.2.6 for more 
information. 

When this register is exposed by a Virtual Function (VF), the effect of the assertion of this bit on 
the Physical Function (PF0) is determined by the VMM. Refer to section 8 for more information. 

6:4 RsvdP. 

7 Light Host Controller Reset (LHCRST) – RO or RW. Optional normative. Default = ‘0’. If the Light 
HC Reset Capability (LHRC) bit in the HCCPARAMS1 register is ‘1’, then this flag allows the driver 
to reset the xHC without affecting the state of the ports. 

A system software read of this bit as ‘0’ indicates the Light Host Controller Reset has completed 
and it is safe for software to re-initialize the xHC. A software read of this bit as a ‘1’ indicates the 
Light Host Controller Reset has not yet completed. 

If not implemented, a read of this flag shall always return a ‘0’. 

All registers in the Aux Power well shall maintain the values that had been asserted prior to the 
Light Host Controller Reset. Refer to section 4.23.1 for more information. 

When this register is exposed by a Virtual Function (VF), this bit only generates a Light Reset to 
the xHC instance presented by the selected VF, e.g. Disable the VFs’ device slots and set the 
associated VF Run bit to Stopped. Refer to section 8 for more information. 

8 Controller Save State (CSS) - RW. Default = ‘0’. When written by software with ‘1’ and HCHalted 
(HCH) = ‘1’, then the xHC shall save any internal state (that may be restored by a subsequent 
Restore State operation) and if FSC = '1' any cached Slot, Endpoint, Stream, or other Context 

information (so that software may save it). When written by software with ‘1’ and HCHalted 
(HCH) = ‘0’, or written with ‘0’, no Save State operation shall be performed. This flag always 
returns ‘0’ when read. Refer to the Save State Status (SSS) flag in the USBSTS register for 

information on Save State completion. Refer to section 4.23.2 for more information on xHC 
Save/Restore operation. Note that undefined behavior may occur if a Save State operation is 
initiated while Restore State Status (RSS) = ‘1’. 

When this register is exposed by a Virtual Function (VF), this bit only controls saving the state of 
the xHC instance presented by the selected VF. Refer to section 8 for more information. 

9 Controller Restore State (CRS) - RW. Default = ‘0’. When set to ‘1’, and HCHalted (HCH) = ‘1’, 
then the xHC shall perform a Restore State operation and restore its internal state. When set to 
‘1’ and Run/Stop (R/S) = ‘1’ or HCHalted (HCH) = ‘0’, or when cleared to ‘0’, no Restore State 

operation shall be performed. This flag always returns ‘0’ when read. Refer to the Restore State 
Status (RSS) flag in the USBSTS register for information on Restore State completion. Refer to 
section 4.23.2 for more information. Note that undefined behavior may occur if a Restore State 

operation is initiated while Save State Status (SSS) = ‘1’. 

When this register is exposed by a Virtual Function (VF), this bit only controls restoring the state 
of the xHC instance presented by the selected VF. Refer to section 8 for more information. 

10 Enable Wrap Event (EWE) - RW. Default = ‘0’. When set to ‘1’, the xHC shall generate a MFINDEX 
Wrap Event every time the MFINDEX register transitions from 03FFFh to 0. When cleared to ‘0’ 
no MFINDEX Wrap Events are generated. Refer to section 4.14.2 for more information. 

When this register is exposed by a Virtual Function (VF), the generation of MFINDEX Wrap 
Events to VFs shall be emulated by the VMM.  
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11 Enable U3 MFINDEX Stop (EU3S) - RW. Default = ‘0’. When set to ‘1’, the xHC may stop the 

MFINDEX counting action if all Root Hub ports are in the U3, Disconnected, Disabled, or 
Powered-off state. When cleared to ‘0’ the xHC may stop the MFINDEX counting action if all 
Root Hub ports are in the Disconnected, Disabled, Training, or Powered-off state. Refer to 

section 4.14.2 for more information. 

12  RsvdP. 

13 CEM Enable (CME) - RW. Default = '0'. When set to '1', a Max Exit Latency Too Large Capability 

Error may be returned by a Configure Endpoint Command. When cleared to '0', a Max Exit 
Latency Too Large Capability Error shall not be returned by a Configure Endpoint Command. 
This bit is Reserved if CMC = ‘0’. Refer to section 4.23.5.2.2 for more information. 

31:14 RsvdP. 

 

Note: The R/S flag has no effect on the operation of the Debug Capability. 

5.4.1.1 Run/Stop (R/S) 

After R/S is written with a ‘0’ by software, the xHC completes any current or 

queued commands or TDs (and any host initiated transactions on the USB 

associated with them), then halts and sets HCH = ‘1’. The time it takes for the 

xHC to halt depends on many things, however if many TDs are queued on 

Transfer Rings, then it may take a long time for the xHC to complete all 

outstanding work and halt. 

To expedite the xHC halt process, software should ensure the following before 

clearing the R/S bit: 

•  All endpoints are in the Stopped state or Idle in the Running state, and all Transfer 

Events associated with them have been received. 

•  The Command Transfer Ring is in the Stopped state (CRR = ‘0’) or Idle (i.e. the 

Command Transfer Ring is empty), and all Command Completion Events associated 

with them have been received. 

Software should apply the following rules to determine when a Busy Transfer 

Ring becomes Idle: 

•  For Isoch endpoints: 

•  Wait for a Ring Underrun or Ring Overrun Transfer Event or, 

•  Issue a Stop Endpoint Command and wait for the associated Command 

Completion Event. 

•  For non-Isoch endpoints: 

•  If the IOC flag is set in the last TRB on the Transfer Ring, then wait for its Transfer 

Event. 
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•  If the IOC flag is not set in the last TRB on the Transfer Ring, then there will be no 

Transfer Event generated when the last TRB on the ring is completed, so software 

shall issue a Stop Endpoint Command and wait for the associated Command 

Completion Event and Stopped Transfer Events. Refer to section 4.6.9. 

Note: Software shall ensure that any pending reset on a USB2 port is completed before 

R/S is cleared to ‘0’. 

Note: The xHC is forced to halt within 16 ms. of software clearing the R/S bit to ‘0’, 

irrespective of any queued Transfer or Command Ring activity. If software does 

not follow the “halt process” recommendations above, undefined behavior may 

occur, e.g. xHC commands or pending USB transactions may be lost, aborted, etc. 

5.4.2 USB Status Register (USBSTS) 

Address: Operational Base + (04h) 

Default Value: 0000 0001h79 

Attribute: RO, RW, RW1C, (field dependent) 

Size: 32 bits 

This register indicates pending interrupts and various states of the Host 

Controller. The status resulting from a transaction on the serial bus is not 

indicated in this register. Software sets a bit to ‘0’ in this register by writing a ‘1’ 

to it (RW1C). Refer to Section 4.17 for additional information concerning USB 

interrupt conditions. 

Figure 5-14: USB Status Register (USBSTS) 
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Table 5-20: USB Status Register Bit Definitions (USBSTS)  

Bit Description 

0 HCHalted (HCH) – RO. Default = ‘1’. This bit is a ‘0’ whenever the Run/Stop (R/S) bit is a ‘1’. The 
xHC sets this bit to ‘1’ after it has stopped executing as a result of the Run/Stop (R/S) bit being 
cleared to ‘0’, either by software or by the xHC hardware (e.g. internal error). 

If this bit is '1', then SOFs, microSOFs, or Isochronous Timestamp Packets (ITP) shall not be 
generated by the xHC, and any received Transaction Packet shall be dropped. 

When this register is exposed by a Virtual Function (VF), this bit only reflects the Halted state of 

the xHC instance presented by the selected VF. Refer to section 8 for more information. 

1 RsvdZ. 

                                                   

79Note, the CNR flag may be asserted (‘1’) when the USBSTS is first examined by software. 
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2 Host System Error (HSE) – RW1C. Default = ‘0’. The xHC sets this bit to ‘1’ when a serious error 

is detected, either internal to the xHC or during a host system access involving the xHC module. 
(In a PCI system, conditions that set this bit to ‘1’ include PCI Parity error, PCI Master Abort, and 
PCI Target Abort.) When this error occurs, the xHC clears the Run/Stop (R/S) bit in the USBCMD 

register to prevent further execution of the scheduled TDs. If the HSEE bit in the USBCMD 
register is a ‘1’, the xHC shall also assert out-of-band error signaling to the host. Refer to section 
4.10.2.6 for more information. 

When this register is exposed by a Virtual Function (VF), the assertion of this bit affects all VFs 
and reflects the Host System Error state of the Physical Function (PF0). Refer to section 8 for 
more information. 

3 Event Interrupt (EINT) – RW1C. Default = ‘0’. The xHC sets this bit to ‘1’ when the Interrupt 
Pending (IP) bit of any Interrupter transitions from ‘0’ to ‘1’. Refer to section 7.1.2 for use. 

Software that uses EINT shall clear it prior to clearing any IP flags. A race condition may occur if 

software clears the IP flags then clears the EINT flag, and between the operations another IP ‘0’ 
to '1' transition occurs. In this case the new IP transition shall be lost. 

When this register is exposed by a Virtual Function (VF), this bit is the logical 'OR' of the IP bits 

for the Interrupters assigned to the selected VF. And it shall be cleared to ‘0’ when all associated 
interrupter IP bits are cleared, i.e. all the VF’s Interrupter Event Ring(s) are empty. Refer to 
section 8 for more information. 

4 Port Change Detect (PCD) – RW1C. Default = ‘0’. The xHC sets this bit to a ‘1’ when any port has 
a change bit transition from a ‘0’ to a ‘1’. 

This bit is allowed to be maintained in the Aux Power well. Alternatively, it is also acceptable 
that on a D3 to D0 transition of the xHC, this bit is loaded with the OR of all of the PORTSC 
change bits. Refer to section 4.19.3. 

This bit provides system software an efficient means of determining if there has been Root Hub 
port activity. Refer to section 4.15.2.3 for more information. 

When this register is exposed by a Virtual Function (VF), the VMM determines the state of this 

bit as a function of the Root Hub Ports associated with the Device Slots assigned to the selected 
VF. Refer to section 8 for more information. 

7:5 RsvdZ. 

8 Save State Status (SSS) - RO. Default = ‘0’. When the Controller Save State (CSS) flag in the 
USBCMD register is written with ‘1’ this bit shall be set to ‘1’ and remain 1 while the xHC saves 
its internal state. When the Save State operation is complete, this bit shall be cleared to ‘0’. 

Refer to section 4.23.2 for more information. 

When this register is exposed by a Virtual Function (VF), the VMM determines the state of this 
bit as a function of the saving the state for the selected VF. Refer to section 8 for more 

information. 

9 Restore State Status (RSS) - RO. Default = ‘0’. When the Controller Restore State (CRS) flag in 

the USBCMD register is written with ‘1’ this bit shall be set to ‘1’ and remain 1 while the xHC 
restores its internal state. When the Restore State operation is complete, this bit shall be cleared 
to ‘0’. Refer to section 4.23.2 for more information. 

When this register is exposed by a Virtual Function (VF), the VMM determines the state of this 
bit as a function of the restoring the state for the selected VF. Refer to section 8 for more 
information. 
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10 Save/Restore Error (SRE) - RW1C. Default = ‘0’. If an error occurs during a Save or Restore 

operation this bit shall be set to ‘1’. This bit shall be cleared to ‘0’ when a Save or Restore 
operation is initiated or when written with ‘1’. Refer to section 4.23.2 for more information. 

When this register is exposed by a Virtual Function (VF), the VMM determines the state of this 

bit as a function of the Save/Restore completion status for the selected VF. Refer to section 8 
for more information. 

11 Controller Not Ready (CNR) – RO. Default = ‘1’. ‘0’ = Ready and ‘1’ = Not Ready. Software shall 
not write any Doorbell or Operational register of the xHC, other than the USBSTS register, until 
CNR = ‘0’. This flag is set by the xHC after a Chip Hardware Reset and cleared when the xHC is 

ready to begin accepting register writes. This flag shall remain cleared (‘0’) until the next Chip 
Hardware Reset. 

12 Host Controller Error (HCE) – RO. Default = 0. 0’ = No internal xHC error conditions exist and ‘1’ 
= Internal xHC error condition. This flag shall be set to indicate that an internal error condition 
has been detected which requires software to reset and reinitialize the xHC. Refer to section 

4.24.1 for more information. 

31:13 RsvdP. 

 

 

Note: The Event Interrupt (EINT) and Port Change Detect (PCD) flags are typically only 

used by system software for managing the xHCI when interrupts are disabled or 

during an SMI. 

Note: The EINT flag does not generate an interrupt, it is simply a logical OR of the IMAN 

register IP flag ‘0’ to ‘1’ transitions. As such, it does not need to be cleared to clear 

an xHC interrupt. 

5.4.3 Page Size Register (PAGESIZE) 

Address: Operational Base + (08h) 

Default Value: Implementation dependent 

Attribute: RO 

Size: 32 bits 
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Table 5-21: Page Size Register Bit Definitions (PAGESIZE)  

Bit Description 

15:0 Page Size – RO. Default = Implementation defined. This field defines the page size supported by 
the xHC implementation. This xHC supports a page size of 2^(n+12) if bit n is Set. For example, if 

bit 0 is Set, the xHC supports 4k byte page sizes. 

For a Virtual Function, this register reflects the page size selected in the System Page Size field 
of the SR-IOV Extended Capability structure. For the Physical Function 0, this register reflects 

the implementation dependent default xHC page size. 

Various xHC resources reference PAGESIZE to describe their minimum alignment requirements. 

The maximum possible page size is 128M. 

31:16 Rsvd. 

 

5.4.4 Device Notification Control Register (DNCTRL) 

Address: Operational Base + (14h) 

Default Value: 0000 0000h 

Attribute: RW (Writes shall be Dword) 

Size: 32 bits 

This register is used by software to enable or disable the reporting of the 

reception of specific USB Device Notification Transaction Packets. A Notification 

Enable (Nx, where x = 0 to 15) flag is defined for each of the 16 possible de vice 

notification types. If a flag is set for a specific notification type, a Device 

Notification Event shall be generated when the respective notification packet is 

received. After reset all notifications are disabled. Refer to section 6.4.2.7.  

This register shall be written as a Dword. Byte writes produce undefined results.  

Figure 5-15: Device Notification Control Register (DNCTRL) 
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Table 5-22: Device Notification Register Bit Definitions (DNCTRL)  

Bit Description 

15:0 Notification Enable (N0-N15) – RW. When a Notification Enable bit is set, a Device Notification 
Event shall be generated when a Device Notification Transaction Packet is received with the 

matching value in the Notification Type field. For example, setting N1 to ‘1’ enables Device 
Notification Event generation if a Device Notification TP is received with its Notification Type 
field set to ‘1’ (FUNCTION_WAKE), etc. 

31:16 RsvdP. 

 

Note: Of the currently defined USB3 Device Notification Types, only the 

FUNCTION_WAKE type should not be handled automatically by the xHC. Only 

under debug conditions would software write the DNCTRL register with a value 

other than 0002h. Refer to section 8.5.6 in the USB3 specification for more 

information on Notification Types. If new Device Notification Types are defined, 

software may receive them by setting the respective Notification Enable bit. 

 

5.4.5 Command Ring Control Register (CRCR) 

Address: Operational Base + (18h) 

Default Value: 0000 0000 0000 0000h 

Attribute: RW 

Size: 64 bits 

The Command Ring Control Register provides Command Ring control and status 

capabilities, and identifies the address and Cycle bit state of the Command Ring 

Dequeue Pointer. 

Figure 5-16: Command Ring Control Register (CRCR) 
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Table 5-23: Command Ring Control Register Bit Definitions (CRCR)  

Bit Description 

0 Ring Cycle State (RCS) - RW. This bit identifies the value of the xHC Consumer Cycle State (CCS) 
flag for the TRB referenced by the Command Ring Pointer. Refer to section 4.9.3 for more 
information. 

Writes to this flag are ignored if Command Ring Running (CRR) is ‘1’. 

If the CRCR is written while the Command Ring is stopped (CRR = ‘0’), then the value of this flag 
shall be used to fetch the first Command TRB the next time the Host Controller Doorbell register 

is written with the DB Reason field set to Host Controller Command. 

If the CRCR is not written while the Command Ring is stopped (CRR = ‘0’), then the Command Ring 
shall begin fetching Command TRBs using the current value of the internal Command Ring CCS 

flag. 

Reading this flag always returns ‘0’. 

1 Command Stop (CS) - RW1S. Default = ‘0’. Writing a ‘1’ to this bit shall stop the operation of the 
Command Ring after the completion of the currently executing command, and generate a 

Command Completion Event with the Completion Code set to Command Ring Stopped and the 
Command TRB Pointer set to the current value of the Command Ring Dequeue Pointer. Refer to 
section 4.6.1.1 for more information on stopping a command. 

The next write to the Host Controller Doorbell with DB Reason field set to Host Controller 
Command shall restart the Command Ring operation. 

Writes to this flag are ignored by the xHC if Command Ring Running (CRR) = ‘0’. 

Reading this bit shall always return ‘0’. 

2 Command Abort (CA) - RW1S. Default = ‘0’. Writing a ‘1’ to this bit shall immediately terminate 
the currently executing command, stop the Command Ring, and generate a Command 

Completion Event with the Completion Code set to Command Ring Stopped. Refer to section 
4.6.1.2 for more information on aborting a command. 

The next write to the Host Controller Doorbell with DB Reason field set to Host Controller 

Command shall restart the Command Ring operation. 

Writes to this flag are ignored by the xHC if Command Ring Running (CRR) = ‘0’. 

Reading this bit always returns ‘0’. 

3 Command Ring Running (CRR) - RO. Default = 0. This flag is set to ‘1’ if the Run/Stop (R/S) bit is 
‘1’ and the Host Controller Doorbell register is written with the DB Reason field set to Host 
Controller Command. It is cleared to ‘0’ when the Command Ring is “stopped” after writing a ‘1’ to 

the Command Stop (CS) or Command Abort (CA) flags, or if the R/S bit is cleared to ‘0’. 

5:4 RsvdP. 
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63:6 Command Ring Pointer - RW. Default = ‘0’. This field defines high order bits of the initial value of 

the 64-bit Command Ring Dequeue Pointer. 

Writes to this field are ignored when Command Ring Running (CRR) = ‘1’. 

If the CRCR is written while the Command Ring is stopped (CRR = ‘0’), the value of this field shall 

be used to fetch the first Command TRB the next time the Host Controller Doorbell register is 
written with the DB Reason field set to Host Controller Command. 

If the CRCR is not written while the Command Ring is stopped (CRR = ‘0’) then the Command Ring 

shall begin fetching Command TRBs at the current value of the internal xHC Command Ring 
Dequeue Pointer. 

Reading this field always returns ‘0’. 

 

Note: Refer to section 4.6 for more information on Command Ring Stop and Abort 

operation. 

Note: Setting the Command Stop (CS) or Command Abort (CA) flags while CRR = ‘1’ 

shall generate a Command Ring Stopped Command Completion Event. 

Note: Setting both the Command Stop (CS) and Command Abort (CA) flags with a single 

write to the CRCR while CRR = ‘1’ shall be interpreted as a Command Abort (CA) 

by the xHC. 

Note: The Command Ring is 64 byte aligned, so the low order 6 bits of the Command 

Ring Pointer shall always be ‘0’. 

Note: The values of the internal xHC Command Ring CCS flag and Dequeue Pointer are 

undefined after hardware reset, so these fields shall be initialized before setting 

USBCMD Run/Stop (R/S) to ‘1’. Refer to section 4.6.1. 

Note: After asserting Command Stop (CS) if the Command doorbell is rung before CRR 

= ‘0’, (i.e. the ring is not fully stopped), then the behavior is undefined, e.g. the 

Command Ring may not restart. 

5.4.6 Device Context Base Address Array Pointer Register (DCBAAP) 

Address: Operational Base + (30h) 

Default Value: 0000 0000 0000 0000h 

Attribute: RW 

Size: 64 bits 

The Device Context Base Address Array Pointer Register identifies the base 

address of the Device Context Base Address Array. 

The memory structure referenced by this physical memory pointer is assumed to 

be physically contiguous and 64-byte aligned. 
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Figure 5-17: Device Context Base Address Array Pointer Register (DCBAAP) 
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Device Context Base Address Array Pointer Lo RsvdZ
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Table 5-24: Device Context Base Address Array Pointer Register Bit Definitions (DCBAAP) 

Bit Description 

5:0 RsvdZ. 

63:6 Device Context Base Address Array Pointer - RW. Default = ‘0’. This field defines high order bits 
of the 64-bit base address of the Device Context Pointer Array. A table of address pointers that 

reference Device Context structures for the devices attached to the host. 

 

5.4.7 Configure Register (CONFIG) 

Address: Operational Base+ (38h) 

Default Value: 0000 0000h 

Attribute: RW 

Size: 32 bits 

This register defines runtime xHC configuration parameters.  

Figure 5-18: Configure Register (CONFIG) 

U3ERsvdP
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Number of Device Slots Enabled
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Table 5-25: Configure Register Bit Definitions (CONFIG) 

Bit Description 

7:0 Max Device Slots Enabled (MaxSlotsEn) – RW. Default = ‘0’. This field specifies the maximum 
number of enabled Device Slots. Valid values are in the range of 0 to MaxSlots. Enabled Devices 

Slots are allocated contiguously. e.g. A value of 16 specifies that Device Slots 1 to 16 are active. 
A value of ‘0’ disables all Device Slots. A disabled Device Slot shall not respond to Doorbell 
Register references. 

This field shall not be modified by software if the xHC is running (Run/Stop (R/S) = ‘1’). 
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8 U3 Entry Enable (U3E) – RW. Default = '0'. When set to '1', the xHC shall assert the PLC flag ('1') 

when a Root Hub port transitions to the U3 State. Refer to section 4.15.1 for more information. 

9 Configuration Information Enable (CIE) - RW. Default = '0'. When set to '1', the software shall 
initialize the Configuration Value, Interface Number, and Alternate Setting fields in the Input 

Control Context when it is associated with a Configure Endpoint Command. When this bit is '0', 
the extended Input Control Context fields are not supported. Refer to section 6.2.5.1 for more 
information. 

31:10 RsvdP. 

 

Note: Writing the Max Device Slots Enabled (MaxSlotsEn) field with a non-zero value, 

signals to the xHC that the host controller driver for the xHC is loaded. The 

Run/Stop (R/S) flag in the USBCMD register can be checked to determine if the 

driver is running. 

Note: The value of the Max Device Slots Enabled (MaxSlotsEn) field may allow software 

to scale back its memory usage, in cases where it doesn’t need to support the full 

number of slots supported by the xHC hardware. It may also be used by the xHC 

to modify internal algorithms for distributing its internal resource, i.e. More data 

buffering per slot, modify its endpoint scheduling algorithms, etc. 

Note: If the xHC is stopped to reduce the MaxSlotsEn value, software shall ensure that 

no active Device Slots (i.e. not in the Disabled state) are being disabled, 

otherwise undefined behavior may occur. e.g. if MaxSlotsEn is being changed 

from 16 to 8, Device Slots 9 through 16 shall be in the Disabled state before 

MaxSlotsEn is changed. 

5.4.8 Port Status and Control Register (PORTSC) 

Address: Operational Base + (400h + (10h * (n–1))) 

 where: n = Port Number (Valid values are 1, 2, 3, … MaxPorts) 

Default: Field dependent 

Attribute: RO, RW, RW1C (field dependent) 

Size 32 bits 

A host controller shall implement one or more port registers. The number of 

port registers implemented by a particular instantiation of a host controller is 

documented in the HCSPARAMS1 register (Section 5.3.3). Software uses this 

information as an input parameter to determine how many ports need to be 

serviced. All ports have the structure defined below.  

This register is in the Aux Power well. It is only reset by platform hardware 

during a cold reset or in response to a Host Controller Reset (HCRST). The initial 

conditions of a port are described in section 4.19.  
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Note: Port Status Change Events cannot be generated if the xHC is stopped (HCHalted 

(HCH) = ‘1’). Refer to section 4.19.2 for more information about change flags. 

Note: Software shall ensure that the xHC is running (HCHalted (HCH) = ‘0’) before 

attempting to write to this register. 

Software cannot change the state of the port unless Port Power (PP) is asserted 

(‘1’), regardless of the Port Power Control (PPC) capability (section 5.3.6). The 

host is required to have power stable to the port within 20 milliseconds of the 

‘0’ to ‘1’ transition of PP. If PPC = ‘1’ software is responsible for waiting 20 ms. 

after asserting PP, before attempting to change the state of the port.  

Note: If a port has been assigned to the Debug Capability, then the port shall not report 

device connected (i.e. CCS = ‘0’) and enabled when the Port Power Flag is ‘1’. 

Refer to section 7.6 for more information on the xHCI Debug Capability 

operation. 

Figure 5-19: Port Status and Control Register (PORTSC) 
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Table 5-26: Port Status and Control Register Bit Definitions (PORTSC)  

Bits Description 

0 Current Connect Status (CCS) – ROS. Default = ‘0’. ‘1’ = A device is connected80 to the port. ‘0’ = 
A device is not connected. This value reflects the current state of the port, and may not 
correspond directly to the event that caused the Connect Status Change (CSC) bit to be set to 

‘1’. Refer to sections 4.19.3 and 4.19.4 for more details on the Connect Status Change (CSC) 
assertion conditions. 

This flag is ‘0’ if PP is ‘0’. 

                                                   

80For USB2 ports, CCS shall be asserted when the port transitions from the Disconnected to the Disabled state. Refer 
to section 4.19.1.1. Note that if a D- pull-up resistor is detected, then a Low-speed device is connected and CCS 
shall be asserted immediately (refer to section 7.1.7.3 of the USB2 spec). If a D+ pull-up resistor is detected, then 

a Full- or High-speed device may be connected. PED shall not be asserted until after the High-speed Detection 
Handshake described in section 7.1.7.5 of the USB2 spec completes and determines the speed of the device.For 
USB3 ports, CCS shall be asserted when the port transitions from the Polling to the Enabled state. Refer to section 

4.19.1.2. 
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1 Port Enabled/Disabled (PED) – RW1CS. Default = ‘0’. ‘1’ = Enabled. ‘0’ = Disabled. 

Ports may only be enabled by the xHC. Software cannot enable a port by writing a ‘1’ to this 
flag. 

A port may be disabled by software writing a ‘1’ to this flag. 

This flag shall automatically be cleared to ‘0’ by a disconnect event or other fault condition. 

Note that the bit status does not change until the port state actually changes. There may be a 
delay in disabling or enabling a port due to other host controller or bus events. 

When the port is disabled (PED = ‘0’) downstream propagation of data is blocked on this port, 
except for reset. 

For USB2 protocol ports: 

When the port is in the Disabled state, software shall reset the port (PR = ‘1’) to transition PED 
to ‘1’ and the port to the Enabled state. 

For USB3 protocol ports: 

When the port is in the Polling state (after detecting an attach), the port shall automatically 
transition to the Enabled state and set PED to ‘1’ upon the completion of successful link 
training. 

When the port is in the Disabled state, software shall write a ‘5’ (RxDetect) to the PLS field to 
transition the port to the Disconnected state. Refer to section 4.19.1.2. 

PED shall automatically be cleared to ‘0’ when PR is set to ‘1’, and set to ‘1’ when PR transitions 

from ‘1’ to ‘0’ after a successful reset. Refer to Port Reset (PR) bit for more information on how 
the PED bit is managed. 

Note that when software writes this bit to a ‘1’, it shall also write a ‘0’ to the PR bit81. 

This flag is ‘0’ if PP is ‘0’. 

2 RsvdZ. 

3 Over-current Active (OCA) – RO. Default = ‘0’. ‘1’ = This port currently has an over-current 
condition. ‘0’ = This port does not have an over-current condition. This bit shall automatically 
transition from a ‘1’ to a ‘0’ when the over-current condition is removed. 

4 Port Reset (PR) – RW1S. Default = ‘0’. ‘1’ = Port Reset signaling is asserted. ‘0’ = Port is not in 

Reset. When software writes a ‘1’ to this bit generating a ‘0’ to ‘1’ transition, the bus reset 
sequence is initiated82; USB2 protocol ports shall execute the bus reset sequence as defined in 
the USB2 Spec. USB3 protocol ports shall execute the Hot Reset sequence as defined in the 

USB3 Spec. PR remains set until reset signaling is completed by the root hub. 

Note that software shall write a ‘1’ to this flag to transition a USB2 port from the Polling state 
to the Enabled state. Refer to sections 4.15.2.3 and 4.19.1.1. 

This flag is ‘0’ if PP is ‘0’. 

                                                   

81 The PED and PR flags are mutually exclusive. Writing the PORTSC register with PED and PR set to ‘1’ shall result 
in undefined behavior. 

82A ‘0’ to ‘1’ transition of PR initiates a USB2 or USB3 reset signaling protocol (refer to section 7.1.7.5 in the USB2 
spec and section 6.9.3 in the USB3 spec). The USB reset protocols are not designed to be interrupted or restarted 
before they are complete, therefore setting PR = ‘1’ when it is already equal to ‘1’ shall be ignored by a port to 

avoid possible USB reset protocol violations. 
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8:5 Port Link State (PLS) – RWS. Default = RxDetect (‘5’). This field is used to power manage the 

port and reflects its current link state. 

When the port is in the Enabled state, system software may set the link U state by writing this 
field. System software may also write this field to force a Disabled to Disconnected state 

transition of the port. 

Write Value Description 

 0 The link shall transition to a U0 state from any of the U states. 

 284 USB2 protocol ports only. The link should transition to the U2 State. 

 383 The link shall transition to a U3 state from the U0 state. This action 

selectively suspends the device connected to this port. While the Port 

Link State = U3, the hub does not propagate downstream-directed 

traffic to this port, but the hub shall respond to resume signaling from 

the port. 

 5 USB3 protocol ports only. If the port is in the Disabled state (PLS = 

Disabled, PP = 1), then the link shall transition to a RxDetect state and 

the port shall transition to the Disconnected state, else ignored. 

 10 USB3 protocol ports only. Shall enable a link transition to the 

Compliance state, i.e. CTE = ‘1’. Refer to section 4.19.1.2.4.1 for more 

information. 

 184,4,6-9,11-14 Ignored. 

 15 USB2 protocol ports only. If the port is in the U3 state (PLS = U3), then 

the link shall remain in the U3 state and the port shall transition to the 

Resume substate, else ignored. Refer to section 4.15.2 for more 

information. 

Note: The Port Link State Write Strobe (LWS) shall also be set to ‘1’ to write 

this field. 

For USB2 protocol ports: Writing a value of '2' to this field shall request LPM, asserting L1 
signaling on the USB2 bus. Software may read this field to determine if the transition to the U2 
state was successful. Writing a value of '0' shall deassert L1 signaling on the USB. Writing a 

value of '1' shall have no effect. The U1 state shall never be reported by a USB2 protocol port. 

 Read Value Meaning 

 0 Link is in the U0 State 

 1 Link is in the U1 State 

 2 Link is in the U2 State 

 3 Link is in the U3 State (Device Suspended) 

 4 Link is in the Disabled State85 

                                                   

83Refer to section 4.19.1.1.12 for more information on the U0 to U3 transition of USB2 ports. 

84The USB3 spec allows software to issue a SetPortFeature(PORT_LINK_STATE, U1 or U2) request. These requests 
are strictly used for compliance testing to generate an LGO_U1 or LGO_U2 LMP. The xHCI does not support this 

capability directly, e.g. by writing the PORTSC register with PLS = U1 or U2 and LWS = ‘1’ to immediately 
transition a Root Hub port link to a U1 or U2 state.To initiate the transition of a Root Hub port link to a U1 or U2 
state, software should write the USB3 PORTPMSC register and set the U1 Timeout or U2 Timeout fields, 

respectively, to a value of ‘1’. This shall cause an LGO_U1 or LGO_U2 LMP to be generated after the respective 
minimum delay, which is sufficient for compliance testing. 

 

85Disabled corresponds to the SS.Disabled Port Link State defined by the USB3 spec (section 10.14.2.6.1). 
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 5 Link is in the RxDetect State86 

 6 Link is in the Inactive State87 

 7 Link is in the Polling State 

 8 Link is in the Recovery State 

 9 Link is in the Hot Reset State 

 10 Link is in the Compliance Mode State 

 11 Link is in the Test Mode88 State 

 12-14 Reserved 

 15 Link is in the Resume State89 

This field is undefined if PP = ‘0’. 

Note: Transitions between different states are not reflected until the transition is complete. 
Refer to section 4.19 for PLS transition conditions. 

Refer to sections 4.15.2 and 4.23.5 for more information on the use of this field. Refer to the 

USB2 LPM ECR for more information on USB link power management operation. Refer to 
section 7.2 for supported USB protocols. 

                                                   

86RxDetect corresponds to the Rx.Detect Port Link State defined by the USB3 spec (section 10.14.2.6.1). 

87Inactive corresponds to the SS.Inactive Port Link State defined by the USB3 spec (section 10.14.2.6.1). 

88Test Mode indicates that the PORTPMSC Test Mode field of a USB2 protocol port is non-zero or a USB3 protocol 
port is in the Loopback link state, or an SSIC port is in TEST_MODE (i.e.configured to the MPHY.TEST state, refer 

to the SSIC spec). 

89The Resume state is not defined as a Port Link State by the USB3 spec (section 10.14.2.6.1). Refer to section 
4.15.2. for xHCI use of the Resume state. 

 



 

 

394    

9 Port Power (PP) – RWS. Default = ‘1’. This flag reflects a port's logical, power control state. 

Because host controllers can implement different methods of port power switching, this flag 
may or may not represent whether (VBus) power is actually applied to the port. When PP 
equals a '0' the port is nonfunctional and shall not report attaches, detaches, or Port Link State 

(PLS) changes. However, the port shall report over-current conditions when PP = ‘0’ if PPC = ‘0’. 
After modifying PP, software shall read PP and confirm that it is reached its target state before 
modifying it again90, undefined behavior may occur if this procedure is not followed. 

0 = This port is in the Powered-off state. 

1 = This port is not in the Powered-off state. 

If the Port Power Control (PPC) flag in the HCCPARAMS1 register is '1', then xHC has port power 

control switches and this bit represents the current setting of the switch ('0' = off, '1' = on). 

If the Port Power Control (PPC) flag in the HCCPARAMS1 register is '0', then xHC does not have 
port power control switches and each port is hard wired to power, and not affected by this bit. 

When an over-current condition is detected on a powered port, the xHC shall transition the PP 
bit in each affected port from a ‘1’ to ‘0’ (removing power from the port). 

Note: If this is an SSIC Port, then the DSP Disconnect process is initiated by '1' to '0' transition of 

PP. After an SSIC USP disconnect process, the port may be disabled by setting PED = 1. As 
noted, the SSIC spec does not define a mechanism for the USP to request DSP to be re-enabled 
for a subsequent re-connect. If PED is set to 1 without a prior negotiated disconnect with the 

USP, subsequent re-enabling of the port requires DSP to issue a WPR to bring USP back to 
Rx.Detect. Refer to section 5.1.2 in the SSIC Spec for more information. 

Refer to section 4.19.4 for more information. 

13:10 Port Speed (Port Speed) – ROS. Default = ‘0’. This field identifies the speed of the connected 
USB Device. This field is only relevant if a device is connected (CCS = ‘1’) in all other cases this 
field shall indicate Undefined Speed. Refer to section 4.19.3. 

 Value  Meaning 

0 Undefined Speed 

1 -15 Protocol Speed ID (PSI), refer to section 7.2.1 for the definition of PSIV 
field in the PSI Dword 

 

Note: This field is invalid on a USB2 protocol port until after the port is reset. 

                                                   

90A port implementation shall initiate a Port Power change immediately when PP is written, however the PP flag 
may be delayed in reflecting this change, e.g. due to waiting for a port related state machine to complete reset 

signaling or other operation. 
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15:14 Port Indicator Control (PIC) – RWS. Default = 0. Writing to these bits has no effect if the Port 

Indicators (PIND) bit in the HCCPARAMS1 register is a ‘0’. If PIND bit is a ‘1’, then the bit 
encodings are: 

 Value  Meaning 

0 Port indicators are off 

1 Amber 

2 Green 

3 Undefined 

 

Refer to the USB2 Specification section 11.5.3 for a description on how these bits shall be used. 

This field is ‘0’ if PP is ‘0’. 

16 Port Link State Write Strobe (LWS) – RW. Default = ‘0’. When this bit is set to ‘1’ on a write 

reference to this register, this flag enables writes to the PLS field. When ‘0’, write data in PLS 
field is ignored. Reads to this bit return ‘0’. 

17 Connect Status Change (CSC) – RW1CS. Default = ‘0’. ‘1’ = Change in CCS. ‘0’ = No change. This 

flag indicates a change has occurred in the port’s Current Connect Status (CCS) or Cold Attach 
Status (CAS) bits. Note that this flag shall not be set if the CCS transition was due to software 
setting PP to ‘0’, or the CAS transition was due to software setting WPR to ‘1’. The xHC sets this 

bit to ‘1’ for all changes to the port device connect status91, even if system software has not 
cleared an existing Connect Status Change. For example, the insertion status changes twice 
before system software has cleared the changed condition, root hub hardware will be “setting” 

an already-set bit (i.e., the bit will remain ‘1’). Software shall clear this bit by writing a ‘1’ to it. 
Refer to section 4.19.2 for more information on change bit usage. 

18 Port Enabled/Disabled Change (PEC) – RW1CS. Default = ‘0’. ‘1’ = change in PED. ‘0’ = No 
change. Note that this flag shall not be set if the PED transition was due to software setting PP 

to ‘0’. Software shall clear this bit by writing a ‘1’ to it. Refer to section 4.19.2 for more 
information on change bit usage. 

For a USB2 protocol port, this bit shall be set to ‘1’ only when the port is disabled due to the 

appropriate conditions existing at the EOF2 point (refer to section 11.8.1 of the USB2 
Specification for the definition of a Port Error). 

For a USB3 protocol port, this bit shall never be set to ‘1’. 

19 Warm Port Reset Change (WRC) – RW1CS/RsvdZ. Default = ‘0’. This bit is set when Warm 

Reset processing on this port completes. ‘0’ = No change. ‘1’ = Warm Reset complete. Note that 
this flag shall not be set to ‘1’ if the Warm Reset processing was forced to terminate due to 
software clearing PP or PED to '0'. Software shall clear this bit by writing a '1' to it. Refer to 

section 4.19.5.1. Refer to section 4.19.2 for more information on change bit usage. 

This bit only applies to USB3 protocol ports. For USB2 protocol ports it shall be RsvdZ. 

                                                   

91The assertion of CSC is optional if CCS was cleared by the assertion of OCA. The assertion of OCC generates the 

necessary Port Status Change Event. 
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20 Over-current Change (OCC) – RW1CS. Default = ‘0’. This bit shall be set to a ‘1’ when there is a 

‘0’ to ‘1’ or ‘1’ to ‘0’ transition of Over-current Active (OCA). Software shall clear this bit by 
writing a ‘1’ to it. Refer to section 4.19.2 for more information on change bit usage. 

21 Port Reset Change (PRC) – RW1CS. Default = ‘0’. This flag is set to ‘1’ due to a '1' to '0' 
transition of Port Reset (PR). e.g. when any reset processing (Warm or Hot) on this port is 

complete. Note that this flag shall not be set to ‘1’ if the reset processing was forced to 
terminate due to software clearing PP or PED to '0'. ‘0’ = No change. ‘1’ = Reset complete. 
Software shall clear this bit by writing a '1' to it. Refer to section 4.19.5. Refer to section 4.19.2 

for more information on change bit usage. 

22 Port Link State Change (PLC) – RW1CS. Default = ‘0’. This flag is set to ‘1’ due to the following 
PLS transitions: 

 Transition Condition 

U3 -> Resume Wakeup signaling from a device 

Resume -> Recovery -> U0 Device Resume complete (USB3 protocol ports 
only) 

Resume -> U0 Device Resume complete (USB2 protocol ports 
only) 

U3 -> Recovery -> U0 Software Resume complete (USB3 protocol ports 

only) 

U3 -> U0 Software Resume complete (USB2 protocol ports 

only) 

U2 -> U0 L1 Resume complete (USB2 protocol ports only)92 

U0 -> U0 L1 Entry Reject (USB2 protocol ports only)92  

Any state -> Inactive  Error (USB3 protocol ports only). 

Note: PLC is asserted only on the first LTSSM 

SS.Inactive.Disconnect.Detect to SS.Inactive.Quiet 
substate transition after entering the SS.Inactive 
state93. 

Any State -> U3 U3 Entry complete. Note: PLC is asserted only if 
U3E = ‘1’94. 

Note that this flag shall not be set if the PLS transition was due to software 

setting PP to ‘0’. Refer to section 4.23.5 for more information. '0' = No change. 

'1' = Link Status Changed. Software shall clear this bit by writing a '1' to it. Refer 

to “PLC Condition:” references in section 4.19.1 for the specific port state 

                                                   

92PLC shall not be set if an L1 Resume Complete or L1 Entry Reject condition was due to HW initiated LPM 

transitions, i.e. while HLE = ‘1’. Refer to section 4.23.5.1.1 for more information on USB2 LPM support. 

93The Any state -> Inactive transition shall assert PLS only when an attached device has entered the Inactive state. If 
a device is disconnected when the link is in U0, the PLS will transition through the U0->Recovery->Inactive-

>RxDetect states. This requirement eliminates the assertion of PLC due the Recovery->SS.Inactive transition of a 
disconnect. 

94Refer to section 4.15.1 for more information. 
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transitions that set this flag. Refer to section 4.19.2 for more information on 

change bit usage. 

23 Port Config Error Change (CEC) – RW1CS/RsvdZ. Default = ‘0’. This flag indicates that the port 
failed to configure its link partner. 0 = No change. 1 = Port Config Error detected. Software shall 

clear this bit by writing a '1' to it. Refer to section 4.19.2 for more information on change bit 
usage. 

Note: This flag is valid only for USB3 protocol ports. For USB2 protocol ports this bit shall be 

RsvdZ. 

24 Cold Attach Status (CAS) – RO. Default = ‘0’. ‘1’ = Far-end Receiver Terminations were detected 
in the Disconnected state and the Root Hub Port State Machine was unable to advance to the 
Enabled state. Refer to sections 4.19.8 for more details on the Cold Attach Status (CAS) 

assertion conditions. Software shall clear this bit by writing a '1' to WPR or the xHC shall clear 
this bit if CCS transitions to ‘1’. 

This flag is ‘0’ if PP is ‘0’ or for USB2 protocol ports. 

25 Wake on Connect Enable (WCE) – RWS. Default = ‘0’. Writing this bit to a ‘1’ enables the port to 
be sensitive to device connects as system wake-up events95. Refer to section 4.15 for 

operational model. 

26 Wake on Disconnect Enable (WDE) – RWS. Default = ‘0’. Writing this bit to a ‘1’ enables the 

port to be sensitive to device disconnects as system wake-up events95. Refer to section 4.15 for 
operational model. 

27 Wake on Over-current Enable (WOE) – RWS. Default = ‘0’. Writing this bit to a ‘1’ enables the 

port to be sensitive to over-current conditions as system wake-up events95. Refer to section 
4.15 for operational model. 

29:28 RsvdZ. 

30 Device Removable96 (DR) - RO. This flag indicates if this port has a removable device attached. 
‘1’ = Device is non-removable. ‘0’ = Device is removable. 

31 Warm Port Reset (WPR) – RW1S/RsvdZ. Default = ‘0’. When software writes a ‘1’ to this bit, the 
Warm Reset sequence as defined in the USB3 Specification is initiated and the PR flag is set to 
‘1’. Once initiated, the PR, PRC, and WRC flags shall reflect the progress of the Warm Reset 

sequence. This flag shall always return ‘0’ when read. Refer to section 4.19.5.1. 

This flag only applies to USB3 protocol ports. For USB2 protocol ports it shall be RsvdZ. 

 

                                                   

95If host software sets this bit to a ‘1’ when the port is not enabled (i.e. PED = ‘0’) the results are undefined. 

96The DR field mimics the function of the USB Hub Descriptor DeviceRemovable flag for xHC Root Hub ports. Refer to 
section 10.12.2.1 in the USB3 spec for more information. 
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5.4.8.1 USB2 to USB3 Port State Mapping 

Figure 10-9 in the USB3 Specification describes the Downstream Facing Hub 

Port State Machine (DFHPSM) of a USB3 hub port. Each DSPORT state specifies 

the associated Port Link State (PLS) value presented by a port. 

Figure 11-10 in the USB2 Specification describes the Downstream Facing Hub 

Port State Machine of a USB2 hub port. Table 5-27 enumerates the Downstream 

Facing Hub Port State Machine states defined in section 11.5.1 of the USB2 spec 

and maps them to their equivalent xHCI Port Link State (PLS) values. 

Table 5-27: USB2 to USB3 Port Link State Mapping  

USB2 State USB3 Port Link State 

Not Configured N/A97 

Powered-off Disabled 

Disconnected RxDetect 

Disabled Polling98 

Resetting Undefined 

Enabled U0 

Transmit  U0 

TransmitR U0 

Suspended U3 

Resuming Resume 

SendEOR Preserves previous PLS state.99 

Restart_S N/A100 

                                                   

97USB2 State does not apply to Root Hub ports. 
98In this case PP and CCS = ‘1’, and PE and PR = ‘0’ for a USB2 port. This state is approximately equivalent to the 

USB3 DSPORT.Polling state defined in Figure 10-9, section 10.3 of the USB3 spec, where a connected device has 
been detected but the port is not enabled. This state is only presented by USB2 protocol ports. Refer to section 
4.15.2.3. 

99i.e. U0 if entered from Enabled, Resume if entered from Resuming or L1Resuming. 

100Section 11.5.1.12 of the USB2 spec “Restart_S” describes a state that applies to the DFHPSM when implemented 

as USB hub with an Upstream Receiver, as such, this state does not apply to a Root Hub port. 
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Restart_E N/A101 

WLPM102 U0 

L1Suspend102 U2 

L1Resuming102 Resume 

 

5.4.9 Port PM Status and Control Register (PORTPMSC) 

Address: Operational Base + (404h + (10h * (n-1))) 

 where: n = Port Number (Valid values are 1, 2, 3, … MaxPorts) 

Default: 0000 0000h 

Attribute: RWS 

Size 32 bits 

The definition of the fields in the PORTPMSC register depend on the USB 

protocol supported by the port. 

This register is in the Aux Power well. It is only reset by platform hardware 

during a cold reset or in response to a Host Controller Reset (HCRST). 

5.4.9.1 USB3 Protocol PORTPMSC Definition 

The USB3 Port Power Management Status and Control  register controls the 

SuperSpeed USB link U-State timeouts. 

Refer to the section 11 of the USB3 spec for more information on Link Power 

Management. 

Figure 5-20: USB3 Port Power Management Status and Control Register (PORTPMSC) 

RsvdP FLA U2 Timeout U1 Timeout
 

 

                                                   

101Section 11.5.1.13 of the USB2 spec “Restart_E” describes a state that applies to the DFHPSM when implemented 
as USB hub with an Upstream Receiver, as such, this state does not apply to a Root Hub port. 

102USB2 Link Power Management state. Refer to USB2 LPM Figure 4-11. 
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Table 5-28: USB3 Port Power Management Status and Control Register Bit Definitions (PORTPMSC)  

Bit Description 

7:0 U1 Timeout – RWS. Default = ‘0’. Timeout value for U1 inactivity timer. If equal to FFh, the port 
is disabled from initiating U1 entry. This field shall be set to ‘0’ by the assertion of PR to ‘1’. Refer 

to section 4.19.4.1 for more information on U1 Timeout operation. The following are 
permissible values: 

 Value Description 

 00h Zero (default) 

 01h 1 µs. 

 02h 2 µs. 

 … 

 7Fh 127 µs. 

 80h–FEh Reserved 

 FFh Infinite 

15:8 U2 Timeout – RWS. Default = ‘0’. Timeout value for U2 inactivity timer. If equal to FFh, the port 
is disabled from initiating U2 entry. This field shall be set to ‘0’ by the assertion of PR to ‘1’. Refer 
to section 4.19.4.1 for more information on U2 Timeout operation. The following are 

permissible values: 

 Value Description 

 00h Zero (default) 

 01h 256 µs 

 02h 512 µs 

 … 

 FEh 65,024 ms 

 FFh Infinite 

A U2 Inactivity Timeout LMP shall be sent by the xHC to the device connected on this port when 

this field is written. Refer to Sections 8.4.3 and 10.4.2.10 of the USB3 specification for more 
details. 

16 Force Link PM Accept (FLA) - RW. Default = ‘0’. When this bit is set to ‘1’, the port shall generate 
a Set Link Function LMP with the Force_LinkPM_Accept bit asserted (‘1’). When this bit is cleared 
to ‘0’, the port shall generate a Set Link Function LMP with the Force_LinkPM_Accept bit de-

asserted (‘0’). 

This flag shall be set to ‘0’ by the assertion of PR to ‘1’ or when CCS = transitions from ‘0’ to ‘1’. 
Writes to this flag have no effect if PP = ‘0’. 

The Set Link Function LMP is sent by the xHC to the device connected on this port when this bit 
transitions from ‘0’ to ‘1’ or ‘1’ to ‘0’. Refer to Sections 8.4.2 and 10.14.2.2 of the USB3 
specification for more details. 

Improper use of the SS Force_LinkPM_Accept functionality can impact the performance of the 
link significantly. This bit shall only be used for compliance and testing purposes. Software shall 
ensure that there are no pending packets at the link level before setting this bit. 

This flag is ‘0’ if PP is ‘0’. 

31:17 RsvdP. 
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Refer to the section 10.4.2.1 of the USB3 spec for more information on U1 and 

U2 Timeouts. 

5.4.9.2 USB2 Protocol PORTPMSC Definition 

The USB2 Port Power Management Status and Control register provides the 

USB2 LPM parameters necessary for the xHC to generate a LPM Token to the 

downstream device. 

Refer to section 4.23.5.1 for more information on xHCI Link Power Management 

features. 

Refer to the USB2 LPM ECR for more information on USB2 Link Power 

Management. 

Figure 5-21: USB2 Port Power Management Status and Control Register (PORTPMSC) 

RWETest Mode L1SRsvzP L1 Device Slot BESLHLE

 

  

Table 5-29: USB2 Port Power Management Status and Control Register Bit Definitions (PORTPMSC)  

Bit Description 

2:0 L1 Status (L1S) - RO. Default = 0. This field is used by software to determine whether an L1-
based suspend request (LPM transaction) was successful, specifically: 

 Value Meaning 

 0 Invalid - This field shall be ignored by software 

 1 Success - Port successfully transitioned to L1 (ACK) 

 2 Not Yet - Device is unable to enter L1 at this time (NYET) 

 3 Not Supported - Device does not support L1 transitions (STALL) 

 4 Timeout/Error - Device failed to respond to the LPM Transaction or an error occurred 

 5-7 Reserved 

The value of this field is only valid when the port resides in the L0 or L1 state (PLS = ‘0’ or ‘2’). 
Refer to section 4.23.5.1.1 for more information. 

3 Remote Wake Enable (RWE) - RW. Default = ‘0’. System software sets this flag to enable or 
disable the device for remote wake from L1. The value of this flag shall temporarily (while in L1) 

override the current setting of the Remote Wake feature set by the standard Set/ClearFeature() 
commands defined in Universal Serial Bus Specification, revision 2.0, Chapter 9. 
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7:4 Best Effort Service Latency (BESL) - RW. Default = ‘0’. System software sets this field to indicate 

to the recipient device how long the xHC will drive resume if it (the xHC) initiates an exit from L1. 
The BESL value encoding is defined in Table 13. 

Note that the BESL field is used by both software and hardware controlled LPM. Refer to section 

4.23.5.1.1 for more information on BESL use. Refer to section 5.2.5 for information on how 
DBESL may be used to establish an initial value for BESL. 

15:8 L1 Device Slot - RW. Default = ‘0’. System software sets this field to indicate the ID of the Device 
Slot associated with the device directly attached to the Root Hub port. A value of ‘0’ indicates no 
device is present. The xHC uses this field to lookup information necessary to generate the LPM 

Token packet. 

16 Hardware LPM Enable (HLE) - RW. Default = ‘0’. If this bit is set to ‘1’, then hardware controlled 
LPM shall be enabled for this port. Refer to section 4.23.5.1.1.1. 

If the USB2 Hardware LPM Capability is not supported (HLC = ‘0’) this field shall be RsvdZ. 

Note the BESL LMP Capability support (i.e. HLE = ‘1’ and BLC = ‘1’) shall be mandatory for all 
xHCI 1.1 compliant xHCs. 

27:17 RsvdP. 

31:28 Port Test Control (Test Mode) – RW. Default = ‘0’. When this field is ‘0’, the port is NOT 
operating in a test mode. A non-zero value indicates that it is operating in test mode and the 
specific test mode is indicated by the specific value. 

A non-zero Port Test Control value is only valid to a port that is in the Powered-Off state (PLS = 
Disabled). If the port is not in this state, the xHC shall respond with the Port Test Control field set 
to Port Test Control Error. Refer to section 4.19.6 for the operational model for using these test 

modes. 

The encoding of the Test Mode bits for a USB2 protocol port are: 

 Value Test Mode 

 0 Test mode not enabled 

 1 Test J_STATE 

 2 Test K_STATE 

 3 Test SE0_NAK 

 4 Test Packet 

 5 Test FORCE_ENABLE 

 6-14 Reserved. 

 15 Port Test Control Error. 

Refer to the sections 7.1.20 and 11.24.2.13 of the USB2 spec for more information on Test 

Modes. 

 

Note: All fields in this register apply only to the device attached to and immediately 

downstream of the associated Root Hub port. It is the responsibility of system 

software to ensure the L1 Device Slot field is consistent with the selected port. 

Note: L0 and L1 refer to the USB 2.0 “Line” states referred to in the USB2 LPM ECR. 

These “Line” states map to the xHCI Port Link States (PLS) U0 and U2, 

respectively. 
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Note: Due to similar exit latencies (~1ms.), the USB 2.0 L1 state is mapped to the USB3 

U2 state. 

Note: The L1 Device Slot field provides the device address for generating USB2 LPM 

transactions to the device attached to the Root Hub port. 

5.4.10 Port Link Info Register (PORTLI) 

Address: Operational Base + (408h + (10h * (n-1))) 

 where: n = Port Number (Valid values are 1, 2, 3, … MaxPorts) 

Default: 0000 0000h 

Attribute: RO 

Size 32 bits 

The definition of the fields in the PORTLI register depend on the USB protocol 

supported by the port. 

5.4.10.1 USB3 Protocol PORTLI Definition 

The USB3 Port Link Info register reports the Link Error Count. 

Refer to the section 10.14.2.5 of the USB3 spec for more information on Link 

error count reporting. 

Figure 5-22: USB3 Port Link Info Register (PORTLI) 

RLCTLC

31 16 15 0

RsvdP Link Error Count

24 20 1923

 

 

Table 5-30: USB3 Port Link Info Register Bit Definitions (PORTLI)  

Bit Description 

15:0 Link Error Count – RO. Default = ‘0’. This field returns the number of link errors detected by the 

port. This value shall be reset to ‘0’ by the assertion of a Chip Hardware Reset, HCRST, when PR 
transitions from ‘1’ to ‘0’, or when CCS = transitions from ‘0’ to ‘1’. 

19:16 Rx Lane Count (RLC) - RO. Default = '0'. This field that identifies the number of Receive Lanes 
negotiated by the port. This is a "zero-based" value, where 0 to 15 represents Lane Counts of 1 

to 16, respectively. This value is valid only when CCS = '1'. RLC shall equal '0' for a simplex 
Sublink. Refer to section 7.2.1 for more information. 

23:20 Tx Lane Count (TLC) - RO. Default = '0'. This field that identifies the number of Transmit Lanes 
negotiated by the port. This is a "zero-based" value, where 0 to 15 represents Lane Counts of 1 

to 16, respectively. This value is valid only when CCS = '1'. TLC shall equal '0' for a simplex 
Sublink. Refer to section 7.2.1 for more information. 
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31:24 RsvdP. 

 

5.4.10.2 USB2 Protocol PORTLI Definition 

The USB2 Port Link Info register is reserved and shall be treated as RsvdP by 

software. 

5.4.11 Port Hardware LPM Control Register (PORTHLPMC) 

Address: Operational Base + (40Ch + (10h * (n-1))) 

 where: n = Port Number (Valid values are 1, 2, 3, … MaxPorts) 

Default: 0000 0000h 

Attribute: RWS 

Size 32 bits 

The definition of the fields in the PORTHLPMC register depend on the USB 

protocol supported by the port. 

This register is in the Aux Power well. It is only reset by platform hardware 

during a cold reset or in response to a Host Controller Reset (HCRST). 

5.4.11.1 USB3 Protocol PORTHLPMC Definition 

The USB3 Port Hardware LPM Control register is reserved and shall be treated as 

RsvdP by software. 

5.4.11.2 USB2 Protocol PORTHLPMC Definition 

The optional normative USB2 Port Hardware LPM Control register provides the 

USB2 LPM parameters necessary for the xHC to automatically generate a LPM 

Token to the downstream device. If LPM is not supported (HLC = '0') then this 

register is reserved. Refer to section 4.23.5.1.1.1 for more information.  

Figure 5-23: USB2 Port Hardware LPM Control Register (PORTHLPMC) 

RsvdP BESLD L1 Timeout HIRDM

31 14 13 10 9 2 1 0
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Table 5-31: USB2 Port Hardware LPM Control Register Bit Definitions (PORTHLPMC) 

Bit Description 

1:0 Host Initiated Resume Duration Mode (HIRDM) - RWS. Default = 0h. Indicates which HIRD value 
should be used. The following are permissible values: 

 Value Description  

 0 Initiate L1 using BESL only on timeout. (default) 

 1 Initiate L1 using BESLD on timeout. If rejected by device, initiate L1 using BESL. 

 3-2 Reserved. 

9:2 L1 Timeout – RWS. Default = 00h. Timeout value for the L1 inactivity timer (LPM Timer). This 
field shall be set to 00h by the assertion of PR to ‘1’. Refer to section 4.23.5.1.1.1 for more 
information on L1 Timeout operation. The following are permissible values: 

 Value Description 

 00h 128 µs. (default) 

 01h 256 µs. 

 02h 512 µs. 

 03h 768 µs. 

 … 

 FFh 65,280 µs. 

13:10 Best Effort Service Latency Deep (BESLD) - RWS. Default = ‘0’. System software sets this field 

to indicate to the recipient device how long the xHC will drive resume on an exit from U2. Refer 
to section 4.23.5.1.1.1 for more information on BESLD use. The BESLD value encoding is defined 
in Table 13. Refer to section 5.2.6 for information on how DBESLD may be used to establish an 

initial value for BESLD. 

31:14 RsvdP. 

 

Refer to Table 4-11 for the mapping of USB2 L-states to U-states. 

5.5 Host Controller Runtime Registers 

This section defines the xHCI Runtime Register space. The base address of this 

register space is referred to as Runtime Base. The Runtime Base shall be 32-

byte aligned and is calculated by adding the value Runtime Register Space Offset  

register (refer to Section 5.3.8) to the Capability Base address. All Runtime 

registers are multiples of 32 bits in length.  

Unless otherwise stated, all registers should be accessed with Dword references 

on reads, with an appropriate software mask if needed. A software 

read/modify/write mechanism should be invoked for partial writes.  
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Software should write registers containing a Qword address field using only 

Qword references. If a system is incapable of issuing Qword references, then 

writes to the Qword address fields shall be performed using 2 Dword references; 

low Dword-first, high-Dword second. 

Table 5-32: Host Controller Runtime Registers  

Offset Mnemonic Register Name 

0000h MFINDEX Microframe Index 

001Fh:0004h RsvdZ  

0020h IR0 Interrupter Register Set 0 

… … … 

8000h IR1023 Interrupter Register Set 1023 

 

The Offset referenced in Table 5-32 is the offset from the beginning of the 

Runtime Register space. 

 

5.5.1 Microframe Index Register (MFINDEX) 

Address: Runtime Base 

Default Value: 0000 0000h 

Attribute: RO 

Size: 32 bits 

This register is used by the system software to determine the current periodic 

frame. The register value is incremented every 125 microseconds (once each 

microframe). 

This register is only incremented while Run/Stop (R/S) = ‘1’. 

The value of this register affects the SOF value generated by USB2 Bus 

Instances. Refer to section 4.14.2 for details. Also see Figure 4-21. 

Figure 5-24: Microframe Index Register (MFINDEX) 

RsvdP Microframe Index

31 014 13
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Table 5-33: Microframe Index Register Bit Definitions (MFINDEX)  

Bit Description 

13:0 Microframe Index – RO. The value in this register increments at the end of each microframe (e.g. 
125us.). Bits [13:3] may be used to determine the current 1ms. Frame Index. 

31:14 RsvdZ. 

 

5.5.2 Interrupter Register Set 

The Interrupter logic consists of an Interrupter Management Register, an 

Interrupter Moderation Register, and the Event Ring Registers. A one to one 

mapping is defined for Interrupter to MSI-X vector. Up to 1024 Interrupters are 

supported. 

Figure 5-25: Interrupter Register Set 

Event Ring Dequeue Pointer Lo DESIEHB

RsvdP Event Ring Segment Table Size

RsvdP

RsvdP IPIE 03-00H

07-04H

Event Ring Segment Table Base Address Lo

Event Ring Segment Table Base Address Hi

0B-08H

0F-0CH

31 16 15 3 2 1 0

Interrupter Moderation Counter Interrupter Moderation Interval

RsvdP

Event Ring Dequeue Pointer Hi

13-10H

17-14H

1B-18H

1F-1CH

456

 

Refer to section 4.9.4.3 for a discussion of Primary and Secondary Interrupters 

and Event Rings. 

Note: All registers of the Primary Interrupter shall be initialized before setting the 

Run/Stop (RS) flag in the USBCMD register to ‘1’. Secondary Interrupters may be 

initialized after RS = ‘1’, however all Secondary Interrupter registers shall be 

initialized before an event that targets them is generated. Not following these 

rules, shall result in undefined xHC behavior. 

Table 5-34: Interrupter Registers  

Offset Size (bits) Mnemonic Register Name Section 

00h 32 IMAN Interrupter Management 5.5.2.1 

04h 32 IMOD Interrupter Moderation 5.5.2.2 

08h 32 ERSTSZ Event Ring Segment Table Size 5.5.2.3.1 
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0Ch 32 RsvdP   

10h 64 ERSTBA Event Ring Segment Table Base Address 5.5.2.3.2 

18h 64 ERDP Event Ring Dequeue Pointer 5.5.2.3.3 

 

 

5.5.2.1 Interrupter Management Register (IMAN) 

Address: Runtime Base + 020h + (32 * Interrupter) 

where: Interrupter is 0, 1, 2, 3, … 1023 

Default Value: 0000 0000h 

Attribute: RW 

Size: 32 bits 

The Interrupter Management register allows system software to enable, disable, 

and detect xHC interrupts. 

Table 5-35: Interrupter Management Register Bit Definitions (IMAN)  

Bit Description 

0 Interrupt Pending (IP) - RW1C. Default = ‘0’. This flag represents the current state of the 

Interrupter. If IP = ‘1’, an interrupt is pending for this Interrupter. A ‘0’ value indicates that no 
interrupt is pending for the Interrupter. Refer to section 4.17.3 for the conditions that modify the 
state of this flag. 

1 Interrupt Enable (IE) – RW. Default = ‘0’. This flag specifies whether the Interrupter is capable of 

generating an interrupt. When this bit and the IP bit are set (‘1’), the Interrupter shall generate an 
interrupt when the Interrupter Moderation Counter reaches ‘0’. If this bit is ‘0’, then the 
Interrupter is prohibited from generating interrupts. 

31:2 RsvdP. 

 

Note: In systems that do not support MSI or MSI-X, the IP bit may be cleared by writing 

a ‘1’ to it. Most systems have write buffers that minimize overhead, but this may 

require a read operation to guarantee that the write has been flushed from 

posted buffers. 

Refer to section 4.17.2 for more information. 

5.5.2.2 Interrupter Moderation Register (IMOD) 

Address: Runtime Base + 024h + (32 * Interrupter) 

where: Interrupter is 0, 1, 2, 3, … 1023 
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Default Value: Field dependent 

Attribute: RW 

Size: 32 bits 

The Interrupter Moderation Register controls the “interrupt moderation” feature 

of an Interrupter, allowing system software to throttle the interrupt rate 

generated by the xHC. 

Table 5-36: Interrupter Moderation Register (IMOD)  

Bit Description 

15:0 Interrupt Moderation Interval (IMODI) – RW. Default = ‘4000’ (~1ms). Minimum inter-interrupt 
interval. The interval is specified in 250ns increments. A value of ‘0’ disables interrupt throttling 

logic and interrupts shall be generated immediately if IP = ‘0’, EHB = ‘0’, and the Event Ring is 
not empty. 

31:16 Interrupt Moderation Counter (IMODC) – RW. Default = undefined. Down counter. Loaded with 
the IMODI value whenever IP is cleared to ‘0’, counts down to ‘0’, and stops. The associated 

interrupt shall be signaled whenever this counter is ‘0’, the Event Ring is not empty, the IE and IP 
flags = ‘1’, and EHB = ‘0’. 

This counter may be directly written by software at any time to alter the interrupt rate. 

 

Software may use this register to pace (or even out) the delivery of interrupts to 

the host CPU. This register provides a guaranteed inter-interrupt delay between 

interrupts asserted by the xHC, regardless of USB traffic conditions. To 

independently validate configuration settings, software may use the following 

algorithm to convert the inter-interrupt Interval value to the common 

'interrupts/sec' performance metric: 

interrupts/sec = 1/(250×10-9sec × Interval) 

For example, if the interval is programmed to 500, the xHC guarantees the CPU 

will not be interrupted by it for 125 microseconds from the last interrupt. The 

maximum observable interrupt rate from the xHC should never exceed 8000 

interrupts/sec. 

Inversely, inter-interrupt interval value can be calculated as: 

inter-interrupt interval = (250×10-9sec × interrupts/sec) -1 

The optimal performance setting for this register is very system and 

configuration specific. 

Refer to section 4.17.2 for more information. 
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5.5.2.3 Event Ring Registers 

Refer to section 4.9.4 for more information in Event Ring management. Refer to 

section 6.5 for more information on the Event Ring Segment Table and its 

entries. 

5.5.2.3.1 Event Ring Segment Table Size Register (ERSTSZ) 

Address: Runtime Base + 028h + (32 * Interrupter) 

where: Interrupter is 0, 1, 2, 3, … 1023 

Default Value: 0000 0000h 

Attribute: RW 

Size: 32 bits 

The Event Ring Segment Table Size Register  defines the number of segments 

supported by the Event Ring Segment Table.  

Table 5-37: Event Ring Segment Table Size Register Bit Definitions (ERSTS  

Bit Description 

15:0 Event Ring Segment Table Size – RW. Default = ‘0’. This field identifies the number of valid 

Event Ring Segment Table entries in the Event Ring Segment Table pointed to by the Event Ring 
Segment Table Base Address register. The maximum value supported by an xHC 
implementation for this register is defined by the ERST Max field in the HCSPARAMS2 register 

(5.3.4). 

For Secondary Interrupters: Writing a value of ‘0’ to this field disables the Event Ring. Any events 
targeted at this Event Ring when it is disabled shall result in undefined behavior of the Event 

Ring. 

For the Primary Interrupter: Writing a value of ‘0’ to this field shall result in undefined behavior 
of the Event Ring. The Primary Event Ring cannot be disabled. 

31:16 RsvdP. 

 

Note: The Event Ring Segment Table Size may be set to any value up to ERST Max, 

however software shall allocate a buffer for the Event Ring Segment Table that 

rounds up its size to the nearest 64B boundary to allow full cache-line accesses. 

5.5.2.3.2 Event Ring Segment Table Base Address Register (ERSTBA) 

Address: Runtime Base + 030h + (32 * Interrupter) 

where: Interrupter is 0, 1, 2, 3, … 1023 

Default Value: 0000 0000 0000 0000h 

Attribute: RW 

Size: 64 bits 
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The Event Ring Segment Table Base Address Register  identifies the start address 

of the Event Ring Segment Table (ERST). Refer to section 6.5 for the definition of 

an ERST entry. 

Table 5-38: Event Ring Segment Table Base Address Register Bit Definitions (ERSTBA)  

Bit Description 

5:0 RsvdP. 

63:6 Event Ring Segment Table Base Address Register – RW. Default = ‘0’. This field defines the high 

order bits of the start address of the Event Ring Segment Table. 

Writing this register sets the Event Ring State Machine:EREP Advancement to the Start state. 
Refer to Figure 4-12 for more information. 

For Secondary Interrupters: This field may be modified at any time. 

For the Primary Interrupter: This field shall not be modified if HCHalted (HCH) = ‘0’. 

 

Note: Refer to section 5.1for register 64-bit address write conventions. 

5.5.2.3.3 Event Ring Dequeue Pointer Register (ERDP) 

Address: Runtime Base + 038h + (32 * Interrupter) 

where: Interrupter is 0, 1, 2, 3, … 1023 

Default Value: 0000 0000 0000 0000h 

Attribute: RW 

Size: 64 bits 

The Event Ring Dequeue Pointer Register is written by software to define the 

Event Ring Dequeue Pointer location to the xHC. Software updates this pointer 

when it is finished the evaluation of an Event(s) on the Event Ring. 

Table 5-39: Event Ring Dequeue Pointer Register Bit Definitions (ERDP) 

Bit Description 

2:0 Dequeue ERST Segment Index (DESI) – RW. Default = ‘0’. This field may be used by the xHC to 
accelerate checking the Event Ring full condition. This field is written with the low order 3 bits of 

the offset of the ERST entry which defines the Event Ring segment that the Event Ring Dequeue 
Pointer resides in. Refer to section 6.5 for the definition of an ERST entry. 

3 Event Handler Busy (EHB) - RW1C. Default = ‘0’. This flag shall be set to ‘1’ when the IP bit is set 
to ‘1’ and cleared to ‘0’ by software when the Dequeue Pointer register is written. Refer to section 

4.17.2 for more information. 

5:4 RsvdP 
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63:6 Event Ring Dequeue Pointer - RW. Default = ‘0’. This field defines the high order bits of the 64-

bit address of the current Event Ring Dequeue Pointer. 

 

 

Dequeue ERST Segment Index (DESI) usage: 

When software finishes processing an Event TRB, it will write the address of that 

Event TRB to the ERDP. Before enqueuing an Event, the xHC shall check that 

space is available on the Event Ring. This check can be skipped if the xHC is 

currently enqueuing Event TRBs in a different ERST segment than the one that 

software is using to dequeue Events. 

To enable this optimization, software provides a hint to the xHC by writing the 

Dequeue ERST Segment Index  (DESI) with the low order bits of the index of the 

segment that the ERDP resides in when it writes the ERDP. The xHC may 

compare this value with the ERST Segment Index of the Enqueue Pointer to 

determine whether it should check for an Event Ring Full condition.  

E.g. Consider an ERST that defines multiple segments (ERSTSZ > 1), and 

software is dequeuing an Event TRB in the 1st segment of the ERST. In this case, 

the Dequeue ERST Segment Index  (DESI) field shall be written with the value of 

‘0’ (i.e. the index of the associated Event Ring Segment Table Entry data 

structure). If the Dequeue Pointer references an Event TRB in the 2nd segment, 

then the Dequeue ERST Segment Index  (DESI) field shall be written with the 

value of ‘1’, and so on.  

Note: If the ERSTSZ is > 8, then the Dequeue ERST Segment Index (DESI) shall provide 

an alias of the actual ERST Segment that was written. e.g ERST Segment 

Index(2:0). 

Note: Software shall not write ERDP consecutively with the same value unless it is a 

FULL to EMPTY advancement of the Event Ring. 

 

5.6 Doorbell Registers 

The Doorbell Array is organized as an array of up to 256 Doorbell Registers. One 

32-bit Doorbell Register is defined in the array for each Device Slot. System 

software utilizes the Doorbell Register to notify the xHC that it has Device Slot 

related work for the xHC to perform. 

The number of Doorbell Registers implemented by a particular instantiation of a 

host controller is documented in the Number of Device Slots (MaxSlots) field of 

the HCSPARAMS1 register (section 5.3.3). 



 

 

 

  413 

These registers are pointed to by the Doorbell Offset Register (DBOFF) in the 

xHC Capability register space. The Doorbell Array base address shall be Dword 

aligned and is calculated by adding the value in the DBOFF register (section 

5.3.7) to “Base” (the base address of the xHCI Capability register address space).  

 Refer to section 4.7 for more information on Doorbell registers.  

Figure 5-26: Doorbell Register 

RsvdZ

31 8 7 0

DB Task ID DB Target

16 15

 

All registers are 32 bits in length. Software should read and write these registers 

using only Dword accesses. 

Note: Software shall not write the Doorbell of an endpoint until after it has issued a 

Configure Endpoint Command for the endpoint and received a successful 

Command Completion Event. 

Table 5-40: Doorbell Register Bit Field Definitions (DB) 

Bit Description 

7:0 DB Target – RW. Doorbell Target. This field defines the target of the doorbell reference. The 
table below defines the xHC notification that is generated by ringing the doorbell. Note that 
Doorbell Register 0 is dedicated to Command Ring and decodes this field differently than the 

other Doorbell Registers. 

Device Context Doorbells (1-255) 

 Value Definition 

 0 Reserved 

 1 Control EP 0 Enqueue Pointer Update 

 2 EP 1 OUT Enqueue Pointer Update 

 3 EP 1 IN Enqueue Pointer Update 

 4 EP 2 OUT Enqueue Pointer Update 

 5 EP 2 IN Enqueue Pointer Update 

 … ... 

 30 EP 15 OUT Enqueue Pointer Update 

 31 EP 15 IN Enqueue Pointer Update 

 32:247 Reserved 

 248:255 Vendor Defined 

 

Host Controller Doorbell (0) 

 Value Definition 

 0 Command Doorbell 

 1:247 Reserved 

 248:255 Vendor Defined 

 

This field returns ‘0’ when read and should be treated as “undefined” by software. 
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When the Command Doorbell is written, the DB Stream ID field shall be cleared to ‘0’. 

15:8 RsvdZ. 

31:16 DB Stream ID - RW. Doorbell Stream ID. If the endpoint of a Device Context Doorbell defines 

Streams, then this field shall be used to identify which Stream of the endpoint the doorbell 
reference is targeting. System software is responsible for ensuring that the value written to this 
field is valid. 

If the endpoint defines Streams (MaxPStreams > 0), then 0, 65535 (No Stream) and 65534 
(Prime) are reserved Stream ID values and shall not be written to this field. 

If the endpoint does not define Streams (MaxPStreams = 0) and a non-'0' value is written to this 

field, the doorbell reference shall be ignored. 

This field only applies to Device Context Doorbells and shall be cleared to ‘0’ for Host Controller 
Command Doorbells. 

This field returns ‘0’ when read. 

 

Note: If virtualization is supported, an xHC implementation shall ensure that an invalid 

values do not affect another function (PF0 of VFx). 
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6 Data Structures 

This section defines the interface data structures used to communicate control, 

status and data between HCD (software) and the eXtensible Host Controller 

(hardware). The data structure definitions in this chapter support a 32-bit or 64-

bit memory buffer address space. The interface consists of Transfer Request 

Buffers (TRBs) that are managed in TRB Rings.  

All transfer types (Isoch, Interrupt, Control, and Bulk) utilize the same basic TRB 

structure. TRBs also support Scatter/Gather operations for Data Page 

concatenation in systems that employ Virtual Memory.  

TRBs are optimized to reduce the total memory footprint of the schedule and to 

reduce (on average) the number of memory accesses needed to execute a USB 

transaction. 

Table 6-1 identifies the Max Size and alignment requirements of the various 

xHCI data structures. Note that software shall ensure that no interface data 

structure with a Max Size less than or equal to 64KB spans a 64KB boundary, 

and that no interface data structure with a Max Size less than or equal to 

PAGESIZE spans a PAGESIZE boundary. 

The data structures defined in this chapter are (from the host controller’s 

perspective) a mix of read-only and read/writable fields. Software shall preserve 

the read-only fields on all data structure writes.  

Note: Refer to notes at the end of section 5.1.1 for a description of the Reserved field 

(RsvdZ, RsvdO, etc.) use in data structures. 

Note: Whenever possible, software should read and write xHCI data structures as 

“cache line” operations. 

All multi-byte data structure fields follow little-endian ordering; i.e. lower 

addresses contain the least significant parts of the field. Bytes/characters within 

a field shall be in little-endian order, i.e. first char of string in least significant 

byte, second char next significant byte, etc.  
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Table 6-1: Data Structure Max Size, Boundary, and Alignment Requirement Summary 

Data Structure Max Size in 
Bytes 

Boundary 
Requirement103 

Alignment in 
Bytes 

Section 

Device Context Base 
Address Array 

2048 PAGESIZE 64 6.1 

Device Context 2048 PAGESIZE 64 6.2.1 

Input Control Context 64 PAGESIZE 64 6.2.5.1 

Slot Context 64 PAGESIZE 32 6.2.2 

Endpoint Context 64 PAGESIZE 32 6.2.3 

Stream Context 16 PAGESIZE 16 6.2.4.1 

Stream Array (Linear) 1M None 16 6.2.4 

Stream Array (Pri/Sec) 4K104 PAGESIZE 16 6.2.4 

Transfer Ring segments 64K 64KB 16 4.9.2 

Command Ring segments 64K 64KB 64 4.9.3 

Event Ring segments 64K 64KB 64 4.9.4 

Event Ring Segment Table 512K None 64 6.5 

Scratchpad Buffer Array 248 PAGESIZE 64 6.6 

Scratchpad Buffers PAGESIZE PAGESIZE Page 4.20 

 

                                                   

103Boundary which data structure shall not span. 

104Using the Primary/Secondary Stream Array mechanism described in section 4.12.2, Stream Arrays may be 
limited to 4KB while allowing access to approximately 64K stream IDs. 
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6.1 Device Context Base Address Array 

The Device Context Base Address Array (DCBAA) data structure is used to 

associate an xHCI Device Slot with its respective Device Context data structure. 

The Device Context Base Address Array entry associated with each allocated 

Device Slot shall contain a 64-bit pointer to the base of the associated Device 

Context. Refer to section 3.2.1 for more information. 

System software initializes the Device Context Base Address Array to ‘0’, and 

updates individual entries when the respective Device Slot is allocated. The xHC 

reads an entry in the Device Context after a doorbell associated with the entries’ 

Device Slot is rung. 

The Device Context Base Address Array  shall be indexed by the Device Slot ID. 

The Device Context Base Address Array  shall be aligned to a 64 byte boundary. 

The Device Context Base Address Array  shall be physically contiguous within a 

page. 

The Device Context Base Address Array  shall contain MaxSlotsEn + 1 entries. The 

maximum size of the Device Context Base Address Array  is 256 64-bit entries, or 

2K Bytes. 

Software shall set Device Context Base Address Array  entries for unallocated 

Device Slots to ‘0’. 

Software shall set Device Context Base Address Array  entries for allocated 

Device Slots to point to the Device Context data structure associated with the 

device. 

System software shall not modify a Device Context Base Address Array  entry 

while the respective Device Slot is enabled.  

The address of the Device Context Base Address Array  shall be written to the 

Device Context Base Address Array Pointer Register  (DCBAAP, refer to section 

5.4.6) before the xHC is placed into “run” mode    (R/S = ‘1’). 

The Device Context Base Address Array  data structure is also used to reference 

the Scratchpad Buffer Array  data structure. Refer to section 4.20 for more 

information on Scratchpad Buffer allocation. 

If the Max Scratchpad Buffers  field of the HCSPARAMS2 register is > ‘0’, then the 

first entry (entry_0) in the DCBAA shall contain a pointer to the Scratchpad 

Buffer Array. If the Max Scratchpad Buffers  field of the HCSPARAMS2 register is 

= ‘0’, then the first entry (entry_0) in the DCBAA is reserved and shall be cleared 

to ‘0’ by software. 
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Individual elements of the Device Context Base Address Array  are defined in 

Table 6-2 and Table 6-3. 

Table 6-2: Device Context Base Address Array Element 1-n Field Bit Definitions 

Bit Description 

5:0 RsvdZ. 

63:6 Device Context Base Address – RW. Default = ‘0’. This field contains a pointer to a Device 
Context data structure. Device Context data structure is aligned on a 64 byte boundary; hence the 

low order 6 bits are reserved and always cleared to ‘0’ when initialized by software. 

  

Table 6-3: Device Context Base Address Array Element 0 Field Bit Definitions 

Bit Description 

5:0 RsvdZ. 

63:6 Scratchpad Buffer Array Base Address – RW. Default = ‘0’. This field contains the high order bits 

of a 64-bit pointer to a Scratchpad Buffer Array data structure. Scratchpad Buffers are aligned on 
a Page Size boundary; hence the low order bits are reserved and always cleared to ‘0’ when 
initialized by software. The number of low order bits cleared to ‘0’ depend on the value of the 

Page Size register. 

 

Note: The xHCI shall not access the Device Context Base Address Array entry associated 

with a Device Slot that is in the Enabled state prior to receiving the first Address 

Device Command for the slot, or a Device Slot that is in the Disabled state. 

6.2 Contexts 

xHC Contexts are data structures that act as containers for state information. In 

some cases a Context may contain other Contexts.  

Note: Software shall not modify Contexts “owned” by the xHC unless specifically 

stated. 

6.2.1 Device Context 

The Device Context data structure consists of up to 32 entries. The first entry 

(entry_0) is the Slot Context data structure and the remaining entries are 

Endpoint Context data structures. The Context Entries field in the Slot Context 

identifies the number of entries in the Device Context . Refer to section Slot for 
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the definition of the Slot Context data structure. Refer to section Endpoint 

Context for the definition of the Endpoint Context data structure. 

Figure 6-1: Device Context Data Structure 
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The Device Context data structure is used in the xHCI architecture as Output by 

the xHC to report device configuration and state information to system software. 

The Device Context data structure is pointed to by an entry in the Device 

Context Base Address Array  (refer to section 6.1). 

The Device Context Index (DCI) is used to reference the respective element of 

the Device Context data structure. 

All unused entries of the Device Context shall be initialized to ‘0’ by software.  

Note: Figure 6-1 illustrates offsets with 32 byte Device Context data structures. i.e. the 

Context Size (CSZ) field in the HCCPARAMS1 register = '0'. If the Context Size 

(CSZ) field = '1' then the Device Context data structures consume 64 bytes each. 

The offsets shall be 040h for the EP Context 0, 080h for EP Context 1, and so on. 

Note: Ownership of the Output Device Context data structure is passed to the xHC 

when software rings the Command Ring doorbell for the first Address Device 

Command issued to a Device Slot after an Enable Slot Command, i.e. the first 

transition of the Slot from the Enabled to the Default or Addressed state. 

Software shall initialize the Output Device Context to 0 prior to the execution of 

the first Address Device Command. 

 

Ownership of the Device Context data structure is passed back to software 

when the Device Slot transitions to the Disabled state. 
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Software shall not write the Device Context data structure while the xHC has 

ownership of it. This means that software shall not attempt to allocate an Input 

Context data structure that overlaps or overlays an Output Device Context that 

is owned by the xHC. 

6.2.2 Slot Context 

The Slot Context data structure defines information that applies to a device as a 

whole. 

Note: Unless otherwise stated: As Input, all fields of the Slot Context shall be initialized 

to the appropriate value by software before issuing a command. As Output, the 

xHC shall update each field to reflect the current value that it is using. 

Refer to section 4.5.2 for more information on Slot Context initialization.  

Figure 6-2: Slot Context Data Structure 

Interrupter Target

MTTContext Entries
Rsvd

Z

xHCI Reserved (RsvdO) 17-14H

xHCI Reserved (RsvdO)

xHCI Reserved (RsvdO)
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Slot State RsvdZ USB Device Address 0F-0CH

 TT Port Number TT Hub Slot IDRsvdZ 0B-08H

Root Hub Port NumberNumber of Ports Max Exit Latency 07-04H

SpeedHub Route String 03-00H

xHCI Reserved (RsvdO) 13-10H
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TTT
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Table 6-4: Offset 00h – Slot Context Field Definitions  

Bits Description 

19:0 Route String. This field is used by hubs to route packets to the correct downstream port. The 

format of the Route String is defined in section 8.9 the USB3 specification. 

As Input, this field shall be set for all USB devices, irrespective of their speed, to indicate their 
location in the USB topology105. 

23:20 Speed. This field indicates the speed of the device. Refer to the PORTSC Port Speed field in 
Table 5-26 for the definition of the valid values. 

24 RsvdZ. 

                                                   

105If HS or FS hub in the path supports more than 14 ports the associated Route String Port field shall be set to 15. 
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25 Multi-TT (MTT)106. This flag is set to '1' by software if this is a High-speed hub (Speed = ‘3’ and 

Hub = ‘1’) that supports Multiple TTs and the Multiple TT Interface has been enabled by 
software, or if this is a Low-/Full-speed device (Speed = ‘1’ or ‘2’, and Hub = ‘0’) and connected 
to the xHC through a parent107 High-speed hub that supports Multiple TTs and the Multiple TT 

Interface of the parent hub has been enabled by software, or ‘0’ if not. 

26 Hub. This flag is set to '1' by software if this device is a USB hub, or '0' if it is a USB function. 

31:27 Context Entries. This field identifies the index of the last valid Endpoint Context within this 
Device Context structure. The value of ‘0’ is Reserved and is not a valid entry for this field. Valid 

entries for this field shall be in the range of 1-31. This field indicates the size of the Device 
Context structure. For example, ((Context Entries+1) * 32 bytes) = Total bytes for this structure. 

Note, Output Context Entries values are written by the xHC, and Input Context Entries values are 

written by software. 

 

Table 6-5: Offset 04h – Slot Context Field Definitions  

Bits Description 

15:0 Max Exit Latency. The Maximum Exit Latency is in microseconds, and indicates the worst case 
time it takes to wake up all the links in the path to the device, given the current USB link level 

power management settings. 

Refer to section 4.23.5.2 for more information on the use of this field. 

23:16 Root Hub Port Number. This field identifies the Root Hub Port Number used to access the USB 

device. Refer to section 4.19.7 for port numbering information. 

Note: Ports are numbered from 1 to MaxPorts. 

31:24 Number of Ports. If this device is a hub (Hub = ‘1’), then this field is set by software to identify 
the number of downstream facing ports supported by the hub. Refer to the bNbrPorts field 

description in the Hub Descriptor (Table 11-13) of the USB2 spec. If this device is not a hub (Hub 
= ‘0’), then this field shall be ‘0’. 

                                                   

106Software shall issue a Set Interface request to select the Multi-TT Interface of the hub prior to issuing any 

transactions to devices attached to the hub. 

107A “parent High-speed hub” is the hub whose downstream facing port isolates the High-speed signaling 
environment from the Low-/Full-speed signaling environment for a device. 
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Table 6-6: Offset 08h – Slot Context Field Definitions  

Bits Description 

7:0 TT Hub Slot ID. If this device is Low-/Full-speed and connected through a High-speed hub, then 
this field shall contain the Slot ID of the parent High-speed hub108. If this device is attached to a 

Root Hub port or it is not Low-/Full-speed then this field shall be '0'. 

15:8 TT Port Number. If this device is Low-/Full-speed and connected through a High-speed hub, 
then this field contains the number of the downstream facing port of the parent High-speed108 
hub. If this device is attached to a Root Hub port or it is not Low-/Full-speed then this field shall 

be '0'. 

17:16 TT Think Time (TTT). If this is a High-speed hub (Hub = ‘1’ and Speed = High-Speed), then this 
field shall be set by software to identify the time the TT of the hub requires to proceed to the 

next full-/low-speed transaction. 

 Value Think Time 

 0 TT requires at most 8 FS bit times of inter-transaction gap on a full-/low-speed 

downstream bus. 

 1 TT requires at most 16 FS bit times. 

 2 TT requires at most 24 FS bit times. 

 3 TT requires at most 32 FS bit times. 

Refer to the TT Think Time sub-field of the wHubCharacteristics field description in the Hub 
Descriptor (Table 11-13) and section 11.18.2 of the USB2 spec for more information on TT 

Think Time. If this device is not a High-speed hub (Hub = ‘0’ or Speed != High-speed), then this 
field shall be ‘0’. 

21:18 RsvdZ. 

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive Bandwidth 

Request Events and Device Notification Events generated by this slot, or when a Ring Underrun 
or Ring Overrun condition is reported (refer to section 4.10.3.1). Valid values are between 0 and 
MaxIntrs-1. 

 

                                                   

108A “parent High-speed hub” is the hub whose downstream facing port isolates the High-speed signaling 

environment from the Low-/Full-speed signaling environment for a device. 
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Table 6-7: Offset 0Ch – Slot Context Field Definitions  

Bits Description 

7:0 USB Device Address. This field identifies the address assigned to the USB device by the xHC, 

and is set upon the successful completion of a Set Address Command. Refer to the USB2 spec 
for a more detailed description. 

As Output, this field is invalid if the Slot State = Disabled or Default. 

As Input, software shall initialize the field to ‘0’. 

26:8 RsvdZ. 

31:27 Slot State. This field is updated by the xHC when a Device Slot transitions from one state to 

another. 

 Value Slot State 

 0 Disabled/Enabled 

 1 Default 

 2 Addressed 

 3 Configured 

 31-4 Reserved 

Slot States are defined in section 4.5.3. 

As Output, since software initializes all fields of the Device Context data structure to ‘0’, this field 

shall initially indicate the Disabled state. 

As Input, software shall initialize the field to ‘0’. 

Refer to section 4.5.3 for more information on Slot State. 

 

Note: The remaining bytes (10-1Fh) within the Slot Context are dedicated for exclusive 

use by the xHC and shall be treated by system software as Reserved and Opaque 

(RsvdO). 

Note: Figure 6-2 illustrates a 32 byte Slot Context. i.e. the Context Size (CSZ) field in 

the HCCPARAMS1 register = ‘0’. If the Context Size (CSZ) field = ‘1’ then each Slot 

Context data structure consumes 64 bytes, where bytes 32 to 63 are also xHCI 

Reserved (RsvdO). 

Note: The Speed, TT Hub Slot ID and TT Port Number are used to construct the Split 

Transaction token to the parent hub’s Transaction Translator. Refer to section 

4.3.7 for more information on these fields. 

Note: Depending on the internal organization of an xHC implementation, the USB 

Device Address may not be unique across all Slot Contexts, however the USB 

Device Address/Root Hub Port Number combination shall be. 

Note: The value of Max Exit Latency shall depend on the link states that software has 

allowed the links in the path to go to. This value is used by the xHC for generating 

PINGs for periodic endpoints. Its value does not need to be modified when the 

device is placed on the U3 state because the expectation is that all periodic 
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endpoints of the device are stopped before the device is placed in U3 state, e.g. 

no Pings will be generated if the periodic Transfer Rings are empty. 

6.2.2.1 Address Device Command Usage 

The Input Slot Context is considered “valid” by the Address Device Command if: 

1) the Route String field defines a valid route string, 2) the Speed field identifies 

the speed of the device, 3) the Context Entries field is set to ‘1’ (i.e. Only the 

Control Endpoint Context is valid), 4) the value of the Root Hub Port Number 

field is between 1 and MaxPorts, 5) if the device is LS/FS and connected through 

a HS hub, then the TT Hub Slot ID field references a Device Slot that is assigned 

to the HS hub, the MTT field indicates whether the HS hub supports Multi-TTs, 

and the TT Port Number field indicates the correct TT port number on the HS 

hub, else these fields are cleared to ‘0’, 6) the Interrupter Target field set to a 

valid value, and 7) all other fields are cleared to ‘0’.  

Prior to the first command execution, a 'valid' Output Slot Context for the first 

Address Device Command issued for a Device Slot requires that the value of the 

Slot State field shall be equal to Disabled and all other Slot Context fields 

should be cleared to ‘0’. Refer to section 4.6.5 for more information on valid Slot 

Context field values. 

Any Output Slot Context is 'valid' for subsequent Address Device Commands 

because all fields of the Output Slot Context are overwritten by the xHC. 

6.2.2.2 Configure Endpoint Command Usage 

A 'valid' Input Slot Context for a Configure Endpoint Command requires the 

Context Entries field to be initialized to the index of the last valid Endpoint 

Context that is defined by the target configuration. The Hub field shall also be 

initialized. If Hub = ‘1’ and Speed = High-Speed, then the TT Think Time (TTT) 

and Multi-TT (MTT) fields shall be initialized. Refer to Table 6-4 and Table 6-5 

for the specific initialization values of these fields. If Hub = ‘1’, then the Number 

of Ports field shall be initialized, else Number of Ports = ‘0’. Refer to section 4.6.6 

for more information on the Configure Endpoint Command . 

Prior to command execution, a 'valid' Output Slot Context for a Configure 

Endpoint Command requires the Slot State field to be in the Addressed or 

Configured state. If the Slot State is not in the Addressed or Configured state a 

Context State Error shall be generated. The Output Context Entries and Slot 

State fields may be updated by the xHC due to a Configure Endpoint Command. 

If the Input Hub field = ‘1’, then the Output Hub and Number of Ports field shall 

be initialized. If Input Hub = ‘1’ and Speed = High-Speed, then the Output TT 

Think Time (TTT) and Multi-TT (MTT) fields shall be initialized. 



 

 

426    

6.2.2.3 Evaluate Context Command Usage 

A 'valid' Input Slot Context for an Evaluate Context Command  requires the 

Interrupter Target and Max Exit Latency fields to be initialized. Only these fields 

shall be evaluated when the xHC receives an Evaluate Context Command  that 

flags the Slot Context (i.e. Add Context 0 flag set to ‘1’). Refer to section 4.6.7 for 

more information on the Evaluate Context Command. 

Prior to command execution, a 'valid' Output Slot Context for an Evaluate 

Context Command requires the Slot State field to be in the Default, Addressed or 

Configured state. If the Slot State is not in the Default, Addressed or Configured 

state a Context State Error shall be generated. Only the Output Interrupter 

Target and Max Exit Latency fields are updated by the Evaluate Context 

Command. 

6.2.2.4 Reset Device Command Usage 

Upon the completion of Reset Device Command, the Output Slot Context Route 

String and Root Hub Port Number fields shall contain the same values that they 

contained prior to the execution of the Reset Device Command. The Context 

Entries field shall be set to '1' (indicating that only the Default Control Endpoint 

is operational). And the Slot State field shall be set to the Default state. All other 

fields shall be cleared to '0'.  

6.2.3 Endpoint Context 

The Endpoint Context data structure defines information that applies to a 

specific endpoint. 

Note: Unless otherwise stated: As Input, all fields of the Endpoint Context shall be 

initialized to the appropriate value by software before issuing a command. As 

Output, the xHC shall update each field to reflect the current value that it is using. 

Figure 6-3: Endpoint Context Data Structure 
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Table 6-8: Offset 00h – Endpoint Context Field Definitions 

Bits Description 

2:0 Endpoint State (EP State). The Endpoint State identifies the current operational state of the 
endpoint. 

 Value Definition 

 0 Disabled The endpoint is not operational 

 1 Running The endpoint is operational, either waiting for a doorbell ring or processing 

TDs. 

 2 Halted The endpoint is halted due to a Halt condition detected on the USB. SW shall issue 
Reset Endpoint Command to recover from the Halt condition and transition to the Stopped 

state. SW may manipulate the Transfer Ring while in this state. 

 3 Stopped The endpoint is not running due to a Stop Endpoint Command or recovering 
from a Halt condition. SW may manipulate the Transfer Ring while in this state. 

 4 Error The endpoint is not running due to a TRB Error. SW may manipulate the Transfer 
Ring while in this state. 

 5-7 Reserved 

As Output, a Running to Halted transition is forced by the xHC if a STALL condition is detected 
on the endpoint. A Running to Error transition is forced by the xHC if a TRB Error condition is 
detected. 

As Input, this field is initialized to ‘0’ by software. 

Refer to section 4.8.3 for more information on Endpoint State. 

7:3 RsvdZ. 

9:8 Mult. If LEC = ‘0’, then this field indicates the maximum number of bursts within an Interval that 

this endpoint supports, where the valid range of values is ‘0’ to ‘2’, where ‘0’ = 1 burst, ‘1’ = 2 
bursts, etc.109 This field shall be ‘0’ for all endpoint types except for SS Isochronous. 

If LEC = ‘1’, then this field shall be RsvdZ and Mult is calculated as: 

(Max ESIT Payload / Max Packet Size / Max Burst Size) rounded up to the nearest integer value. 

                                                   

109Note that there is no requirement that Max Burst Size must equal 16 if Mult is greater than 0. 
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14:10 Max Primary Streams (MaxPStreams). This field identifies the maximum number of Primary 

Stream IDs this endpoint supports. Valid values are defined below. If the value of this field is ‘0’, 
then the TR Dequeue Pointer field shall point to a Transfer Ring. If this field is > '0' then the TR 
Dequeue Pointer field shall point to a Primary Stream Context Array. Refer to section 4.12 for 

more information. 

A value of ‘0’ indicates that Streams are not supported by this endpoint and the Endpoint 
Context TR Dequeue Pointer field references a Transfer Ring. 

A value of ‘1’ to ‘15’ indicates that the Primary Stream ID Width is MaxPstreams+1 and the 
Primary Stream Array contains 2MaxPStreams+1 entries. 

For SS Bulk endpoints, the range of valid values for this field is defined by the MaxPSASize field 

in the HCCPARAMS1 register (refer to Table 5-13). 

This field shall be '0' for all SS Control, Isoch, and Interrupt endpoints, and for all non-SS 
endpoints. 

15 Linear Stream Array (LSA). This field identifies how a Stream ID shall be interpreted. 

Setting this bit to a value of ‘1’ shall disable Secondary Stream Arrays and a Stream ID shall be 
interpreted as a linear index into the Primary Stream Array, where valid values for MaxPStreams 

are ‘1’ to ‘15’. 

A value of ‘0’ shall enable Secondary Stream Arrays, where the low order (MaxPStreams+1) bits 
of a Stream ID shall be interpreted as a linear index into the Primary Stream Array, where valid 

values for MaxPStreams are ‘1’ to ‘7’. And the high order bits of a Stream ID shall be interpreted 
as a linear index into the Secondary Stream Array. 

If MaxPStreams = ‘0’, this field RsvdZ. 

Refer to section 4.12.2 for more information. 

23:16 Interval. The period between consecutive requests to a USB endpoint to send or receive data. 
Expressed in 125 μs. increments. The period is calculated as 125 μs. * 2Interval; e.g., an Interval 

value of 0 means a period of 125 μs. (20 = 1 * 125 μs.), a value of 1 means a period of 250 μs. (21 
= 2 * 125 μs.), a value of 4 means a period of 2 ms. (24 = 16 * 125 μs.), etc. Refer to Table 6-12 
for legal Interval field values. See further discussion of this field below. Refer to section 6.2.3.6 

for more information. 

31:24 Max Endpoint Service Time Interval Payload High (Max ESIT Payload Hi). If LEC = '1', then this 

field indicates the high order 8 bits of the Max ESIT Payload value. If LEC = '0', then this field 
shall be RsvdZ. Refer to section 6.2.3.8 for more information. 

 

Table 6-9: Offset 04h – Endpoint Context Field Definitions 

Bits Description 

0 RsvdZ. 
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2:1 Error Count (CErr)110. This field defines a 2-bit down count, which identifies the number of 

consecutive USB Bus Errors allowed while executing a TD. If this field is programmed with a 
non-zero value when the Endpoint Context is initialized, the xHC loads this value into an internal 
Bus Error Counter before executing a USB transaction and decrements it if the transaction fails. 

If the Bus Error Counter counts from ‘1’ to ‘0’, the xHC ceases execution of the TRB, sets the 
endpoint to the Halted state, and generates a USB Transaction Error Event for the TRB that 
caused the internal Bus Error Counter to decrement to ‘0’. If system software programs this field 

to ‘0’, the xHC shall not count errors for TRBs on the Endpoint’s Transfer Ring and there shall be 
no limit on the number of TRB retries. Refer to section 4.10.2.7 for more information on the 
operation of the Bus Error Counter. 

Note: CErr does not apply to Isoch endpoints and shall be set to ‘0’ if EP Type = Isoch Out ('1') or 
Isoch In ('5'). 

5:3 Endpoint Type (EP Type). This field identifies whether an Endpoint Context is Valid, and if so, 
what type of endpoint the context defines. 

 Value Endpoint Type Direction 

 0 Not Valid N/A 

 1 Isoch Out 

 2 Bulk Out 

 3 Interrupt Out 

 4 Control Bidirectional 

 5 Isoch In 

 6 Bulk In 

 7 Interrupt In 

6 RsvdZ. 

7 Host Initiate Disable (HID). This field affects Stream enabled endpoints, allowing the Host 
Initiated Stream selection feature to be disabled for the endpoint. Setting this bit to a value of 

‘1’ shall disable the Host Initiated Stream selection feature. A value of ‘0’ will enable normal 
Stream operation. Refer to section 4.12.1.1 for more information. 

15:8 Max Burst Size. This field indicates to the xHC the maximum number of consecutive USB 
transactions that should be executed per scheduling opportunity. This is a “zero-based” value, 

where 0 to 15 represents burst sizes of 1 to 16, respectively. Refer to section 6.2.3.4 for more 
information. 

31:16 Max Packet Size.   This field indicates the maximum packet size in bytes that this endpoint is 
capable of sending or receiving when configured. Refer to section 6.2.3.5 for more information. 

 

                                                   

110Software should set CErr to ‘3’ for normal operations. The values of ‘1’ or ‘2’ should be avoided during normal 
operation because they will reduce transfer reliability. The value of ‘0’ is typically only used for test or 
debug.Note that the xHCI handles CErr differently than the EHCI did.EHCI – if software programs a value of ‘1’ or 

‘2’, that value will apply only for the first load of the EHCI Bus Error Counter. And all subsequent reloads of the 
EHCI Bus Error Counter will use ‘3’. If software programmed ‘0’, then the EHCI will leave it at ‘0’ and disable 
error counting.xHCI – the Bus Error Counter is always reloaded with the value of CErr, which means transactions 

will be less robust (e.g. devices may halt due intermittent errors more frequently) if CErr = ‘1’ or ‘2’. 
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Table 6-10: Offset 08h – Endpoint Context Field Definitions 

Bits Description 

0 Dequeue Cycle State (DCS). This bit identifies the value of the xHC Consumer Cycle State (CCS) 

flag for the TRB referenced by the TR Dequeue Pointer. Refer to section 4.9.2 for more 
information. This field shall be ‘0’ if MaxPStreams > ‘0’. 

3:1 RsvdZ. 

63:4 TR Dequeue Pointer. As Input, this field represents the high order bits of the 64-bit base address 
of a Transfer Ring or a Stream Context Array associated with this endpoint. If MaxPStreams = '0' 

then this field shall point to a Transfer Ring. If MaxPStreams > '0' then this field shall point to a 
Stream Context Array. 

As Output, if MaxPStreams = ‘0’ this field shall be used by the xHC to store the value of the 

Dequeue Pointer when the endpoint enters the Halted or Stopped states, and the value of the 
this field shall be undefined when the endpoint is not in the Halted or Stopped states. if 
MaxPStreams > ‘0’ then this field shall point to a Stream Context Array. 

The memory structure referenced by this physical memory pointer shall be aligned to a 16-byte 
boundary. 

 

Table 6-11: Offset 10h – Endpoint Context Field Definition 

Bits Description 

15:0 Average TRB Length. This field represents the average Length of the TRBs executed by this 

endpoint. The value of this field shall be greater than ‘0’. Refer to section 4.14.1.1 and the 
implementation note TRB Lengths and System Bus Bandwidth for more information. 

The xHC shall use this parameter to calculate system bus bandwidth requirements. 

31:16 Max Endpoint Service Time Interval Payload Low (Max ESIT Payload Lo). This field indicates 
the low order 16 bits of the Max ESIT Payload. The Max ESIT Payload represents the total 

number of bytes this endpoint will transfer during an ESIT. This field is only valid for periodic 
endpoints. Refer to section 6.2.3.8 for more information. 

 

Note: The remaining bytes (14-1Fh) within the Endpoint Context are dedicated for 

exclusive use by the xHC and shall be treated by system software as Reserved 

and Opaque (RsvdO).  

Note: Figure 6-3 illustrates a 32 byte Endpoint Context. i.e. the Context Size (CSZ) field 

in the HCCPARAMS1 register = ‘0’. If the Context Size (CSZ) field = ‘1’ then each 

Endpoint Context data structure consumes 64 bytes, where bytes 32 to 63 are 

xHCI Reserved (RsvdO). 
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Note: The requirement that TD Fragments shall not span Transfer Ring Segments 

places a lower limit on the value of Average TRB Length. E.g. a 4KB Transfer Ring 

Segment may describe up to 256 TRBs, where the last TRB of the segment is a 

Link TRB. If the MBP is 16K, then the 16KB payload defined by a TD Fragment 

may not be contain more than 255 Transfer TRBs, which means that software 

shall not specify an Average TRB Length value less than 65B. Larger Transfer Ring 

Segments allow smaller Average TRB Length values. Refer to section 4.11.7.1. 

Note: Software shall set Average TRB Length to ‘8’ for control endpoints. 

6.2.3.1 Address Device Command Usage 

The Endpoint 0 Context (DCI = 1) is the only Endpoint Context of an Input 

Context or Device Context referenced by the Address Device Command. All 

other Endpoint Contexts (DCI = 2-31) are ignored by the Address Device 

Command. 

The Input Endpoint 0 Context is considered “valid” by the Address Device 

Command if: 1) the EP Type field = Control, 2) the values of the Max Packet Size, 

Max Burst Size, and the Interval are considered within range for endpoint type 

and the speed of the device, 3) the TR Dequeue Pointer field points to a valid 

Transfer Ring, 4) the DCS field = ‘1’, 5) the MaxPStreams field = ‘0’, and 6) all 

other fields are within the valid range of values.  

Note: The Max Packet Size field of the Control Endpoint Context 0 shall be set by 

system software to the default max packet size for the endpoint as function of 

the devices’ speed. e.g. 8 bytes for a Low/Full-speed device etc. After the Device 

Descriptor is read from the device using the default Max Packet Size, software 

may issue an Evaluate Context Command to inform the xHC of the actual Max 

Packet Size for the control endpoint if it is different than the default value. 

After the first Address Device Command execution, any Output Endpoint Context 

is 'valid' for an Address Device Command because all fields of the Output 

Endpoint Context are over written by the command. 

6.2.3.2 Configure Endpoint Command Usage 

The Configure Endpoint Command  does not reference the Input or Output 

Endpoint 0 Context (DCI = 1). Any other Endpoint Context (DCI = 2-31) may be 

referenced by the Configure Endpoint Command. 

An Input Endpoint Context is considered “valid” by the Configure Endpoint 

Command if the Add Context flag is ‘1’ and: 1) the values of the Max Packet Size , 

Max Burst Size, and the Interval are considered within range for endpoint type 

and the speed of the device, 2) if MaxPStreams > 0, then the TR Dequeue Pointer 

field points to an array of valid Stream Contexts , or if MaxPStreams = 0, then the 

TR Dequeue Pointer field points to a Transfer Ring, 3) the EP State field = 

Disabled, and 4) all other fields are within their valid range of values.  
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6.2.3.3 Evaluate Context Command Usage 

A 'valid' Input Endpoint Context for an Evaluate Context Command  requires that 

if the Add Context flag (A1) for Default Control Endpoint is set to ‘1’, the Max 

Packet Size field shall be evaluated. Endpoint Contexts 2 through 31 shall not 

be evaluated by the Evaluate Context Command. Refer to section 4.6.7 for more 

information on the Evaluate Context Command . 

Prior to command execution, a 'valid' Output Endpoint Context for an Evaluate 

Context Command requires the Endpoint State (EP State) field to be in the 

Running:Idle sub-state or the Stopped state. If the respective context is not in 

one of these states when the command is executed, undefined behavior may 

occur. 

After the completion of the Evaluate Context Command, the updated field 

values will be used by the xHC for the next transfer performed by the respective 

endpoint. It is system software’s responsibility to coordinate the execution of 

Evaluate Context Commands with Transfer Ring operations. 

6.2.3.4 Max Burst Size 

The Max Burst Size * Mult identifies the maximum number of USB transactions 

that will be executed by the xHC per Transfer Ring scheduling opportunity.  

For all Low-/Full-Speed endpoints this field shall be cleared to ‘0’.  

For High-Speed control and bulk endpoints this field shall be cleared to ‘0’.  

For High-Speed isochronous and interrupt endpoints this field shall be set to 

the number of additional transaction opportunities per microframe, i.e. the value 

defined in bits 12:11 of the USB2 Endpoint Descriptor wMaxPacketSize field. 

Refer to section 9.6.6 of the USB2 Specification. 

For SuperSpeed endpoints this field shall be set to the value defined in the 

bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor. Refer to 

section 9.6.7 of the USB3 Specification. 

Refer to section 4.14.4.1 for more information on the use Max Burst Size . 

6.2.3.5 Max Packet Size 

The Max Packet Size field identifies the maximum number of bytes that shall be 

moved per USB packet. If Max Burst Size is greater than 0, then a High -

bandwidth endpoint is defined and a USB transaction may contain up to Max 

Burst Size+1 packets. 

This field shall be set to the value defined in bits 10:0 of the USB Endpoint 

Descriptor wMaxPacketSize field. Note that the Max Packet Size field is not 

encoded the same as the USB wMaxPacketSize field Max Packet Size (e.g. as a 

base 2 multiple), but as a linear byte count value.  
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6.2.3.6 Interval 

The Interval field defines the Interval for polling endpoint for data transfers, 

expressed in 125 µs units. The periodic interval defined by the Endpoint Context 

Interval field is computed as 125μs * 2 Interval, where Interval = 0 to 15. 

For high-speed bulk and high-speed control OUT endpoints: 

•  The Interval shall specify the maximum NAK rate of the endpoint. 

•  A value of 0 indicates the endpoint never NAKs.  

•  Other values indicate at most 1 NAK each Interval number of microframes. 

Refer to Table 6-8 for the definition of the Interval field. 

Refer to Table 6-12 for the range of valid Interval values. 

For SuperSpeedPlus and SuperSpeed bulk and control endpoints, the Interval 

field shall not be used by the xHC. 

For all other endpoint types and speeds, system software shall translate the 

bInterval field in the USB Endpoint Descriptor to the appropriate value for this 

field. 

Table 6-12: Endpoint Type vs. Interval Calculation 

Endpoint bInterval 
Range 

Time 
Range 

Time 
Computation 

Endpoint 
Context 

Valid Interval 
range 

FS/LS Interrupt 1 - 255 1 - 255 ms. bInterval * 1ms.111 3-10 

FS Isoch 1 - 16 1 - 32,768 
ms. 

2bInterval-1 * 1ms. 3-18 

SSP, SS or HS Interrupt or 
Isoch 

1 - 16 125 μs. - 
4,096 ms. 

2bInterval-1 * 125 μs. 0-15 

 

6.2.3.7 Reset Device Command Usage 

Upon the completion of Reset Device Command, the Output Default Control 

Endpoint Context (DCI = ‘1’) Max Packet Size , EP Type, CErr, TR Dequeue Pointer, 

and Average TRB Length fields shall contain the same values that they contained 

                                                   

111For FS/LS Interrupt endpoints software shall round the computed value of Endpoint Context Interval field down 

to the nearest base 2 multiple of bInterval * 8. 
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prior to the execution of the Reset Device Command. And the EP State field shall 

be set to the Running state. All other fields shall be cleared to ‘0’.  

6.2.3.8 Max ESIT Payload 

The Max ESIT Payload represents the total number of bytes this endpoint will 

transfer during an ESIT. With the introduction of USB Gen 2 speed data rates 

(SSP), the Max ESIT Payload values exceeded 64K. The Large ESIT Payload 

Capability (LEC) flag in the HCCPARAMS2 register indicates if an xHC 

implementation is capable of supporting Max ESIT Payload values greater than 

48K bytes. 

If LEC = ‘0’, then the largest value the xHC supports for the Max ESIT Payload is 

48K bytes. Note that only devices attached to SSP or faster USB3 Root Hub 

ports may support Max ESIT Payload  values greater than 48KB. 

If LEC = ‘1’, then the largest value the xHC supports for the Max ESIT Payload is 

16MB-1 bytes. 

Refer to section 4.14.2 for the definition of an “ESIT” and more information 

related to setting the value of Max ESIT Payload. 

For periodic endpoints, the Max ESIT Payload is used by the xHC to reserve the 

bus transfer time for the endpoint in its Pipe Schedule.  

6.2.4 Stream Context Array 

The xHCI supports hierarchal Stream Context Arrays. Refer to section 4.12 for 

more information on their use. A Stream Context Array contains Stream Context 

data structures. Entries are addressed by a Stream ID. Steam ID 0 is reserved 

and does not reference a Transfer Ring or another Stream Context Array.  

6.2.4.1 Stream Context 

The Stream Context data structure defines information that applies to a specific 

Stream associated with an endpoint. 

Note: Unless otherwise stated: As Input, all fields of the Stream Context shall be 

initialized to the appropriate value by software before issuing a command. As 

Output, the xHC shall update each field to reflect the current value that it is using. 

Figure 6-4: Stream Context Data Structure 

 Stopped EDTLA

03-00H

07-04H

0B-08H

0F-0CHxHCI Reserved (RsvdO)

xHCI Reserved (RsvdO)

TR Dequeue Pointer Lo

TR Dequeue Pointer Hi

SCT DCS

31 4 3 1 024 23
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Table 6-13: Offset 00h and 04h – Stream Context Field Definitions 

Bits Description 

0 Dequeue Cycle State (DCS). This bit identifies the value of the xHC Consumer Cycle State (CCS) 
flag for the TRB referenced by the TR Dequeue Pointer. Refer to section 4.9.2 for more 
information. 

3:1 Stream Context Type (SCT). This field identifies whether the Stream Context is a member of a 

Primary or Secondary Stream Context Array, if the TR Dequeue Pointer field references a Transfer 
Ring or a Stream Context Array, and if a Stream Context Array is referenced, the size of the array. 

 Value Stream    Array Type  Dequeue Ptr  Secondary Stream Array Size 

 0                    Secondary  Transfer Ring  N/A 

 1                    Primary  Transfer Ring  N/A 

 2                    Primary  SSA               8 

 3                    Primary  SSA               16 

 4                    Primary  SSA               32 

 5                    Primary  SSA               64 

 6                    Primary  SSA               128 

 7                    Primary  SSA               256 

Refer to section 4.12.2.1 for more information. 

63:4 TR Dequeue Pointer. This field represents the high order bits of the 64-bit base address of the 

TRB ring or Stream Context Array associated with this Stream.  

The memory structure referenced by this physical memory pointer shall be aligned to a 16-byte 
boundary. This field is initialized by software and shall be overwritten by the xHC to save the 

value of the Dequeue Pointer when the endpoint enters the Halted or Stopped states. The value 
of the this field shall be undefined when the endpoint is not in the Halted or Stopped states. 

 

Table 6-14: Offset 08h and 0Ch – Stream Context Field Definitions 

Bits Description 

23:0 Stopped EDTLA. If the Stopped EDTLA Capability (SEC) field in the CCSPARAMS register = ‘1’, 
then this field shall identify the value of the EDTLA when the Stream is in the Stopped State. If 

SEC = ‘0’, then this field shall be RsvdO. Refer to sections 4.6.9, 4.12, and 5.3.6 for more 
information. 

63:24 RsvdO.  
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Note: The Context Size (CSZ) field in the HCCPARAMS1 register does not apply to 

Stream Context data structures, they are always 16 bytes in size. 

Note: A “valid” Stream Context requires: 

•  The TR Dequeue Pointer is ‘0’, i.e. no Transfer Ring or Stream Context is 

assigned yet. 

•  The TR Dequeue Pointer points to a valid Transfer Ring and the DCS flag 

represents the Cycle State of the segment referenced by the TR Dequeue 

Pointer. 

•  The TR Dequeue Pointer points to a valid Stream Array. 

 

6.2.5 Input Context 

The Input Context data structure specifies the endpoints and the operations to 

be performed on those endpoints by the Address Device, Configure Endpoint, 

and Evaluate Context Commands . Refer to section 4.6 for more information on 

these commands. 

The Input Context is pointed to by an Input Context Pointer field of a Address 

Device, Configure Endpoint, and Evaluate Context Command TRBs. The Input 

Context is an array of up to 33 context data structure entries.  

Figure 6-5: Input Context 
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The first entry (offset 000h) of the Input Context shall be the Input Control 

Context data structure. The remaining entries shall be organized identically to 

the Device Context data structures. Refer to section 6.2.5.1 for the definition of 

the Input Control Context data structure. Refer to section 6.2 for the definition of 

the Device Context and its data structures. 

If the Add Context flag is set for an entry in the Input Context, then the entry 

shall be initialized appropriately by software. All other entries of the Input 

Context are ignored by the xHC. The Add Context and Drop Context flag indices 

are calculated identically to the Device Context Index (DCI) described in section 

4.5.1 for the Device Context portion of the Input Context. e.g. EP context 1 OUT 

maps to D2 and A2, and so on, up to EP 15 IN mapping to D31 and A31.  

Note: Figure 6-5 illustrates offsets with 32 byte Input Control Context data structures. 

i.e. the Context Size (CSZ) field in the HCCPARAMS1 register = '0'. If the Context 

Size (CSZ) field = '1' then the Input Control Context data structures consume 64 

bytes each. The offsets shall be 040h for the Slot Context, 080h for EP Context 

0, and so on. 

Note: The Input Context shall be physically contiguous within a page. 

6.2.5.1 Input Control Context 

The Input Control Context data structure defines which Device Context data 

structures are affected by a command and the operations to be performed on 

those contexts. 

Figure 6-6: Input Control Context 
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0B-08H

RsvdZ Alternate Setting Interface Number Configuration Value  

Note: Figure 6-6 illustrates a 32 byte Input Control Context data structure. i.e. the 

Context Size (CSZ) field in the HCCPARAMS1 register = '0'. If the Context Size 

(CSZ) field = '1' then the Input Control Context data structure consumes 64 bytes, 

where bytes 32 to 63 are RsvdZ. 

Table 6-15: Offset 00h – Input Control Context Field Definitions 

Bits Description 

1:0 RsvdZ. 
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31:2 Drop Context flags (D2 - D31). These single bit fields identify which Device Context data 

structures should be disabled by command. If set to ‘1’, the respective Endpoint Context shall be 
disabled. If cleared to ‘0’, the Endpoint Context is ignored. 

 

Table 6-16: Offset 04h – Input Control Context Field Definitions 

Bits Description 

31:0 Add Context flags (A0 - A31). These single bit fields identify which Device Context data 

structures shall be evaluated and/or enabled by a command. If set to ‘1’, the respective Context 
shall be evaluated. If cleared to ‘0’, the Context is ignored. 

 

 

 

 

Table 6-17: Offset 1Ch – Input Control Context Field Definitions 

Bits Description 

7:0 Configuration Value. If CIC = ‘1’, CIE = ‘1’, and this Input Context is associated with a Configure 

Endpoint Command, then this field contains the value of the Standard Configuration Descriptor 
bConfigurationValue field associated with the command, otherwise the this field shall be 
cleared to ‘0’. 

15:8 Interface Number. If CIC = ‘1’, CIE = ‘1’, this Input Context is associated with a Configure 

Endpoint Command, and the command was issued due to a SET_INTERFACE request, then this 
field contains the value of the Standard Interface Descriptor bInterfaceNumber field associated 
with the command, otherwise the this field shall be cleared to ‘0’. 

23:16 Alternate Setting. If CIC = ‘1’, CIE = ‘1’, this Input Context is associated with a Configure 
Endpoint Command, and the command was issued due to a SET_INTERFACE request, then this 

field contains the value of the Standard Interface Descriptor bAlternateSetting field associated 
with the command, otherwise the this field shall be cleared to ‘0’. 

31:24 RsvdZ. 

 

Note: The specific operations to be performed on a context by a command as a 

function of the Drop Context and Add Context flag settings are defined in detail 

in section 4.6. 
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Note: The fields in this data structure shall not be modified by software from the time 

the command is placed on the Command Ring until the associated Command 

Completion Event is received. 

Note: The Add Context and Delete Context flag indices are calculated identically to 

the Device Context Index (DCI) described in section 4.5.1 for the Device Context 

portion of the Input Context. e.g. EP context 1 OUT maps to D2 and A2, and so 

on, up to EP 15 IN mapping to D31 and A31. 

 

The Add Context and Delete Context flag indices relative to Input Context are 

calculated as follows: 

 

The Input Context Index (ICI) (refer to Figure 6-5) of the Input Control Context is 

0. 

The ICI of the Slot Context is 1. 

For the remaining Input Context indices 2-31, the following rules apply: 

 

1) For Isoch, Interrupt, or Bulk type endpoints the ICI is calculated using the 

Endpoint Number and Direction with the following formula; 

 

  ICI = ((Endpoint Number * 2) + 1 + Direction, 

where Direction = ‘0’ for OUT endpoints and ‘1’ for IN endpoints. 

 

2) For Control type endpoints, including the Default Control Endpoint: 

 

  ICI = (Endpoint Number + 1) * 2. 

Note: The extended Configuration Information fields Configuration Value, Interface 

Number, and Alternate Setting shall be initialized by software if the Configuration 

Information Enable (CIE) flag is set to ‘1’. Support for the extended Configuration 

Information fields is required by all 1.1 compliant xHCI drivers. 

Note: If the Configuration Information Capability of an xHC is enabled (CIE = ‘1’) the 

system software shall ensure that each Configure Endpoint Command to the 

xHCI represents the endpoint changes due to exactly one 

SET_CONFIGURATION or SET_ALTERNATIVE)_INTERFACE request to a USB 

device. 

6.2.6 Port Bandwidth Context 

The Port Bandwidth Context data structure is used to provide system software 

with the percentage of periodic bandwidth available on each Root Hub Port, at 

the Speed indicated by the Device Speed field of the Get Port Bandwidth 

Command. Software allocates the Context data structure and the xHC updates it 

during the execution of a Get Port Bandwidth Command. Refer to section 4.6.15 

for more information. 
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Figure 6-7: Port Bandwidth Context 
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Note: Figure 6-7 illustrates a generic Port Bandwidth Context data structure. System 

sizes this data structure as a function of the number of Root Hub ports supported 

by the xHC (i.e. MaxPorts). Software shall round up the size of the buffer to the 

nearest 8-byte boundary. 

Table 6-18: Offset 00h – Port Bandwidth Context Field Definitions 

Bits Description 

7:0 RsvdZ. 

15:8 Port 1 Bandwidth (Port 1). Percentage of Total Available Bandwidth available on Port 1. 

23:16 Port 2 Bandwidth (Port 2). Percentage of Total Available Bandwidth on Port 2. 

31:24 Port 3 Bandwidth (Port 3). Percentage of Total Available Bandwidth on Port 3. 

 

Table 6-19: Offset n-03h – Port Bandwidth Context Field Definitions 

Bits Description 

7:0 Port n-3 Bandwidth (Port n-3). Percentage of Total Available Bandwidth on Port n-3. 

15:8 Port n-2 Bandwidth (Port n-2). Percentage of Total Available Bandwidth on Port n-2. 

23:16 Port n-1 Bandwidth (Port n-1). Percentage of Total Available Bandwidth on Port n-1. 

31:24 Port n Bandwidth (Port n). Percentage of Total Available Bandwidth on Port n. 

 

Note: Refer to section 4.14 for the definition of “Total Available Bandwidth”. 

Note: The range of valid values depends on the value of the Dev Speed field in the Get 

Port Bandwidth Command. 0 to 80% for HS, and 0 to 90% for SS and FS. Refer 

to section 4.14.2 for more information. 

Note: The Port fields of the Port Bandwidth Context shall report decimal percentage 

values in hex, i.e. 0Ah = 10%, 50h = 80%, etc. 
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6.3 TRB Ring 

A TRB Ring is an array of TRB (Transfer Request Block) structures, which is used 

by the xHCI as a circular queue to communicate with the host. Refer to section 

4.9 for a detailed description of Ring operation.  

6.4 Transfer Request Block (TRB) 

The Transfer Request Block is the basic building block upon which all xHC USB 

transfers are constructed. All Transfer Request Blocks shall be aligned on a 16-

byte boundary. 

Each TRB has the basic format described in section 4.11.1. TRBs are used for all 

transactions performed by an xHC, which includes commands sent to the host 

controller, events generated by the host controller, and transactions associated 

with USB endpoints. 

Note: Vendor defined TRBs are shall support the TRB Type and Cycle bit fields. 

6.4.1 Transfer TRBs 

A Transfer TRB shall be found on a Transfer Ring. A Work Item on a Transfer 

Ring is called a Transfer Descriptor (TD) and is comprised of one or more 

Transfer TRB data structures. This section describes the transfer related TRBs.  

Note: If a zero-length transfer is specified, the Data Buffer Pointer field is ignored by 

the xHC, irrespective of the state of the IDT flag. 

Note: Data buffers referenced by Transfer TRBs shall not span 64KB boundaries. If a 

physical data buffer spans a 64KB boundary, software shall chain multiple TRBs 

to describe the buffer. 

6.4.1.1 Normal TRB 

A Normal TRB is used in several ways; exclusively on Bulk and Interrupt Transfer 

Rings for normal and Scatter/Gather operations, to define additional data 

buffers for Fine and Coarse Grain Scatter/Gather operations on Isoch Transfer 

Rings, and to define the Data stage information for Control Transfer Rings. Refer 

to section 4.11.2.1 for information on the use of Normal TRBs. Refer to section 

3.2.8 for an overview of xHCI scatter/gather support. 

Figure 6-8: Normal TRB 
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Table 6-20: Offset 00h and 04h – Normal TRB Field Definitions 

Bits Description 

63:0 Data Buffer Pointer Hi and Lo. These fields represent the 64-bit address of the TRB data area for 
this transaction or 8 bytes of immediate data. The Immediate Data (IDT) control flag selects this 
option for each Normal TRB. 

The memory structure referenced by this physical memory pointer is allowed to begin on a byte 
address boundary. However, user may find other alignments, such as 64-byte or 128-byte 
alignments, to be more efficient and provide better performance. 

 

Table 6-21: Offset 08h – Normal TRB Field Definitions 

Bits Description 

16:0 TRB Transfer Length. For an OUT, this field defines the number of data bytes the xHC shall 

send during the execution of this TRB. If the value of this field is ‘0’ when the xHC fetches this 
TRB, the xHC shall execute a zero-length transaction. 

Note: If a zero-length transfer is specified, the Data Buffer Pointer field is ignored by the xHC, 

irrespective of the state of the IDT flag. Refer to section 4.9.1 for more information on zero-
length Transfer TRB handling. 

For an IN, the value of the field identifies the size of the data buffer referenced by the Data 

Buffer Pointer, i.e. the number of bytes the host expects the endpoint to deliver. 

Valid values are 0 to 64K. 

21:17 TD Size. This field provides an indicator of the number of packets remaining in the TD. Refer to 
section 4.10.2.4 for how this value is calculated. 

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events 
generated by this TRB. Valid values are between 0 and MaxIntrs-1. 

  

Table 6-22: Offset 0Ch – Normal TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of the Transfer ring. 

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before 

saving the endpoint state. Refer to section 4.12.3 for more information. 
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2 Interrupt-on Short Packet (ISP). If this flag is ‘1’ and a Short Packet is encountered for this TRB 

(i.e., less than the amount specified in TRB Transfer Length), then a Transfer Event TRB shall be 
generated with its Completion Code set to Short Packet. The TRB Transfer Length field in the 
Transfer Event TRB shall reflect the residual number of bytes not transferred into the associated 

data buffer. In either case, when a Short Packet is encountered, the TRB shall be retired without 
error and the xHC shall advance to the next Transfer Descriptor (TD). 

Note that if the ISP and IOC flags are both ‘1’ and a Short Packet is detected, then only one 

Transfer Event TRB shall be queued to the Event Ring. Also refer to section 4.10.1.1. 

3 No Snoop (NS). When set to ‘1’, the xHC is permitted to set the No Snoop bit in the Requester 
Attributes of the PCIe transactions it initiates if the PCIe configuration Enable No Snoop flag is 
also set. When cleared to ‘0’, the xHC is not permitted to set PCIe packet No Snoop Requester 

Attribute. Refer to section 4.18.1 for more information. 

NOTE: If software sets this bit, then it is responsible for maintaining cache consistency. 

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A 

Transfer Descriptor (TD) is defined as one or more TRBs. The Chain bit is used to identify the 
TRBs that comprise a TD. The Chain bit is always ‘0’ in the last TRB of a TD. 

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes, 
the Host Controller shall notify the system of the completion by placing an Transfer Event TRB 

on the Event ring and asserting an interrupt to the host at the next interrupt threshold. Note that 
the interrupt assertion may be blocked for the Transfer Event by BEI. Refer to sections 4.10.4 
and 4.17.5. 

6 Immediate Data (IDT). If this bit is set to ‘1’, it specifies that the Data Buffer Pointer field of this 
TRB contains data, not a pointer, and the Length field shall contain a value between ‘0’ and ‘8’ to 

indicate the number of valid bytes from offset 0 in the TRB that should be used as data. 

Note: If the IDT flag is set in one Transfer TRB of a TD, then it shall be the only Transfer TRB of 
the TD. An Event Data TRB may be included in the TD. Failure to follow this rule may result in 

undefined xHC operation. 

Note: IDT shall not be set (‘1’) for TRBs on endpoints that define a Max Packet Size < 8 bytes, or 
on IN endpoints. 

8:7 RsvdZ. 

9 Block Event Interrupt (BEI). If this bit is set to ‘1’ and IOC = ‘1’, then the Transfer Event 
generated by IOC shall not assert an interrupt to the host at the next interrupt threshold. Refer 

to section 4.17.5. 

15:10 TRB Type. This shall be set to Normal TRB type. Refer to Table 6-86  for the definition of the 
valid Transfer TRB type IDs. 

31:16 RsvdZ. 
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6.4.1.2 Control TRBs 

Control transfers require two or three TDs to define them: a Setup Stage TD 

followed by an Status Stage TD, if a data stage is required for the transfer an 

optional Data Stage TD will reside between the Setup Stage and Status Stage 

TDs. This sections defines the TRBs that comprise the respective TDs. Refer to 

section 4.11.2.2 for more information on xHCI control transfers.  

Note: The IOC flag should only be set in the Status Stage TRB of a Control transfer. 

6.4.1.2.1 Setup Stage TRB 

A Setup Stage TRB is created by system software to initiate a USB Setup packet 

on a control endpoint. Refer to section 3.2.9 for more information on Setup 

Stage TRBs and the operation of control endpoints. Also refer to section 8.5.3 in 

the USB2 spec. for a description of “Control Transfers”.  

Figure 6-9: Setup Stage TRB 
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Table 6-23: Offset 00h – Setup Stage TRB Field Definitions 

Bits Description 

7:0 bmRequestType. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification. 

15:8 bRequest. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification. 

31:16 wValue. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification. 

 

Table 6-24: Offset 04h – Setup Stage TRB Field Definitions 

Bits Description 

15:0 wIndex. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification. 

31:16 wLength. Refer to Table 9-2 “Format of Setup Data” in the USB2 or USB3 specification. 
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Table 6-25: Offset 08h – Setup Stage TRB Field Definitions 

Bits Description 

16:0 TRB Transfer Length. Always 8. 

21:17 RsvdZ. 

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events 
generated by this TRB. Valid values are between 0 and MaxIntrs-1. 

 

Table 6-26: Offset 0Ch – Setup Stage TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue point of a Transfer ring. 

4:1 RsvdZ. 

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes, 
the Host Controller shall notify the system of the completion by placing an Event TRB on the 
Event ring and sending an interrupt at the next interrupt threshold. Refer to section 4.10.4. 

6 Immediate Data (IDT). This bit shall be set to ‘1’ in a Setup Stage TRB. It specifies that the 

Parameter component of this TRB contains Setup Data. 

9:7 RsvdZ. 

15:10 TRB Type. This field is set to Setup Stage TRB type. Refer to Table 6-86 for the definition of the 
Type TRB IDs. 

17:16 Transfer Type (TRT). This field indicates the type and direction of the control transfer. 

 Value Definition 

 0 No Data Stage 

 1 Reserved 

 2 OUT Data Stage 

 3 IN Data Stage 

 Refer to section 4.11.2.2 for more information on the use of TRT. 

31:18 RsvdZ. 
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6.4.1.2.2 Data Stage TRB 

A Data Stage TRB is used generate the Data stage transaction of a USB Control 

transfer. Refer to section 3.2.9 for more information on Control transfers and 

the operation of control endpoints. Also refer to section 8.5.3 in the USB2 spec. 

for a description of “Control Transfers”.  

Figure 6-10: Data Stage TRB 
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Table 6-27: Offset 00h and 04h – Data Stage TRB Field Definitions 

Bits Description 

63:0 Data Buffer Pointer Hi and Lo. These fields represent the 64-bit address of the Data buffer area 
for this transaction 

The memory structure referenced by this physical memory pointer is allowed to begin on a byte 
address boundary. However, user may find other alignments, such as 64-byte or 128-byte 
alignments, to be more efficient and provide better performance. 

 

Table 6-28: Offset 08h – Data Stage TRB Field Definitions 

Bits Description 

16:0 TRB Transfer Length. For an OUT, this field is the number of data bytes the xHC will send 
during the execution of this TRB. 

For an IN, the initial value of the field identifies the size of the data buffer referenced by the Data 

Buffer Pointer, i.e. the number of bytes the host expects the endpoint to deliver. 

Valid values are 1 to 64K. 

21:17 TD Size. This field provides an indicator of the number of packets remaining in the TD. Refer to 
section 4.11.2.4 for how this value is calculated. 

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events 
generated by this TRB. Valid values are between 0 and MaxIntrs-1. 
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Table 6-29: Offset 0Ch – Data Stage TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of the Transfer ring. 

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before 
saving the endpoint state. Refer to section 4.12.3 for more information. 

2 Interrupt-on Short Packet (ISP). If this flag is ‘1’ and a Short Packet is encountered for this TRB 
(i.e., less than the amount specified in TRB Transfer Length), then a Transfer Event TRB shall be 
generated with its Completion Code set to Short Packet. The TRB Transfer Length field in the 

Transfer Event TRB shall reflect the residual number of bytes not transferred into the associated 
data buffer. In either case, when a Short Packet is encountered, the TRB shall be retired without 
error and the xHC shall advance to the Status Stage TD. 

Note: if the ISP and IOC flags are both ‘1’ and a Short Packet is detected, then only one Transfer 
Event TRB shall be queued to the Event Ring. Also refer to section 4.10.1.1. 

3 No Snoop (NS). When set to ‘1’, the xHC is permitted to set the No Snoop bit in the Requester 

Attributes of the PCIe transactions it initiates if the PCIe configuration Enable No Snoop flag is 
also set. When cleared to ‘0’, the xHC is not permitted to set PCIe packet No Snoop Requester 
Attribute. Refer to section 4.18.1 for more information. 

NOTE: If software sets this bit, then it is responsible for maintaining cache consistency. 

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A Data 
Stage TD is defined as a Data Stage TRB followed by zero or more Normal TRBs. The Chain bit is 
used to identify a multi-TRB Data Stage TD. The Chain bit is always ‘0’ in the last TRB of a Data 

Stage TD. 

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes, 
the Host Controller shall notify the system of the completion by placing an Event TRB on the 
Event ring and asserting an interrupt to the host at the next interrupt threshold. Refer to section 

4.10.4. 

6 Immediate Data (IDT). If this bit is set to ‘1’, it specifies that the Data Buffer Pointer field of this 

TRB contains data, not a pointer. If IDT = ‘1’, the Length field shall contain a value between 1 and 
8 to indicate the number of valid bytes from offset 0 in the TRB that should be used as data. 

Note: If the IDT flag is set in one Data Stage TRB of a TD, then it shall be the only Transfer TRB of 

the TD. An Event Data TRB may also be included in the TD. Failure to follow this rule may result 
in undefined xHC operation. 

9:7 RsvdZ. 

15:10 TRB Type. This shall be set to Data Stage TRB type. Refer to Table 6-86 for the definition of the 
valid Transfer TRB type IDs. 
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16 Direction (DIR). This bit indicates the direction of the data transfer as defined in the Data State 

TRB Direction column of Table 7. If cleared to ‘0’, the data stage transfer direction is OUT (Write 
Data). If set to ‘1’, the data stage transfer direction is IN (Read Data). Refer to section 4.11.2.2 for 
more information on the use of DIR. 

31:17 RsvdZ. 

 

 

6.4.1.2.3 Status Stage TRB 

A Status Stage TRB is used to generate the Status stage transaction of a USB 

Control transfer. Refer to section 3.2.9 for more information on Control transfers 

and the operation of control endpoints. 

Figure 6-11: Status Stage TRB 
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Table 6-30: Offset 08h – Status Stage TRB Field Definitions 

Bits Description 

21:0 RsvdZ. 

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events 

generated by this TRB. Valid values are between 0 and MaxIntrs-1. 

 

Table 6-31: Offset 0Ch – Status Stage TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of the Transfer ring. 

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before 
saving the endpoint state. Refer to section 4.12.3 for more information. 
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3:2 RsvdZ. 

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A 
Status Stage TD is defined as a Status Stage TRB followed by zero or one Event Data TRB. The 

Chain bit is used to identify a multi-TRB Status Stage TD. The Chain bit is always ‘0’ in the last 
TRB of a Status Stage TD. 

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes, 
the Host Controller shall notify the system of the completion by placing an Event TRB on the 

Event ring and asserting an interrupt to the host at the next interrupt threshold. Refer to section 
4.10.4. 

9:6 RsvdZ. 

15:10 TRB Type. This field shall be set to Status Stage TRB type. Refer to Table 6-86 for the definition 
of the valid Transfer TRB type IDs. 

16 Direction (DIR). This bit indicates the direction of the data transfer as defined in the Status State 

TRB Direction column of Table 7. If cleared to ‘0’, the status stage transfer direction is OUT 
(Host-to-device). If set to ‘1’, the status stage transfer direction is IN (Device-to-host). Refer to 
section 4.11.2.2 for more information on the use of DIR. 

31:17 RsvdZ. 

 

A Transfer Event generated by this TRB shall reflect the status state response 

from the USB device. 

6.4.1.3 Isoch TRB 

An Isoch TRB defines isochronous data transfers. Refer to section 3.2.11 for 

more information on Isoch TRBs and the operation of isochronous endpoints.  

Figure 6-12: Isoch TRB 
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Table 6-32: Offset 00h and 04h – Isoch TRB Field Definitions 

Bits Description 

63:0 Data Buffer Pointer Hi and Lo. This field represents the 64-bit address of the TRB data area for 
this transaction or 8 bytes of immediate data. The Immediate Data (IDT) control flag selects this 

option for each Isoch TRB. 

The memory structure referenced by this physical memory pointer is allowed to begin on a byte 
address boundary. However, user may find other alignments, such as 64-byte or 128-byte 

alignments, to be more efficient and provide better performance. 

 

Table 6-33: Offset 08h – Isoch TRB Field Definitions 

Bits Description 

16:0 TRB Transfer Length. For an OUT, this field is the number of data bytes the host controller will 
send during the execution of this TRB. 

For an IN, the initial value of the field is the number of bytes the host expects the endpoint to 

deliver, i.e. the number of bytes the host expects the endpoint to deliver. 

Refer to section 4.9.1 for more information on zero-length Transfer TRB handling. 

Valid values are 0 to 64K. 

21:17 TD Size/TBC. If ETE = ‘0’, then this field defines the TD Size, which provides an indicator of the 
number of bytes remaining in the TD. Refer to section 4.11.2.4 for how this value is calculated. If 
ETE = ‘1’, then this field defines the Transfer Burst Count (TBC), which identifies the number of 

bursts - 1 that shall be required to move this Isoch TD. All bursts except the last shall transfer 
Max Burst Size packets. The last burst shall transfer TLBPC + 1 packets. Refer to section 4.11.2.3 
for more information. 

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive events 

generated by this TRB. Valid values are between 0 and MaxIntrs-1. 

 

Table 6-34: Offset 0Ch – Isoch TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue point of a Transfer ring. 

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before 

saving the endpoint state. Refer to section 4.12.3 for more information. 
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2 Interrupt-on Short Packet (ISP). If this flag is ‘1’ and a Short Packet is encountered for this TRB 

(i.e., less than the amount specified in TRB Transfer Length), then a Transfer Event TRB shall be 
generated with the with its Completion Status set to Short Packet. In either case when a Short 
Packet is encountered, the TRB shall be retired without error and the xHC shall advance to the 

next Transfer Descriptor (TD). Also refer to section 4.10.1.1. 

Note: if the ISP and IOC flags are both ‘1’ and a Short Packet is detected, then only one Transfer 
Event TRB shall be queued to the Event Ring. 

3 No Snoop (NS). When set to ‘1’, the xHC is permitted to set the No Snoop bit in the Requester 
Attributes of the PCIe transactions it initiates if the PCIe configuration Enable No Snoop flag is 
also set. When cleared to ‘0’, the xHC is not permitted to set PCIe packet No Snoop Requester 

Attribute. Refer to section 4.18.1 for more information. 

NOTE: If software sets this bit, then it is responsible for maintaining cache consistency. 

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. An 

Isoch Transfer Descriptor is defined as an Isoch TRB followed by zero or more Normal TRBs. The 
Chain bit is used to identify the TRBs that comprise the TD. The Chain bit is always ‘0’ in the last 
TRB of an Isoch TD. 

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes, 
the Host Controller shall notify the system of the completion by placing an Event TRB on the 

Event ring and sending an interrupt at the next interrupt threshold. Refer to section 4.10.4. 

6 Immediate Data (IDT). If this bit is set to ‘1’, it specifies that the Data Buffer Pointer field of this 
TRB contains data, not a pointer, and the Length field shall contain a value between ‘0’ and ‘8’ to 

indicate the number of valid bytes from offset 0 in the TRB that should be used as data. 

Note: If the IDT flag is set in one Transfer TRB of a TD, then it shall be the only Transfer TRB the 
TD. An Event Data, Link TRB may also be included in the TD. Failure to follow this rule may 

result in undefined xHC operation. 

Note: The IDT flag shall not be set ('1') for TRBs on endpoints that define a Max Packet Size < 8 
bytes, or on IN endpoints. 

8:7 Transfer Burst Count (TBC/TRBSts). If ETE = ‘0’, then this field identifies number of bursts - 1 
that shall be required to move this Isoch TD. All bursts except the last shall transfer Max Burst 

Size packets. The last burst shall transfer TLBPC + 1 packets. Refer to section 4.11.2.3 for more 
information. If ETE = ‘1’ and ETC_TSC=’1’ and ETC=’1’, then this field is set to 1 to explicitly 
indicate that it is the last Transfer TRB of the TD. Other values for TRBSts are reserved. If ETE=’1’ 

and ETC_TSC=’0’ and ETC=’1’, then this field shall be RsvdZ. 

9 Block Event Interrupt (BEI). If this bit is set to ‘1’ and IOC = ‘1’, then the Transfer Event 
generated by IOC shall not assert an interrupt to the host at the next interrupt threshold. Refer 
to section 4.17.5. 

15:10 TRB Type. This field is set to Isoch TRB type. Refer to Table 6-86 for the definition of the Type 

TRB IDs. 
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19:16 Transfer Last Burst Packet Count (TLBPC). This field indent if i es number of packets -1 that 

shall be in the last burst of this Isoch TD, e.g. ‘0’ = 1 packet, ‘1’ = 2 packets, etc. Refer to section 
4.11.2.3 for more information. 

30:20 Frame ID. The value in this field identifies the target 1ms. frame that the Interval associated with 
this Isochronous Transfer Descriptor will start on. Bits [13:3] of the Microframe Index field of the 

MFINDEX register may be used to determine the current periodic frame. This field is ignored by 
the xHC if the Start Isoch ASAP flag is set (‘1’). For more information on the programming of this 
field refer to section 4.11.2.5. 

31 Start Isoch ASAP (SIA). If this flag is set (‘1’), the Frame ID is ignored and the Isoch TD is 
scheduled as soon as possible. If this flag is cleared (‘0’), the Frame ID is valid and the Isoch TD is 

scheduled the next time there is a match between the Frame ID and the Frame Index portion 
(bits 13:3) of the Microframe Index (MFINDEX) register. Refer to Figure 4-21. For more 
information refer to section 4.11.2.3. 

 

 

6.4.1.4 No Op TRB 

The No Op TRB provides a simple means for verifying the operation of the basic 

Transfer Ring mechanisms offered by the xHCI. It may be inserted on a Transfer 

Ring to generate a Transfer Event. 

Note: Consecutive No Op TRBs may impact xHC performance and should be avoided 

by software. Refer to section 4.11.7 for more information on No Op TRB 

placement rules. 

Figure 6-13: No Op TRB 
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Table 6-35: Offset 08h – No Op TRB Field Definitions 

Bits Description 

21:0 RsvdZ. 

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive Transfer 
Events generated by this TRB. Valid values are between 0 and MaxIntrs-1. 
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Table 6-36: Offset 0Ch – No Op TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Transfer Ring. 

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before 
saving the endpoint state. Refer to section 4.12.3 for more information. 

3:2 RsvdZ. 

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A 

Transfer Descriptor (TD) is defined as one or more TRBs. The Chain bit is used to identify the 
TRBs that comprise a TD. The Chain bit is always ‘0’ in the last TRB of a TD. 

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes, 

the Host Controller shall notify the system of the completion by placing a Transfer Event TRB on 
the Event ring and sending an interrupt at the next interrupt threshold. Refer to section 4.10.4. 

9:6 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
No Op TRB type ID. 

31:16 RsvdZ. 

 

6.4.2 Event TRBs 

Event TRBs shall be found on an Event Ring. A Work Item on an Event Ring is 

called an Event Descriptor (ED). An ED shall be comprised of only one Event 

TRB data structure. This section describes the event related TRBs.  

6.4.2.1 Transfer Event TRB 

A Transfer Event provides the completion status associated with a Transfer TRB. 

Refer to section 4.11.3.1 for more information on the use and operation of 

Transfer Events. 

Note: The Primary Event Ring (0) or a Secondary Event Ring may receive a Transfer 

Event TRB. Normally the xHC shall use the Interrupter Target field of the 

originating Transfer TRB to determine the Event Ring that shall receive this event. 

Refer to section 4.17.4 for the exception cases, which use the Slot Context 

Interrupter Target field. 
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Figure 6-14: Transfer Event TRB 
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Table 6-37: Offset 00h and 04h – Transfer Event TRB Field Definitions 

Bits Description 

63:0 TRB Pointer Hi and Lo. This field represents the 64-bit address of the TRB that generated this 

event or 64 bits of Event Data if the ED flag is ‘1’. 

If a TRB memory structure is referenced by this field (ED = ‘0’), then it shall be physical memory 
pointer aligned on a 16-byte boundary, i.e. bits 0 through 3 of the address are ‘0’. 

 

Table 6-38: Offset 08h – Transfer Event TRB Field Definitions 

Bits Description 

23:0 TRB Transfer Length. This field shall reflect the residual number of bytes not transferred. 

For an OUT, this field shall indicate the value of the Length field of the Transfer TRB, minus the 

data bytes that were successfully transmitted. A successful OUT transfer shall return a Length of 
‘0’. 

For an IN, this field shall indicate the value of the TRB Transfer Length field of the Transfer TRB, 

minus the data bytes that were successfully received. If the device terminates the receive 
transfer with a Short Packet, then this field shall indicate the difference between the expected 
transfer size (defined by the Transfer TRB) and the actual number of bytes received. If the 

receive transfer completed with an error, then this field shall indicate the difference between 
the expected transfer size and the number of bytes successfully received. 

If the Event Data flag is ‘0’ the legal range of values is 0 to 10000h. If the Event Data flag is ‘1’ or 

the Condition Code is Stopped - Short Packet, then this field shall be set to the value of the 
Event Data Transfer Length Accumulator (EDTLA). Refer to section 4.11.5.2 for a description of 
EDTLA. 

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB. 
Refer to section 6.4.5 for an enumerated list of possible error conditions. 
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Table 6-39: Offset 0Ch – Transfer Event TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring. 

1 RsvdZ. 

2 Event Data (ED). When set to ‘1’, the event was generated by an Event Data TRB and the 
Parameter Component (TRB Pointer field) contains a 64-bit value provided by the Event Data 
TRB. If cleared to ‘0’, the Parameter Component (TRB Pointer field) contains a pointer to the TRB 

that generated this event. Refer to section 4.11.5.2 for more information. 

9:3 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 

Transfer Event TRB type ID. 

20:16 Endpoint ID. The ID of the Endpoint that generated the event. This value is used as an index in 

the Device Context to select the Endpoint Context associated with this event. 

23:21 RsvdZ. 

31:24 Slot ID. The ID of the Device Slot that generated the event. This is value is used as an index in 
the Device Context Base Address Array to select the Device Context of the source device. 

Note: For multi-TRB TDs, if ED = ‘0’, the TRB Transfer Length only reflects the number 

of bytes transferred for the buffer associated with the Transfer TRB pointed to 

by the Transfer Event, not the total bytes transferred for the TD. 

Note: A Ring Overrun or Ring Underrun Event utilizes a Transfer Event TRB to report the 

error. In this case, the TRB Pointer field is invalid. 

Note: If an error occurs during the execution of a Transfer TRB that does not have its 

IOC or ISP flags set, a Transfer Event shall be generated for the error and the 

Transfer Event shall point to the offending TRB. Refer to sections 4.10.1 and 

4.10.2 for more information on handling errors related to Transfer TRBs. 

Note: CStream is not valid until a Streams endpoint transitions to the Start Stream 

state for the first time. A Transfer Event generated by a Stop Endpoint Command 

shall report ‘0’ in the TRB Pointer and TRB Length fields if the command is 

executed and CStream is invalid. Refer to section 4.12.1. 

6.4.2.2 Command Completion Event TRB 

A Command Completion Event TRB  shall be generated by the xHC when a 

command completes on the Command Ring. Refer to section 4.11.4 for more 

information on the use of Command Completion Events . 

Note: The Primary Event Ring (0) shall receive all Command Completion Events. 
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Figure 6-15: Command Completion Event TRB 
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Table 6-40: Offset 00h and 04h – Command Completion Event TRB Field Definition 

Bits Description 

3:0 RsvdZ. 

63:4 Command TRB Pointer Hi and Lo. This field represents the high order bits of the 64-bit address 

of the Command TRB that generated this event. Note that this field is not valid for some 
Completion Code values. Refer to Table 6-85 for specific cases. 

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte 

address boundary. 

 

Table 6-41: Offset 08h – Command Completion Event TRB Field Definitions 

Bits Description 

23:0 Command Completion Parameter. This field may optionally be set by a command. Refer to 
section 4.6.6.1 for specific usage. If a command does not utilize this field it shall be treated as 

RsvdZ. 

31:24 Completion Code. This field encodes the completion status of the command that generated the 
event. Refer to the respective command definition for a list of the possible Completion Codes 
associated with the command. Refer to section 6.4.5 for an enumerated list of possible error 

conditions. 

 

Table 6-42: Offset 0Ch – Command Completion Event TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring. 

9:1 RsvdZ. 



 

 

 

  457 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 

Command Completion Event TRB type ID. 

23:16 VF ID. The ID of the Virtual Function that generated the event. Note that this field is valid only if 
Virtual Functions are enabled. If they are not enabled this field shall be cleared to ‘0’. 

31:24 Slot ID. The Slot ID field shall be updated by the xHC to reflect the slot associated with the 
command that generated the event, with the following exceptions: 

- The Slot ID shall be cleared to ‘0’ for No Op, Set Latency Tolerance Value, Get Port Bandwidth, 
and Force Event Commands. 

- The Slot ID shall be set to the ID of the newly allocated Device Slot for the Enable Slot 

Command. 

 - The value of Slot ID shall be vendor defined when generated by a vendor defined command. 

This value is used as an index in the Device Context Base Address Array to select the Device 

Context of the source device. If this Event is due to a Host Controller Command, then this field 
shall be cleared to ‘0’. 

 

Note: All commands for a Device Slot or VF are executed in order. 

Note: All Vendor Defined Event TRBs shall support the Completion Code, Cycle bit, 

and TRB Type fields. The remaining fields and reserved areas may be vendor 

defined/allocated. 

 

6.4.2.3 Port Status Change Event TRB 

A Port Status Change Event TRB shall be generated by the xHC any time there is 

a ‘0’ to ‘1’ transition of the Port Status Change Event Generation (PSCEG) 

variable, e.g. a status change bit transitions to a non-zero value (CSC, PEC, OCC, 

etc.). Refer to section 4.19.2 for more information on the use and generation of 

the Port Status Change Event. Refer to section 5.4.8 for more information on the 

port status change bits. 

Note: The Primary Event Ring (0) shall receive all Port Status Change Events. 

Figure 6-16: Port Status Change Event TRB 

Port ID RsvdZ

RsvdZ

31 24 23 16 15 10 9 1 0

03-00H

07-04H

0B-08H

0F-0CHRsvdZRsvdZ

Completion Code

CTRB Type

RsvdZ
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Table 6-43: Offset 00h – Port Status Change Event TRB Field Definitions 

Bits Description 

23:0 RsvdZ. 

31:24 Port ID. The Port Number of the Root Hub Port that generated this event. 

 

Table 6-44: Offset 08h – Port Status Change Event TRB Field Definitions 

Bits Description 

23:0 RsvdZ. 

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB. The 

Completion Code field shall be set to Success. 

 

Table 6-45: Offset 0Ch – Port Status Change Event TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86  for 

the definition of the Port Status Change Event TRB type ID. 

31:16 RsvdZ. 

 

6.4.2.4 Bandwidth Request Event TRB 

A Bandwidth Event TRB shall be generated by the xHC when the Negotiate 

Bandwidth Command is received. Refer to section 4.6.13 for more information 

on Bandwidth Request Events. 

Note: The Primary Event Ring (0) or a Secondary Event Ring may receive a Bandwidth 

Request Event TRB. The xHC shall use the Interrupter Target field of the Slot 
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Context indexed by the Bandwidth Request Event TRB Slot ID field to determine 

the Event Ring that shall receive the event. 

Figure 6-17: Bandwidth Request Event TRB 
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Table 6-46: Offset 08h – Bandwidth Request Event TRB Field Definitions 

Bits Description 

23:0 RsvdZ. 

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB. The 
Completion Code field shall always be set to Success for a Bandwidth Request Event. 

 

Table 6-47: Offset 0Ch – Bandwidth Request Event TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 

Bandwidth Request TRB type ID. 

23:16 RsvdZ. 

31:24 Slot ID. The ID of the Device Slot that should evaluate its bandwidth requirements. This is value 
is used as an index in the Device Context Base Address Array to select the Device Context of the 

source device. 

 

6.4.2.5 Doorbell Event TRB 

A Doorbell Event TRB  shall be generated by the xHC when an emulated doorbell 

is written in a VF. A doorbell is emulated if the Slot Emulated bit is set to ‘1’ for 

the respective VF Device Slot Assignment Register . Refer to section 7.7.3. 
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Note: The Primary Event Ring (0) shall receive all Doorbell Events. 

Figure 6-18: Doorbell Event TRB 
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Table 6-48: Offset 00h – Doorbell Event TRB Field Definitions 

Bits Description 

4:0 DB Reason. This field contains the value written to the DB Target field of the associated Doorbell. 

31:5 RsvdZ. 

 

Table 6-49: Offset 08h – Doorbell Event TRB Field Definitions 

Bits Description 

23:0 RsvdZ. 

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB. The 

Completion Code field shall always be set to Success for a Doorbell Event. 

 

Table 6-50: Offset 0Ch – Doorbell Event TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Doorbell Event TRB type ID. 

23:16 VF ID. The ID of the Virtual Function that generated the event. 
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31:24 Slot ID. The ID of the Device Slot that generated the event. This is value is used as an index in 

the Device Context Base Address Array to select the Device Context of the source device. If this 
Event is due to a Host Controller Command, then this field shall be cleared to ‘0’. 

 

 

6.4.2.6 Host Controller Event TRB 

A Host Controller Event TRB is a generic TRB, used to report xHC state changes 

and Error conditions. 

Note: The Primary Event Ring (0) or a Secondary Event Ring may receive a Host 

Controller Event TRB, e.g. Event Ring Full Error. 

Figure 6-19: Host Controller Event TRB 
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Table 6-51: Offset 08h – Host Controller Event TRB Field Definitions 

Bits Description 

23:0 RsvdZ. 

31:24 Completion Code. This field encodes the completion status that can be identified by a TRB. 
Refer to section 6.4.5 for an enumerated list of possible completion code values. 

 

Table 6-52: Offset 0Ch – Host Controller Event TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 

Host Controller Event TRB type ID. 
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31:16 RsvdZ. 

 

 

6.4.2.7 Device Notification Event TRB 

A Device Notification Event TRB  is used to report the information received in 

USB Device Notification (DEV_NOTIFICATION) Transaction Packets from USB 

Devices. Refer to section 4.13 for more information on Device Notifications.  

Note: The Primary Event Ring (0) or a Secondary Event Ring may receive a Device 

Notification Event TRB. If enabled in the DNCTRL register (5.4.4), the xHC shall 

use the Interrupter Target field of the Slot Context indexed by the Device 

Notification Event TRB Slot ID field to determine the Event Ring that shall receive 

the event. 

Figure 6-20: Device Notification Event TRB 
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Table 6-53: Offset 00h and 04h – Device Notification Event TRB Field Definitions 

Bits Description 

3:0 RsvdZ. 

7:4 Notification Type. This field reports the value of the Notification Type field of the received USB 
Device Notification Transaction Packet. 

63:8 Device Notification Data. This field reports the value of bytes 05h through 0Bh of the received 
USB Device Notification Transaction Packet (DNTP), i.e. Device Notification Event (DNE) TRB byte 
01h = DNTP byte 05h,..., DNE TRB byte 07h = DNTP byte 0Bh. 
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Table 6-54: Offset 08h – Device Notification Event TRB Field Definitions 

Bits Description 

23:0 RsvdZ. 

31:24 Completion Code. This field encodes the completion status of the TRB, and shall always be set 
to Success. Refer to section 6.4.5 for an enumerated list of the completion code values. 

 

Table 6-55: Offset 0Ch – Device Notification Event TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Device Notification Event TRB type ID. 

23:16 RsvdZ. 

31:24 Slot ID. The ID of the Device Slot that generated the event. This value is used as an index in the 

Device Context Base Address Array to select the Device Context of the source device. 

 

6.4.2.8 MFINDEX Wrap Event TRB 

A MFINDEX Wrap Event TRB may be used by software to report when the 

MFINDEX register wrap from 0x3FFFh to 0. Refer to section 4.12.2 for more 

information. 

Note: The Primary Event Ring (0) shall receive all MFINDEX Wrap Events. 

Figure 6-21: MFINDEX Wrap Event TRB 
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Table 6-56: Offset 08h – MFINDEX Wrap Event TRB Field Definitions 

Bits Description 

23:0 RsvdZ. 

31:24 Completion Code. This field encodes the completion status of the TRB, and shall always be set 
to Success. Refer to section 6.4.5 for an enumerated list of the completion code values. 

 

Table 6-57: Offset 0Ch – MFINDEX Wrap Event TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
MFINDEX Wrap Event TRB type ID. 

31:16 RsvdZ. 

 

6.4.3 Command TRBs 

A Command TRB shall be found on a Command Ring. A Work Item on a 

Command Ring is called a Command Descriptor (CD) and is comprised of a 

single Command TRB. This section describes the command related TRBs.  

Note: Data buffers referenced by Command TRBs shall not span PAGESIZE boundaries. 

6.4.3.1 No Op Command TRB 

The No Op Command TRB provides a simple means for verifying the operation of 

the Command Ring mechanisms offered by the xHCI. Refer to section 4.6.2 for 

more information. 
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Figure 6-22: No Op Command TRB 
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Table 6-58: Offset 0Ch – No Op Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
No Op Command TRB type ID. 

31:16 RsvdZ. 

 

6.4.3.2 Enable Slot Command TRB 

The Enable Slot Command TRB causes the xHC to select an available Device Slot 

and return the ID of the selected slot to the host in a Command Completion 

Event. Refer to section 4.6.3 for more information. 

Figure 6-23: Enable Slot Command TRB 
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Table 6-59: Offset 0Ch – Enable Slot Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

9:1 RsvdZ. 



 

 

466    

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 

Enable Slot Command TRB type ID. 

20:16 Slot Type. This field identifies the type of Slot that will be enabled by this command. Refer to 
Table 7-9 for more information on the usage of Slot Type. 

31:21 RsvdZ. 

 

6.4.3.3 Disable Slot Command TRB 

The Disable Slot Command TRB releases any bandwidth assigned to the 

disabled slot and frees any internal xHC resources assigned to the slot. Refer to 

section 4.6.4 for more information. 

Figure 6-24: Disable Slot Command TRB 
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Table 6-60: Offset 0Ch – Disable Slot Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Disable Slot Command TRB type ID. 

23:16 RsvdZ. 

31:24 Slot ID. The ID of the Device Slot to disable. 

 

6.4.3.4 Address Device Command TRB 

The Address Device Command TRB  transitions the selected Device Context from 

the Default to the Addressed state and causes the xHC to select an address for 

the USB device in the Default State and issue a SET_ADDRESS request to the 

USB device. Refer to section 4.6.5 for more information.  
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Figure 6-25: Address Device Command TRB 
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Table 6-61: Offset 00h and 04h – Address Device Command TRB Field Definitions  

Bits Description 

3:0 RsvdZ. 

63:4 Input Context Pointer Hi and Lo. This field represents the high order bits of the 64-bit base 
address of the Input Context data structure associated with this command. Refer to section 6.2.5 

for more information on the Input Context data structure. 

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte 
address boundary. 

 

Table 6-62: Offset 0Ch – Address Device Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

8:1 RsvdZ. 

9 Block Set Address Request (BSR). When this flag is set to ‘0’ the Address Device Command shall 

generate a USB SET_ADDRESS request to the device. When this flag is set to ‘1’ the Address 
Device Command shall not generate a USB SET_ADDRESS request. Refer to section 4.6.5 for 
more information on the use of this flag. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Address Device Command TRB type ID. 

23:16 RsvdZ. 

31:24 Slot ID. The ID of the Device Slot that is the target of this command. 
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6.4.3.5 Configure Endpoint Command TRB 

The Configure Endpoint Command TRB  evaluates the bandwidth and resource 

requirements of the endpoints selected by the command. Refer to section 4.6.6 

for more information. 

Figure 6-26: Configure Endpoint Command TRB 
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Table 6-63: Offset 00h and 04h – Configure Endpoint Command TRB Field Definitions 

Bits Description 

3:0 RsvdZ. 

63:4 Input Context Pointer Hi and Lo. This field represents the high order bits of the 64-bit base 

address of the Input Context data structure associated with this event. Refer to section 6.2.5 for 
more information on the Input Context data structure. 

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte 

address boundary. 

 

Table 6-64: Offset 0Ch – Configure Endpoint Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

8:1 RsvdZ. 

9 Deconfigure (DC). Set to ‘1’ by software to “deconfigure” the Device Slot. If the DC flag = ‘1’, the 
Input Context Pointer field is ignored by the xHC. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Configure Endpoint Command TRB type ID. 

23:16 RsvdZ. 

31:24 Slot ID. The ID of the Device Slot that is the target of this command. 
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6.4.3.6 Evaluate Context Command TRB 

The Evaluate Context Command TRB  is used by system software to inform the 

xHC that the selected Context data structures in the Device Context have been 

modified by system software and that the xHC shall evaluate any changes. Refer 

to the Slot and Endpoint Context data structure descriptions (sections 6.2.2.3 

and 6.2.3.3, respectively) for more information on how the xHC applies this 

command. Refer to section 4.6.7 for more information.  

Figure 6-27: Evaluate Context Command TRB 
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The Evaluate Context Command  TRB uses the same format as the Address 

Device Command TRB, with the following exceptions: 1) the TRB Type field is set 

to the Evaluate Context Command  TRB type ID, and 2) the BSR field is not used. 

Refer to Table 6-62 for the definitions of the remaining fields in the Address 

Device Command Control component. 

 

6.4.3.7 Reset Endpoint Command TRB 

The Reset Endpoint Command TRB  is used by system software to reset a 

specified Transfer Ring. Refer to section 4.6.8 for more information.  

Figure 6-28: Reset Endpoint Command TRB 
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Table 6-65: Offset 0Ch – Reset Endpoint Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

8:1 RsvdZ. 
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9 Transfer State Preserve (TSP). Set to ‘1’ by software if the Reset operation does not affect the 

current transfer state of the endpoint. Cleared to ‘0’ by software if the Reset operation resets the 
current transfer state of the endpoint, i.e. The Data Toggle of a USB2 device or the Sequence 
Number of a USB3 device is cleared to ‘0’. Also refer to section 4.6.8.1. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Reset Endpoint Command TRB type ID. 

20:16 Endpoint ID. This field identifies the DCI of the endpoint to be reset. 

23:21 RsvdZ. 

31:24 Slot ID. The ID of the Device Slot. 

 

6.4.3.8 Stop Endpoint Command TRB 

The Stop Endpoint Command TRB  command allows software to stop the xHC 

execution of the TDs on a Transfer Ring and temporarily take ownership of TDs 

that had previously been passed to the xHC. Refer to section 4.6.9 for more 

information. 

Figure 6-29: Stop Endpoint Command TRB 
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Table 6-66: Offset 0Ch – Stop Endpoint Command TRB Field Definitions 

Bits Description 

0 Cycle (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Stop Endpoint Command TRB type ID. 

20:16 Endpoint ID. This field identifies the DCI of the endpoint to be stopped. Valid values are ‘1’ to 
Output Slot Context Context Entries. 

22:21 RsvdZ. 
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23 Suspend (SP). When ‘1’ this bit indicates that the Stop Endpoint Command is being issued to 

stop activity on an endpoint that is about to be suspended, and the endpoint shall be stopped 
for at least 10 ms. The xHC may use this information to power manage the endpoint hardware 
resources. Refer to section 4.15 for more information. 

31:24 Slot ID. The ID of the Device Slot. 

 

In order to assure proper USB device operation, software shall wait for at least 

10 ms. after a port indicates that it is suspended (PLS = ‘3’) before initiating a 

port resume. 

 

6.4.3.9 Set TR Dequeue Pointer Command TRB 

The Set TR Dequeue Pointer Command TRB  is used by system software to modify 

the TR Dequeue Pointer and DCS fields of an Endpoint or Stream Context. Refer 

to section 4.6.10 for more information. 

Figure 6-30: Set TR Dequeue Pointer Command TRB 
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Table 6-67: Offset 00h and 04h – Set TR Dequeue Pointer Command TRB Field Definitions 

Bits Description 

0 Dequeue Cycle State (DCS). This bit identifies the value of the xHC Consumer Cycle State (CCS) 
flag for the TRB referenced by the TR Dequeue Pointer. 

3:1 Stream Context Type (SCT). If the Stream ID field is non-zero, this field identifies the type of the 
Stream Context, otherwise this field shall be ‘0’. Refer to section Table 6-13 for the definition the 
SCT field values. 

63:4 New TR Dequeue Pointer Hi and Lo. This field represents the high order bits of the 64-bit base 

address to be written to the TR Dequeue Pointer field in the target Endpoint or Stream Context. 

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte 
address boundary. 
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Table 6-68: Offset 08h – Set TR Dequeue Pointer Command TRB Field Definitions  

Bits Description 

15:0 RsvdZ. 

31:16 Stream ID. If Streams are enabled for this endpoint, this field identifies the Stream Context that 
will receive the new TR Dequeue Pointer. Refer to section 4.12.2.1 for the bounds checking that 

the xHC shall perform on this value. 

 

Table 6-69: Offset 0Ch – Set TR Dequeue Pointer Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Set TR Dequeue Pointer Command TRB type ID. 

20:16 Endpoint ID. This field identifies the DCI of the endpoint that is the target of this command. If 

Streams are not enabled for the endpoint, the Endpoint Context will receive the new TR 
Dequeue Pointer. 

23:21 RsvdZ. 

31:24 Slot ID. The ID of the Device Slot. 

 

Note: This command shall not be issued by software unless the target Transfer Ring is 

in the Error or Stopped state or if it is a Streams endpoint and the target Stream 

ID is active. 

 

6.4.3.10 Reset Device Command TRB 

The Reset Device Command TRB is used by software to inform the xHC that a 

USB device has been Reset. The reset operation sets the device slot to the 

Default state, sets the Device Address to ‘0’, and disables all endpoints except 

for the Default Control Endpoint. Refer to section 4.6.11 for more information. 
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Figure 6-31: Reset Device Command TRB 
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Table 6-70: Offset 0Ch – Reset Device Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Reset Device Command TRB type ID. 

23:16 RsvdZ. 

31:24 Slot ID. The ID of the Device Slot that is being reset. 

 

6.4.3.11 Force Event Command TRB (Optional Normative) 

The Force Event Command TRB allows a VMM to inject an Event TRB on the 

Event Ring of a selected VF. VMMs utilize this command when emulating a USB 

device to a VM. Refer to section 8 for more information on virtualization. Refer 

to section 4.6.12 for more information. 

Figure 6-32: Force Event Command TRB 
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Table 6-71: Offset 00h and 04h – Force Event Command TRB Field Definitions 

Bits Description 

3:0 RsvdZ. 
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63:4 Event TRB Pointer Hi and Lo. This field represents the high order bits of the 64-bit address of 

the Event TRB that will be posted to the target Event Ring. 

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte 
address boundary. 

 

Table 6-72: Offset 08h – Force Event Command TRB Field Definitions 

Bits Description 

21:0 RsvdP. 

31:22 VF Interrupter Target. This field shall indicate the ID of the Interrupter, whose Event Ring will 

receive the forced event. The Interrupter ID is the virtual value used by the target VF (based on 
the Interrupter Offset field of the VF Interrupter Range Register), not a physical value. Refer to 
section 7.7.2 for more information on virtual Interrupter mapping. 

 

Table 6-73: Offset 0Ch – Force Event Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86  for the definition of the 
Force Event Command TRB type ID. 

23:16 VF ID. The ID of the Virtual Function who’s Event Ring will receive this Event. 

31:24 RsvdZ. 

 

6.4.3.12 Negotiate Bandwidth Command TRB (Optional Normative) 

The Negotiate Bandwidth Command TRB is used by system software to initiate 

Bandwidth Request Events to periodic endpoints. This command may be used to 

recover unused USB bandwidth from the system. Refer to section 4.6.3 for more 

information. 

The Negotiate Bandwidth Command TRB uses the same format as the Disable 

Slot Command (6.4.3.3), with the exception that the TRB Type field is set to the 

Negotiate Bandwidth Command TRB type ID, and the Slot ID is set to the ID of 
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the slot that requires the bandwidth negotiation. Refer to Table 6-60 for the 

definitions of the remaining fields in the Negotiate Bandwidth Command Control 

component. 

6.4.3.13 Set Latency Tolerance Value (LTV) Command TRB (Optional Normative) 

The Set LTV Command TRB provides a simple means for host software to 

provide a single Best Effort Latency Tolerance (BELT) value. This command is 

optional normative, however it shall be supported if the xHC also supports a 

corresponding host interconnect LTM mechanism. Refer to sections 4.6.14 and 

4.13.1 for more information. 

Figure 6-33: Set Latency Tolerance Value Command TRB 
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Table 6-74: Offset 0Ch – Set Latency Tolerance Value Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 

Set Latency Tolerance Value Command TRB type ID. 

27:16 Best Effort Latency Tolerance Value. The Best Effort Latency Tolerance (BELT) value provided 

by software. This value shall be formatted as defined in the section of the USB3 Specification 
describing Device Notification (DEV_NOTIFICATION) Transaction Packet (TP). 

31:28 RsvdZ. 

 

6.4.3.14 Get Port Bandwidth Command TRB 

The Get Port Bandwidth Command TRB  provides a means for host software to 

identify the bandwidth available on xHC Root Hub Ports. Refer to section 4.6.15 

for more information. 
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Figure 6-34: Get Port Bandwidth Command TRB 
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Table 6-75: Offset 00h and 04h – Get Port Bandwidth Command TRB Field Definitions 

Bits Description 

3:0 RsvdZ. 

63:4 Port Bandwidth Context Pointer Hi and Lo. This field represents the high order bits of the 64-bit 
address of the Port Bandwidth Context data structure that will receive the Port Bandwidth 
information. 

The memory structure referenced by this physical memory pointer shall be aligned on a 16-byte 
address boundary. 

 

Table 6-76: Offset 0Ch – Get Port Bandwidth Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer of a Command Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Get Port Bandwidth Command TRB type ID. 

19:16 Dev Speed. The bus speed of interest. Refer to the Port Speed field in Table 5-26 for a definition 
of the allowed values. Note: The Undefined and Reserved Speeds are invalid values for this field. 

23:20 RsvdZ. 

31:24 Hub Slot ID. This field identifies the hub ports that the bandwidth information shall be returned 

for. A value of ‘0’ shall update the Port Bandwidth Context with the Root Hub port bandwidth 
information. If this field is set to the Slot ID of a High-speed hub, the Port Bandwidth Context 
shall be updated with that port’s bandwidth information. This field is ignored if SBD = ‘0’. Refer 

to section 4.16.2 for more information on the use of this field. 
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6.4.3.15 Force Header Command TRB 

A Force Header Command TRB is used to generate a USB Transaction or Link 

Management Packet to a USB Device. Refer to section 4.6.16 for more 

information. 

Figure 6-35: Force Header Command TRB 
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Table 6-77: Offset 00h, 04h, and 08h – Force Header Command TRB Field Definitions 

Bits Description 

4:0 Packet Type (Type). This field identifies the packet type. Refer to section 8.3.1.2 in the USB3 
specification for valid values. 

95:5 Header Info. This field defines the value of bytes 00h through 0Bh of the transmitted USB 
Transaction or Link Management Packet. 

Refer to Section 8 in the USB3 specification for the definition of this field. 

 

Table 6-78: Offset 0Ch – Force Header Command TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Dequeue Pointer of an Event Ring. 

9:1 RsvdZ. 

15:10 TRB Type. This field identifies the type of the TRB. Refer to Table 6-86 for the definition of the 
Force Header Command TRB type ID. 

23:16 RsvdZ. 

31:24 Root Hub Port Number. This field identifies the number of the Root Hub Port that the header 
packet shall be issued to. Refer to section 4.19.7 for port numbering information. 
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6.4.4 Other TRBs 

6.4.4.1 Link TRB 

A Link TRB provides support for non-contiguous TRB Rings. Refer to section 

4.11.5.1 for more information on Link TRBs and the operation of non-contiguous 

TRB Rings. 

Note: Consecutive Link TRBs may impact xHC performance and should be avoided by 

software. Refer to section 4.11.7 for more information on Link TRB placement 

rules. 

Figure 6-36: Link TRB 
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Table 6-79: Offset 00h and 04h – Link TRB Field Definitions 

Bits Description 

3:0 RsvdZ. Ring Segments are TRB aligned (16 Byte boundaries). 

63:4 Ring Segment Pointer Hi and Lo. These fields represent the high order bits of the 64-bit base 

address of the next Ring Segment. 

The memory structure referenced by this physical memory pointer shall begin on a 16-byte 
address boundary. 

 

Table 6-80: Offset 08h – Link TRB Field Definitions 

Bits Description 

21:0 RsvdZ. 

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive Transfer 
Events generated by this TRB. Valid values are between 0 and MaxIntrs-1. 

This field is ignored by the xHC on Command Rings. 



 

 

 

  479 

 

Table 6-81: Offset 0Ch – Link TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is used to mark the Enqueue Pointer location of a Transfer or Command 
Ring. 

1 Toggle Cycle (TC). When set to ‘1’, the xHC shall toggle its interpretation of the Cycle bit. When 
cleared to ‘0’, the xHC shall continue to the next segment using its current interpretation of the 
Cycle bit. 

3:2 RsvdZ. 

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Ring. A 

Transfer Descriptor (TD) is defined as one or more TRBs. The Chain bit is used to identify the 
TRBs that comprise a TD. Refer to section 4.11.7 for more information on Link TRB placement 
within a TD. On a Command Ring this bit is ignored by the xHC. 

5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes, 

the Host Controller shall notify the system of the completion by placing an Event TRB on the 
Event ring and sending an interrupt at the next interrupt threshold. 

9:6 RsvdZ. 

15:10 TRB Type. This field is set to Link TRB type. Refer to Table 6-86 for the definition of the Type 
TRB IDs. 

31:16 RsvdZ. 

 

6.4.4.2 Event Data TRB 

An Event Data TRB allows system software to generate a software defined event 

and specify the Parameter field of the generated Transfer Event.  

Note: When applying Event Data TRBs to control transfer: 1) An Event Data TRB may 

be inserted at the end of a Data Stage TD in order to report the accumulated 

transfer length of a multi-TRB TD. 2) An Event Data TRB may be inserted at the 

end of a Status Stage TD in order to provide Event Data associated with the 

control transfer completion. 

Refer to section 4.11.5.2 for more information.  
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Figure 6-37: Event Data TRB 
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Table 6-82: Offset 00h and 04h – Event Data TRB Field Definitions 

Bits Description 

63:0 Event Data Hi and Lo. This field represents the 64-bit value that shall be copied to the TRB 

Pointer field (Parameter Component) of the Transfer Event TRB. 

 

Table 6-83: Offset 08h – Event Data TRB Field Definitions 

Bits Description 

21:0 RsvdZ. 

31:22 Interrupter Target. This field defines the index of the Interrupter that will receive Transfer 

Events generated by this TRB. Valid values are between 0 and MaxIntrs-1. 

 

Table 6-84: Offset 0Ch – Event Data TRB Field Definitions 

Bits Description 

0 Cycle bit (C). This bit is ignored by the xHC in a Link TRB. 

1 Evaluate Next TRB (ENT). If this flag is ‘1’ the xHC shall fetch and evaluate the next TRB before 
saving the endpoint state. Refer to section 4.12.3 for more information. 

3:2 RsvdZ. 

4 Chain bit (CH). Set to ‘1’ by software to associate this TRB with the next TRB on the Transfer 
Ring. The Chain bit is used to identify the TRBs that comprise a TD. The Chain bit is always ‘0’ in 
the last TRB of a TD. 
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5 Interrupt On Completion (IOC). If this bit is set to ‘1’, it specifies that when this TRB completes, 

the Host Controller shall notify the system of the completion by placing an Event TRB on the 
Event ring and sending an interrupt at the next interrupt threshold. 

8:6 RsvdZ. 

9 Block Event Interrupt (BEI). If this bit is set to '1' and IOC = '1', then the Transfer Event 
generated by IOC shall not assert an interrupt to the host at the next interrupt threshold. Refer 

to section 4.17.5. 

15:10 TRB Type. This field is set to Event Data TRB type. Refer to Table 6-86 for the definition of the 
Type TRB IDs. 

31:16 RsvdZ. 

 

6.4.5 TRB Completion Codes 

The following TRB Completion Status codes will be asserted by the Host 

Controller during status update if the associated error condition is detected.  

Table 6-85: TRB Completion Code Definitions 

Value Definition Description 

0 Invalid Indicates that the Completion Code field has not been updated by the 

TRB producer. 

1 Success Indicates successful completion of the TRB operation. 

2 Data Buffer Error Indicates that the Host Controller is unable to keep up with the reception 
of incoming data (overrun) or is unable to supply data fast enough during 

transmission (underrun). Section 4.10.2.5 defines the requirements of the 
host controller when a Data Buffer Error occurs. 

3 Babble Detected 

Error 

Asserted when “babbling” is detected during the transaction generated by 

this TRB113. 

4 USB Transaction 
Error 

Asserted in the case where the host did not receive a valid response from 
the device (Timeout, CRC, Bad PID, unexpected NYET, etc.). 

5 TRB Error Asserted when a TRB parameter error condition (e.g., out of range or 

invalid parameter) is detected in a TRB. Refer to section 4.10.2.2 for 
examples. 
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6 Stall Error Asserted when a Stall condition (e.g., a Stall PID received from a device) is 

detected for a TRB. Refer to section 4.10.2.1 for more information on 
Stalls. 

This code also indicates that the USB device has an error that prevents it 

from completing a command issued through a Control endpoint. Refer to 
section 8.5.3.1 of the USB2 specification for more information. 

7 Resource Error Asserted by a Configure Endpoint Command or an Address Device 
Command if there are not adequate xHC resources available to 
successfully complete the command. Refer to sections 4.6.5 and 4.6.6 for 

more information. 

8 Bandwidth Error Asserted by a Configure Endpoint Command if periodic endpoints are 

declared and the xHC is not able to allocate the required Bandwidth. Refer 
to section 4.16 for more information. 

9 No Slots 
Available Error 

Asserted if a adding one more device would result in the host controller to 
exceed the maximum Number of Device Slots (MaxSlots) for this 

implementation. Refer to section 4.6.3 for more information. 

10 Invalid Stream 

Type Error 

Asserted if a invalid Stream Context Type (SCT) value is detected. Refer to 

section 4.12.2.1 for more information. 

11 Slot Not 

Enabled Error 

Asserted if a command is issued to a Device Slot that is in the Disabled 

state. The Slot ID is reported. 

12 Endpoint Not 
Enabled Error 

Asserted if a doorbell is rung for an endpoint that is in the Disabled state. 
The Slot ID and error Endpoint ID are reported. Also refer to section 4.7. 

13 Short Packet Asserted if the number of bytes received was less than the TD Transfer 
Size. 

14 Ring Underrun Asserted in a Transfer Event TRB if the Transfer Ring is empty when an 
enabled Isoch endpoint is scheduled to transmit data. Refer to section 
4.10.3.1. 

Note that the Transfer Event TRB Pointer field is not valid when this 
condition is indicated and should be ignored by software. 

15 Ring Overrun Asserted in a Transfer Event TRB if the Transfer Ring is empty when an 
enabled Isoch endpoint is scheduled to receive data. Refer to section 

4.10.3.1. 

Note that the Transfer Event TRB Pointer field is not valid when this 
condition is indicated and should be ignored by software. 

16 VF Event Ring 

Full Error 

Asserted by a Force Event command if the target VF’s Event Ring is full. 

Refer to section 4.9.4 for more information. 

Note that the Transfer Event TRB Pointer field is not valid when this error 
is indicated and should be ignored by software. 
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17 Parameter Error Asserted by a command if a Context parameter is invalid. 

18 Bandwidth 
Overrun Error 

Asserted during an Isoch transfer if the TD exceeds the bandwidth 
allocated to the endpoint. 

19 Context State 
Error 

Asserted if a command is issued to transition from an illegal context state. 

20 No Ping 
Response Error 

Asserted if the xHC was unable to complete a periodic data transfer 
associated within the ESIT, because it did not receive a PING_RESPONSE 
in time. Refer to section 4.23.5.2.1 for more information. 

21 Event Ring Full 
Error 

Asserted if the Event Ring is full, the xHC is unable to post an Event to the 
ring (refer to section 4.9.4). This error is reported in a Host Controller 
Event TRB. 

22 Incompatible 

Device Error 

Asserted if the xHC detects a problem with a device that does not allow it 

to be successfully accessed. e.g. due to a device compliance or 
compatibility problem. This error may be returned by any command or 
transfer, and is fatal as far as the Slot is concerned. Software shall issue a 

Disable Slot Command to recover114,112. 

23 Missed Service 

Error 

Asserted if the xHC was unable to service a Isochronous endpoint within 

the Interval time (ESIT). Refer to sections 4.9.4 and 4.10.3.2 for more 
information. 

24 Command Ring 
Stopped 

Asserted in a Command Completion Event due to a Command Stop (CS) 
operation. Refer to section 4.6 for more information. 

25 Command 
Aborted 

Asserted in a Command Completion Event of an aborted command if the 
command was terminated by a Command Abort (CA) operation. Refer to 

section 4.6 for more information. 

26 Stopped Asserted in a Transfer Event if the transfer was terminated by a Stop 
Endpoint Command. Refer to section 4.6.9 for more information. 

27 Stopped - 
Length Invalid 

Asserted in a Transfer Event if the transfer was terminated by a Stop 
Endpoint Command and the Transfer Event TRB Transfer Length field is 
invalid. Refer to section 4.6.9 for more information. 

                                                   

112USB system software stacks commonly support a number of “Quirk” devices. A Quirk device is any device that is 
not compliant with the USB spec and requires software or the xHC to make a compliance exception to support it. 

An Incompatible Device Error should be generated if the xHC detects a Quirk device that it does not support. 
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28 Stopped - Short 

Packet 

Asserted in a Transfer Event if the transfer was terminated by a Stop 

Endpoint Command, and the transfer was stopped after Short Packet 
conditions were met, but before the end of the TD was reached. The 
Transfer Event TRB Transfer Length field shall contain the value of the 

EDTLA. 

Refer to section 4.6.9 for more information on the Stop Endpoint 
Command, section 4.10.1.1 for Short Transfer information, and section 

4.11.5.2 for EDTLA information. 

29 Max Exit Latency 
Too Large Error 

Asserted by the Evaluate Context Command if the proposed Max Exit 
Latency would not allow the periodic endpoints of the Device Slot to be 
scheduled. Refer to sections 4.23.5.2.2 and 4.6.6.1. 

30 Reserved  

31 Isoch Buffer 

Overrun 

Asserted if the data buffer defined by an Isoch TD on an IN endpoint is 

less than the Max ESIT Payload in size and the device attempts to send 
more data than it can hold113. Refer to sections 4.14.2.1.1 and 4.14.2.1.3. 

32 Event Lost Error Asserted if the xHC internal event overrun condition. If the condition is 

due to TD related events, then the endpoint shall be halted. The 
conditions that generate this error are xHC implementation specific114. 
Refer to section 4.10.1. 

33 Undefined Error May be reported by an event when other error codes do not apply. The 
conditions that assert this condition code are xHC implementation 

specific. Refer to section 4.11.6 for more information. An Undefined Error 
shall be treated as a fatal error by software. 

34 Invalid Stream 
ID Error 

Asserted if a invalid Stream ID is received. Refer to section 4.12.2.1 for 
more information. 

35 Secondary 
Bandwidth Error 

Asserted by a Configure Endpoint Command if periodic endpoints are 
declared and the xHC is not able to allocate the required Bandwidth due 
to a Secondary Bandwidth Domain. Refer to section 4.16 for more 

information. 

36 Split 
Transaction 
Error 

Asserted if an error is detected on a USB2 protocol endpoint for a split 
transaction. Refer to section 4.10.3.3. 

                                                   

113When a TD Babble condition occurs on non-Isoch endpoints it generates a Babble Detected Error and halts the 

endpoint. However for Isoch endpoints, a TD Babble condition generates an Isoch Buffer Overrun and does not 
halt the endpoint. 

114Refer to the xHC vendor data sheet for more information on the possible sources of this error. 

 



 

 

 

  485 

37-

191 

Reserved  

192-

223 

Vendor Defined 

Error 

Asserted by a vendor to indicate an error condition has occurred. Refer to 

vendor documentation to identify specific error condition(s). If software 
does not recognize the code, it shall interpret this range of vendor defined 
values as a Undefined Error condition. Refer to section 4.11.6 for more 

information. 

224-

255 

Vendor Defined 

Info 

Asserted by a vendor for informational purposes. Refer to vendor 

documentation to identify specific information reported. If software does 
not recognize the code, it shall interpret this range of vendor defined 
values as a Success condition code. Refer to section 4.11.6 for more 

information. 

 

If multiple error conditions occur during the execution of a TRB only the first 

detected condition will be reported. 

6.4.6 TRB Types 

TRB Types fall into three categories; Command, Event, or Transfer. These 

categories relate to the TRB Ring that specific TRB(s) may appear on. Table 6-86 

identifies the specific TRB Types that are “Allowed” on each Ring type.  

Note: In Table 6-86   the ID values are uniquely assigned to each TRB Type, however 

to conserve IDs as new TRB Types are defined in the future the same ID value 

may identify different TRB types as a function of Ring type. e.g. a new TRB that is 

only allowed on a Command Ring may use ID = 2. 

Table 6-86: TRB Type Definitions 

Allowed TRB Types 

ID TRB Name 

Command 
Ring 

Event 
Ring 

Transfer 
Ring 

   0 Reserved 

  Allowed 1 Normal 

  Allowed 2 Setup Stage 

  Allowed 3 Data Stage 

  Allowed 4 Status Stage 



 

 

486    

  Allowed 5 Isoch 

Allowed  Allowed 6 Link 

  Allowed 7 Event Data 

  Allowed 8 No-Op 

Allowed   9 Enable Slot Command 

Allowed   10 Disable Slot Command 

Allowed   11 Address Device Command 

Allowed   12 Configure Endpoint Command 

Allowed   13 Evaluate Context Command 

Allowed   14 Reset Endpoint Command 

Allowed   15 Stop Endpoint Command 

Allowed   16 Set TR Dequeue Pointer Command 

Allowed   17 Reset Device Command 

Allowed   18 Force Event Command (Optional, used with 
virtualization only) 

Allowed   19 Negotiate Bandwidth Command (Optional) 

Allowed   20 Set Latency Tolerance Value Command 
(Optional) 

Allowed   21 Get Port Bandwidth Command 

Allowed   22 Force Header Command 

Allowed   23 No Op Command 

   24-
31 

Reserved 

 Allowed  32 Transfer Event 

 Allowed  33 Command Completion Event 

 Allowed  34 Port Status Change Event 

 Allowed  35 Bandwidth Request Event (Optional) 
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 Allowed  36 Doorbell Event (Optional, used with 

virtualization only) 

 Allowed  37 Host Controller Event 

 Allowed  38 Device Notification Event 

 Allowed  39 MFINDEX Wrap Event 

   40-
47 

Reserved 

Optional Optional Optional 48-
63 

Vendor Defined 

 

Note: Only the TRB Types specifically “Allowed” in the Command Ring column of Table 

6-86  shall be executed on a Command Ring by the xHC. All other TRB types 

found on a Command Ring shall generate a Command Completion Event with 

the Completion Code set to TRB Error, the Command TRB Pointer set to the 

address of the TRB in error, and the Slot ID field cleared to ‘0’. 

Note: Only the TRB Types specifically “Allowed” in the Event Ring column of Table 

6-86   shall be generated on an Event Ring by the xHC. 

Note: Only the TRB Types specifically “Allowed” in the Transfer Ring column of Table 

6-86   shall be executed on a Transfer Ring by the xHC. All other TRB types found 

on a Transfer Ring shall generate a Transfer Event with the Completion Code set 

to TRB Error, the TRB Pointer set to the address of the TRB in error, and the Slot 

ID and Endpoint ID fields should reflect the Slot ID and Endpoint ID of the 

Transfer Ring in error. 

Note: The IDs available for the Vendor Defined TRB types shall be assigned by the 

xHC vendor. System software shall qualify all Vendor Defined TRB type IDs with 

the Vendor ID and Device ID fields in the PCI Configuration Space Header. If the 

xHC is not based on PCI, then the xHC vendor shall provide an alternate means 

of identifying the Vendor and Device Type to system software. 

 

System software should provide interface extensions that allow vendor access 

to proprietary xHC vendor defined features through the xHCD. 

Table 6-87 defines the allowable Transfer Ring TRB Types as function of 

endpoint type. 
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Table 6-87: Allowed TRB Type as function of Endpoint Type 

 Allowed TRB Types 

Transfer Ring TRB Type 

Isoch Interrupt Control Bulk 

Allowed Allowed Allowed Allowed Normal 

  Allowed  Setup Stage 

  Allowed  Data Stage 

  Allowed  Status Stage 

Allowed    Isoch 

Allowed Allowed Allowed Allowed Link 

Allowed Allowed Allowed Allowed Event Data 

Allowed Allowed Allowed Allowed No-Op 

Optional Optional Optional Optional Vendor Defined 

 

Note: If the xHC detects a disallowed TRB type on a Transfer Ring, it shall generate 

Transfer Event for the TD with the TRB Error completion code set and set the 

state of the ring to Error. 

Table 6-88 defines the allowable Transfer Ring TRB Types as function of 

Transaction type. 

Table 6-88: Allowed TRB Types as function of Transfer Descriptor Type 

Transfer Descriptor Type Allowed TRB Types 

Isoch Isoch, Normal, Event Data, No Op 

Interrupt Normal, Event Data, No Op 

Control Setup Stage, Data Stage, Status Stage, Normal, Event Data, No Op 

Bulk Normal, Event Data, No Op 

Vendor Defined Vendor Defined, Event Data, No Op 
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Note: If the xHC detects a disallowed TRB type on a Transfer Ring, it shall generate 

Transfer Event for the TD with the TRB Error completion code set and set the 

state of the endpoint to Error. 

6.5 Event Ring Segment Table 

The Event Ring Segment Table (ERST) is used to define multi-segment Event 

Rings and to enable runtime expansion and shrinking of the Event Ring. The 

location of the Event Ring Segment Table is defined by the Event Ring Segment 

Table Base Address Register (5.5.2.3.2). The size of the Event Ring Segment 

Table is defined by the Event Ring Segment Table Base Size Register  (5.5.2.3.1). 

This section defines the properties of a single Event Ring Segment Table 

element. Refer to section 4.9.4 for more information.  

Figure 6-38: Event Ring Segment Table Entry 

RsvdZ

RsvdZ

Ring Segment Base Address Hi

RsvdZ

Ring Segment Base Address Lo

31 0

Ring Segment Size

03-00H

0B-08H

0F-0CH

07-04H

16 15 6 5

 

 

Table 6-89: Offset 00 and 04 – Event Ring Segment Table Entry Field Definitions 

Bits Description 

5:0 RsvdZ. 

63:6 Ring Segment Base Address Hi and Lo. These fields represent the high order bits of the 64-bit 

base address of the Event Ring Segment. 

The memory structure referenced by this physical memory pointer shall begin on a 64-byte 
address boundary. 

 

Table 6-90: Offset 08 – Event Ring Segment Table Entry Field Definitions 

Bits Description 

15:0 Ring Segment Size. This field defines the number of TRBs supported by the ring segment, Valid 
values for this field are 16 to 4096, i.e. an Event Ring segment shall contain at least 16 entries. 

32:16 RsvdZ. 
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Note: The Ring Segment Size may be set to any value from 16 to 4096, however 

software shall allocate a buffer for the Event Ring Segment that rounds up its 

size to the nearest 64B boundary to allow full cache-line accesses. 

6.6 Scratchpad Buffer Array 

The Scratchpad Buffer Array  is used to define the locations of statically 

allocated memory pages that are available for the private use of the xHC.  

The location of the Scratchpad Buffer Array is defined by entry 0 of the Device 

Context Base Address Array  (6.1). 

The size of the Scratchpad Buffer Array  is defined by the Max Scratchpad Buffers  

field in the HCSPARAMS2 Register (5.3.4).  

Table 6-91 defines the properties of a single Scratchpad Buffer Array  element. 

All elements in the Scratchpad Buffer Array  are identical. Refer to section 4.20 

for more information. 

Table 6-91: Scratchpad Buffer Array Element Field Bit Definitions 

Bit Description 

11:0 RsvdZ. 

PSZ:12 RsvdZ. 

Valid values for PSZ are 12 to 20, depending on the value of PAGESIZE. Note if PAGESIZE = 4K, 
then this field is zero bits wide. Refer to section 6.6.1 for how PSZ is calculated. If PSZ = 12, 

then no bits are reserved by this field. 

63:PSZ Scratchpad Buffer Base Address – RW. Default = ‘0’. This field contains bits 63 to PSZ of a 
pointer to a Scratchpad Buffer. 

The actual number of bits used for the Scratchpad Buffer Base Address field depends on the 
value of the PAGESIZE register. If PAGESIZE = 4K then bits 31-12 of the Scratchpad Buffer 
Base Address field are valid, if PAGESIZE = 8K then bits 31-13 of the Scratchpad Buffer Base 

Address field are valid, and so on. Valid values for PSZ are 12 to 20. 

 

6.6.1 PSZ 

The Page Size register determines the low-order boundary of the Scratchpad 

Buffer Base Address field of a Scratchpad Buffer Array Element . This boundary is 

referred to as “PSZ”. The calculation of the PSZ bit offset equals the Page Size 

bit offset + 12. For example, if the Page Size register defines a 4K system page 
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size, then the bit offset of PSZ = 12, if the Page Size register defines a 16K 

system page size, then the bit offset of PSZ = 14. 
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7 xHCI Extended Capabilities 

The xHC exports xHCI-specific extended capabilities utilizing a method similar to 

the PCI extended capabilities. If an xHC implements any extended capabilities, it 

specifies a non-zero value in the xHCI Extended Capabilities Pointer (xECP)  field 

of the HCCPARAMS1 register (5.3.6). This value is an offset into xHC MMIO space 

from the Base, where the Base is the beginning of the host controller’s MMIO 

address space. Each capability register has the format illustrated in Table 7-1. 

Table 7-1: Format of xHCI Extended Capability Pointer Register 

Bit Description 

7:0 Capability ID – RO. This field identifies the xHCI Extended capability. Refer to  Table 7-2 for a 
list of the valid xHCI extended capabilities. 

15:8 Next xHCI Extended Capability Pointer – RO. This field points to the xHC MMIO space offset of 
the next xHCI extended capability pointer. A value of 00h indicates the end of the extended 
capability list. A non-zero value in this register indicates a relative offset, in Dwords, from this 

Dword to the beginning of the next extended capability. 

For example, assuming an effective address of this data structure is 350h and assuming a 
pointer value of 068h, we can calculate the following effective address: 

350h + (068h << 2) -> 350h + 1A0h -> 4F0h 

31:16 Capability Specific. The definition and attributes of these bits depends on the specific 
capability. 

 

Table 7-2: xHCI Extended Capability Codes 

ID Name Description Size Section 

0 Reserved    

1 USB Legacy 
Support 

This capability provides the xHCI Pre-OS to OS 
Handoff Synchronization support capability. 

8B 7.1 

2 Supported 
Protocol 

This capability enumerates the protocols and 
revisions supported by this xHC. At least one of 
these capability structures is required for all xHC 

implementations. 

12B 7.2 

3 Extended Power 
Management 

This capability is required for all xHC non-PCI 
implementations. 

Refer to 
PCI PM 
spec. 

7.3 
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4 I/O 

Virtualization 

This capability is optional-normative for xHC 

implementations that require hardware 
virtualization support. 

Up to 

1280B 

7.7 

5 Message 
Interrupt 

Either this or the xHCI Extended Message 
Interrupt capability is required for all xHC non-

PCI implementations. 

Refer to 
PCI spec. 

7.5 

6 Local Memory This capability is optional-normative for xHC 
implementations that require local memory 

support. 

Up to 4TB 7.8 

7-9 Reserved    

10 USB Debug 
Capability 

This capability is optional-normative for xHC 
implementations and describes the xHCI USB 
Debug Capability. 

56B 7.6 

11-

16 

Reserved    

17 Extended 

Message 
Interrupt 

Either this or the xHCI Message Interrupt 

capability is required for all xHC non-PCI 
implementations. 

Refer to 

PCI spec. 

7.4 

18-
191 

Reserved    

192- 
255 

Vendor Defined These IDs are available for vendor specific 
extensions to the xHCI. 

Vendor 
defined 

 

 

7.1 USB Legacy Support Capability 

The USB Legacy Support provided by the xHC is optional normative functionality 

that is applicable to pre-OS software (BIOS) and the operating system for the 

coordination of ownership of the xHC. 

This capability is chained through the xHCI Extended Capabilities Pointer (xECP) 

field and resides in MMIO space. 
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Table 7-3: HC Extended Capability Registers 

Configuration 
Offset Mnemonic Register 

Power 
Well 

Register 
Access 

xECP+0h USBLEGSUP USB Legacy Support Capability 
Register 

Aux 
Power 

RO, RWS 

xECP+4h USBLEGCTLSTS USB Legacy Support Control 
and Status Register 

Aux 
Power 

RWS, 
RW1CS 

 

The xECP field is in the HCCPARAMS1 register, refer to Section 5.3.6.  

Note: The USB Legacy Support Capability registers reside in the Aux Power well. Refer 

to section 4.22.1 for reset conditions. 

7.1.1 USB Legacy Support Capability (USBLEGSUP) 

Offset: xECP + 00h 

Default Value: Implementation Dependent 

Attribute: RO, RW 

Size: 32 bits 

This register is an xHCI extended capability register. It includes a specific 

function section and a pointer to the next xHCI Extended Capability. This 

register is used by pre-OS software (BIOS) and the operating system to 

coordinate ownership of the xHC. This register is in the Aux Power well. 

Table 7-4: USB Legacy Support Extended Capability (USBLEGSUP) 

Bit Description 

7:0 Capability ID – RO. This field identifies the extended capability. Refer to Table 7-2 for the value 
that identifies the capability as Legacy Support. 

This extended capability requires one additional 32-bit register for control/status information 
(USBLEGCTLSTS), and this register is located at offset xECP+04h. 

15:8 Next Capability Pointer - RO. This field indicates the location of the next capability with respect 
to the effective address of this capability. Refer to Table 7-1 for more information on this field. 

16 HC BIOS Owned Semaphore – RW. Default = ‘0’. The BIOS sets this bit to establish ownership of 

the xHC. System BIOS will set this bit to a ‘0’ in response to a request for ownership of the xHC 
by system software. 

23:17 RsvdP. 
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24 HC OS Owned Semaphore – RW. Default = ‘0’. System software sets this bit to request 

ownership of the xHC. Ownership is obtained when this bit reads as ‘1’ and the HC BIOS Owned 
Semaphore bit reads as ‘0’. 

31:25 RsvdP. 

 

Note: To support the BIOS’s and OS’s ability to modify the Owned Semaphores 

independently, 

Byte (8-bit) accesses shall be supported by this register. 

7.1.2 USB Legacy Support Control/Status (USBLEGCTLSTS) 

Offset: xECP + 04h 

Default Value: 0000 0000h 

Attribute: RO, RW, RW1C 

Size: 32 bits 

Pre-OS (BIOS) software uses this register to enable System Management 

Interrupts (SMIs) for every xHCI/USB event it needs to track. Bits [21:16] of this 

register are simply shadow bit of USBSTS register [5:0]. This register is in the 

Aux Power well. 

Table 7-5: USB Legacy Support Control/Status (USBLEGCTLSTS) 

Bit Description 

0 USB SMI Enable – RW. Default = ‘0’. When this bit is a ‘1’, and the SMI on Event Interrupt bit 
(below) in this register is a ‘1’, the host controller will issue an SMI immediately. 

3:1 RsvdP. 

4 SMI on Host System Error Enable – RW. Default = ‘0’. When this bit is a ‘1’, and the SMI on Host 
System Error bit (below) in this register is a ‘1’, the host controller will issue an SMI immediately. 

12:5 RsvdP. 

13 SMI on OS Ownership Enable – RW. Default = ‘0’. When this bit is a ‘1’ AND the OS Ownership 

Change bit is ‘1’, the host controller will issue an SMI. 

14 SMI on PCI Command Enable – RW. Default = ‘0’. When this bit is ‘1’ and SMI on PCI Command 

is ‘1’, then the host controller will issue an SMI. 

15 SMI on BAR Enable – RW. Default = ‘0’. When this bit is ‘1’ and SMI on BAR is ‘1’, then the host 
controller will issue an SMI. 
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16 SMI on Event Interrupt – RO. Default = ‘0’. Shadow bit of Event Interrupt (EINT) bit in the 

USBSTS register. Refer to Section 5.4.2 for definition. 

This bit follows the state the Event Interrupt (EINT) bit in the USBSTS register, e.g. it 
automatically clears when EINT clears or set when EINT is set. 

19:17 RsvdP. 

20 SMI on Host System Error – RO. Default = ‘0’. Shadow bit of Host System Error (HSE) bit in the 
USBSTS register refer to Section 5.4.2 for definition and effects of the events associated with 
this bit being set to ‘1’. 

To clear this bit to a ‘0’, system software shall write a ‘1’ to the Host System Error (HSE) bit in the 
USBSTS register. 

28:21 RsvdZ. 

29 SMI on OS Ownership Change – RW1C. Default = ‘0’. This bit is set to ‘1’ whenever the HC OS 
Owned Semaphore bit in the USBLEGSUP register transitions from ‘1’ to a ‘0’ or ‘0’ to a ‘1’. 

30 SMI on PCI Command – RW1C. Default = ‘0’. This bit is set to ‘1’ whenever the PCI Command 
Register is written. 

31 SMI on BAR – RW1C. Default = ‘0’. This bit is set to ‘1’ whenever the Base Address Register (BAR) 
is written. 

 

Note: For all enable register bits, ‘1’ = Enabled, ‘0’ = Disabled. 

Note: SMI – System Management Interrupt. 

Note: BAR – Base Address Register. 

Note: MSE – Memory Space Enable. 

Note: SMI’s are independent of the interrupt threshold value. 

7.2 xHCI Supported Protocol Capability 

At least one of these capability structures is required for all xHCI 

implementations. More than one may be defined for implementations that 

support more that one bus protocol. Refer to section 4.19.7 for more 

information. 
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Figure 7-1: xHCI Supported Protocol Capability 
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Table 7-6: Offset 00h - xHCI Supported Protocol Capability Field Definitions 

Bits Description 

7:0 Capability ID – RO. Refer to Table 7-2 for the value that identifies the capability as Supported 
Protocol.  

15:8 Next Capability Pointer – RO. This field indicates the location of the next capability with respect 
to the effective address of this capability. Refer to Table 7-1 for more information on this field. 

23:16 Minor Revision – RO. Minor Specification Release Number in Binary-Coded Decimal (i.e., version 
x.10 is 10h). This field identifies the minor release number component of the specification with 
which the xHC is compliant. 

31:24 Major Revision – RO. Major Specification Release Number in Binary-Coded Decimal (i.e., version 

3.x is 03h). This field identifies the major release number component of the specification with 
which the xHC is compliant. 

 

Table 7-7: Offset 04h - xHCI Supported Protocol Capability Field Definitions 

Bits Description 

31:0 Name String – RO. This field is a mnemonic name string that references the specification with 

which the xHC is compliant. Four ASCII characters may be defined. Allowed characters are: 
alphanumeric, space, and underscore. Alpha characters are case sensitive. Refer to section 7.2.2 
for defined values. 
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Table 7-8: Offset 08h - xHCI Supported Protocol Capability Field Definitions 

Bits Description 

7:0 Compatible Port Offset – RO. This field specifies the starting Port Number of Root Hub Ports 
that support this protocol. Valid values are ‘1’ to MaxPorts. 

15:8 Compatible Port Count – RO. This field identifies the number of consecutive Root Hub Ports 
(starting at the Compatible Port Offset) that support this protocol. Valid values are 1 to 

MaxPorts. 

27:16 Protocol Defined. This field is reserved for protocol specific definitions. Refer to section 
7.2.2.1.3. 

31:28 Protocol Speed ID Count (PSIC) – RO. This field indicates the number of Protocol Speed ID (PSI) 
Dwords that the xHCI Supported Protocol Capability data structure contains. 

If this field is non-zero, then all speeds supported by the protocol shall be defined using PSI 

Dwords, i.e. no implied Speed ID mappings apply. 

Refer to section 7.2.2 and its subsections for protocol specific requirements related to this field. 

 

Note: An xHCI Supported Protocol Capability shall not reference a Root Hub port 

number referenced by another xHCI Supported Protocol Capability. 

 

Table 7-9: Offset 0Ch - xHCI Supported Protocol Capability Field Definitions 

Bits Description 

4:0 Protocol Slot Type115 – RO. This field specifies the Slot Type value which may be specified when 

allocating Device Slots that support this protocol. Valid values are ‘0’ to ‘31’. Refer to sections 
4.6.3 and 7.2.2.1.4. 

31:5 RsvdP. 

 

 

 

                                                   

115The value of the Protocol Slot Type field declared by a xHCI Supported Protocol Capability structure is unique to an 

xHC implementation. Software shall not assume a fixed mapping of the Protocol Slot Type value to a specific type 

of Supported Protocol.Note that for compatibility reasons, the Protocol Slot Type value of ‘0’ is the exception to 

this rule and reserved for the USB Protocol Device Slot type. 
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7.2.1 Protocol Speed ID (PSI)  

Protocol Speed ID (PSI) Dwords immediately follow the Dword at offset 10h in an 

xHCI Supported Protocol Capability  data structure. Table 7-10 defines the fields 

of a PSI Dword. 

Table 7-10: Offset 10h to (PSIC*4)+10h - xHCI Supported Protocol Capability Field Definitions 

Bits Description 

3:0 Protocol Speed ID Value (PSIV) – RO. If a device is attached that operates at the bit rate defined 

by this PSI Dword, then the value of this field shall be reported in the Port Speed field of 
PORTSC register (5.4.8) of a compatible port. 

Note, the PSIV value of ‘0’ is reserved and shall not be defined by a PSI. 

5:4 Protocol Speed ID Exponent (PSIE) – RO. This field defines the base 10 exponent times 3, that 
shall be applied to the Protocol Speed ID Mantissa when calculating the maximum bit rate 
represented by this PSI Dword. 

 PSIE Value Bit Rate 

 0 Bits per second 

 1 Kb/s 

 2 Mb/s 

 3 Gb/s 

7:6 PSI Type (PLT) – RO. This field identifies whether the PSI Dword defines a symmetric or 

asymmetric bit rate, and if asymmetric, then this field also indicates if this Dword defines the 
receive or transmit bit rate. 

Note that the Asymmetric PSI Dwords shall be paired, i.e. an Rx immediately followed by a Tx, 

and both Dwords shall define the same value for the PSIV. 

 PLT Value Bit Rate        Note 

 0 Symmetric   Single PSI Dword 

 1 Reserved    

 2 Asymmetric Rx   Paired with Asymmetric Tx PSI Dword 

 3 Asymmetric Tx   Immediately follows Rx Asymmetric PSI Dword 

8 PSI Full-duplex (PFD) – RO. If this bit is ‘1’ the link is full-duplex (dual-simplex), and if ‘0’ the link 

is half-duplex (simplex). 

13:9 RsvdP. 

15:14 Link Protocol (LP) - RO. if xHCI Protocol Extended Capability:Major Revision = 03h, then this field 
identifies the link-level protocol supported by the ports associated with this PSI Dword. Refer to 

section 8.5.6.7 in the USB3 spec for more information. If xHCI Protocol Extended 
Capability:Major Revision = 02h, then this field shall be ‘0’, and the link protocol (LS, FS, or HS) 
depends on the reported link speed. 

        LP Value        Protocol 

              0               SuperSpeed 

              1               SuperSpeedPlus 

              3-2            Reserved 
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31:16 Protocol Speed ID Mantissa (PSIM) – RO. This field defines the mantissa that shall be applied to 

the PSIE when calculating the maximum bit rate represented by this PSI Dword. 

 

Note: An xHC implementation that employs an Integrated Hub to provide USB Full-

speed and Low-speed support and only provided a USB 2.0 High-speed BI may 

define a USB2 xHCI Supported Protocol Capability data structure with a single 

PSI Dword (PSIC = 1), where the PSI Dword at offset 0Ch would define PSIV = 3, 

PLT = 0, PFD = 0, PSIE = 2, and PSIM = 480. 

Note: If the PSI Exponent (PSIE) and Mantissa (PSIM) fields do not allow the exact 

definition of a protocol’s bit rate, then the PSIM should be rounded to the closest 

value. 

Note: The "symmetry" of a port is determined by the current PSI Type (PLT). To 

determine the current PSI Type, inspect the value reported by the PORTSC Speed 

field. If the Speed value refers to a PSI Dword whose PSI Type = Symmetric, then 

the receive and transmit speed and lane counts are identical, i.e. the PSI Dword 

defines the speed of the port and the USB3 PORTLI RLC and TLC fields shall 

report identical values. If the Speed value refers to a PSI Dword whose PSI Type 

= Asymmetric, then the receive and transmit speeds and/or the lane counts of 

the port may be different. The PSI Dword with PLT = Asymmetric Rx identifies the 

speed of the ports' receive path and the USB3 PORTLI RLC identifies the lane 

count of the receive path, and the PSI Dword with PLT = Asymmetric Tx identifies 

the speed of the ports' transmit path and the USB3 PORTLI TLC field identifies 

the lane count of the transmit path. An Asymmetric port may report the same 

speed in both directions, but different lane counts. Refer to section 5.4.10.1 for 

more information on the PORTLI register. 

7.2.2 Supported Protocols 

Table 7-11 lists the Supported Protocols defined in this specification.  

Table 7-11: xHCI Supported Protocols 

Name String Major Revision Minor Revision116 Specification Reference 

“USB ” or 20425355h 03h 10h  USB 3.1 specification (USB3) 

“USB ” or 20425355h 03h 00h USB 3.0 specification (USB3) 

                                                   
116 The Major and Minor Revision fields implement the same BCD format as described in Section 9.6.1 of the 
spec for the bcdUSB field. 
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“USB ” or 20425355h 02h 00h USB 2.0 specification (USB2) 

 

Note: One xHCI Supported Protocol Capability shall define a Compatible Port Offset of 

‘1’. 

Note: Gaps are allowed in the port numbers assigned by xHCI Supported Protocol 

Capabilities, e.g. the Compatible Port Offset of a xHCI Supported Protocol 

Capability may not be equal to the sum of the Compatible Port Offset and 

Compatible Port Count fields of the previous xHCI Supported Protocol 

Capability. 

Note: Multiple xHCI Supported Protocol Capabilities of the same type (i.e. identical 

Name String, Major Revision, Minor Revision) may be declared by an xHCI 

implementation, however the port numbers assigned by them shall not overlap. 

Note: Undefined behavior may occur if software references Root Hub port numbers 

not defined by xHCI Supported Protocol Capabilities. 

Note: The Major Revision and Minor Revision fields contain a BCD version number. The 

value of the Major Revision field is JJh and the value of the Minor Revision field 

is MNh for version JJ.M.N, where JJ = major revision number, M - minor version 

number, N = sub-minor version number, e.g. version 2.1.3 is represented with the 

value 0213 and version 3.1 is represented with a value of 0310h. The intent is to 

follow the USB3 spec (section 9.6.1) defined format for the Standard Device 

Descriptor bcdUSB field. 

7.2.2.1 USB Protocols 

The following subsection define xHCI Supported Protocol Capability  extensions 

that are specific to USB protocols. 

Note: The set of ports defined by a USB3 xHCI Supported Protocol Capability shall not 

overlap those defined by a USB2 xHCI Supported Protocol Capability, and vice 

versa. 

Note: To support USB3 device certification requirements for USB 2 user attached 

devices, USB 2.0 and USB 3.x Supported Protocol Capabilities shall be declared 

if any USB3 connectors are associated with xHCI Root Hub ports that enable user 

attached devices. Refer to sections 11.1 and 11.3 in the USB3 spec. 

PSI Dwords shall be used to define the bit rate associated with an SSIC Profile. 

Table 7-12 provides an example of values that define an SSIC implementation 

capable of supporting HS-GEAR 1, 2, or 3 and Rate Series A or B speeds in each 

GEAR. Also notice that in each case the protocol on the wire is USB3 and that 

the SSIC-gB-Ll (i.e. Series B) PSIM values are rounded to the nearest value. Refer 

to section 2.2.1 in the SSIC Spec for more information. 
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Table 7-12: Example SSIC PSI Dword values 

SSIC Profile 
Bit Rate 

(Mb/s) 
Protocol117 

PSI Dword values 

PSIV PLT PFD PSIE PSIM 

SSIC-G1A-L1 1248 USB 3.0 1 0 1 2 1248 

SSIC-G2A-L1 2496 USB 3.0 2 0 1 2 2496 

SSIC-G3A-L1 4992 USB 3.0 3 0 1 2 4992 

SSIC-G1B-L1 1457.6 USB 3.0 4 0 1 2 1458 

SSIC-G2B-L1 2915.2 USB 3.0 5 0 1 2 2915 

SSIC-G3B-L1 5830.4 USB 3.0 6 0 1 2 5830 

 

7.2.2.1.1 Default USB Speed ID Mapping 

The following default mappings apply to the USB2 and USB3 protocols.  

Table 7-13: Default USB Speed ID Mapping 

Default Speed ID 
Value118 Definition Bit Rate Protocol 

Equivalent PSI Dword values 

PLT PFD PSIE PSIM 

1 Full-speed 12 MB/s USB 2.0 0 0 2 12 

2 Low-speed 1.5 Mb/s USB 2.0 0 0 1 1500 

3 High-speed 480 
Mb/s 

USB 2.0 0 0 2 480 

4 SuperSpeed 5 Gb/s USB 3.x 0 1 3 5 

5 SuperSpeedPlus 10 Gb/s USB 3.1 0 1 3 10 

                                                   

117Refer to the SSIC spec for the specific protocol requirements of SSIC ports, e.g. and SSIC port may support a 

SuperSpeed protocol (i.e. 3.0), an Enhanced SuperSpeed protocol, e,g, 3.1, etc. 

118 The Default Speed ID Values shall be presented in PORTSC Port Speed field only if no PSI Dwords are defined 
(PSIC = ‘0’). 
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7.2.2.1.2 Protocol Speed ID Count (PSIC) field 

USB xHCI Supported Protocol Capability data structures may define PSIC = ‘0’ 

field under the following conditions: 

•  For a USB 3.1 xHCI Supported Protocol Capability data structure (i.e. Name String - 

20425355h, Major Revision = 03h, and Minor Revision = 10h) a PSIC value of ‘0’ 

implies that only the default SuperSpeed and SuperSpeedPlus bit rates are 

supported. Refer to Table 7-13 for default USB 3.1 Speed ID mappings. 

•  For a USB 3.0 xHCI Supported Protocol Capability data structure (i.e. Name String = 

20425355h, Major Revision = 03h, and Minor Revision = 00h) a PSIC value of ‘0’ 

implies that only the default SuperSpeed bit rate is supported. Refer to Table 7-13 

for default USB 3.0 Speed ID mappings. 

•  For a USB 2.0 xHCI Supported Protocol Capability data structure (i.e. Name String = 

20425355h, Major Revision = 02h, and Minor Revision = 00h) a PSIC value of ‘0’ 

implies that the default Full-speed, Low-speed, and High-speed bit rates are 

supported. Refer to Table 7-13 for default USB 2.0 Speed ID mappings. 

•  Only these two protocols/revisions support implied mappings. All other protocols or 

revisions of these protocols and SSIC ports shall define a non-zero PSIC value. 

7.2.2.1.3 Protocol Defined field 

The Protocol Defined field only applies to the specific protocol referenced by its 

xHCI Supported Protocol Capability . This section identifies how the Protocol 

Defined field applies to each of the protocols defined in this specification. 
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7.2.2.1.3.1     USB3 

The following Protocol Defined fields are defined by a USB3 xHCI Supported 

Protocol Capability. 

All USB3 ports shall support Link Power Management.  

Figure 7-2: USB3 Protocol Defined fields 

MHD RsvdP
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Table 7-14: USB3 Protocol Defined Field Definitions 

Bits Description 

24:16 RsvdP. 

27:25 Hub Depth (MHD) - RO. Default = Implementation dependent. If this field is ‘0’, then the 

standard USB3 hub depth constrains apply, if this field is > ‘0’, then it indicates the maximum 
hub depth supported by the USB3 ports. 
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7.2.2.1.3.2     USB2 

The following Protocol Defined fields are defined by a USB 2.0 xHCI Supported 

Protocol Capability. 

Figure 7-3: USB 2.0 Protocol Defined fields 
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Table 7-15: USB 2.0 Protocol Defined Field Definitions 

Bits Description 

16 RsvdP. 

17 High-speed Only (HSO) - RO. Default = Implementation dependent. If this bit is cleared to ‘0’, 
the USB2 ports described by this capability are Low-, Full-, and High-speed capable. If this bit is 

set to ‘1’, the USB2 ports described by this capability are High-speed only, e.g. the ports don’t 
support Low- or Full-speed operation. High-speed only implementations may introduce a “Tier 
mismatch”, refer to section 4.24.2 for more information. 

18 Integrated Hub Implemented (IHI) - RO. Default = Implementation dependent. If this bit is 
cleared to ‘0’, the Root Hub to External xHC port mapping adheres to the default mapping 

described in section 4.24.2.1. If this bit is set to ‘1’, the Root Hub to External xHC port mapping 
does not adhere to the default mapping described in section 4.24.2.1, and an ACPI or other 
mechanism is required to define the mapping. 

19 Hardware LPM Capability (HLC) - RO. Default = Implementation dependent. If this bit is set to 
‘1’, the ports described by this xHCI Supported Protocol Capability support hardware controlled 
USB2 Link Power Management. Refer to section 4.23.5.1.1.1. 

20 BESL LPM Capability119  (BLC) - RO. Default = Implementation dependent. If this bit is set to '1', 
the ports described by this xHCI Supported Protocol Capability shall apply BESL timing to BESL 
and BESLD fields of the PORTPMSC and PORTHLPMC registers, as defined in Table 13. If this bit 

is cleared to '0', the ports described by this xHCI Supported Protocol Capability shall apply HIRD 
timing to BESL and BESLD fields of the PORTPMSC and PORTHLPMC registers, as defined in 
Table 13. Refer to section 4.23.5.1.1.1 for more information. 

Note the BESL LMP Capability support (i.e. HLE = ‘1’ and BLC = ‘1’) shall be mandatory for all 
xHCI 1.1 compliant xHCs. 

                                                   

119In 2007, an ECN to the USB spec defined the "USB 2.0 Link Power Management Addendum". This ECN added the 
concept of an LPM Token and Host Initiated Resume Duration (HIRD) to the USB2 spec to support better link 

power management. And in 2011, the "Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007" was 
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24:20 RsvdP. 

27:25 Hub Depth (MHD) - RO. Default = Implementation dependent. If this field is ‘0’, then the 
standard USB2 hub depth constrains apply, if this field is > ‘0’, then it indicates the maximum 

hub depth supported by the USB2 ports. 

 

7.2.2.1.4 Protocol Slot Type Field 

The Protocol Slot Type field of a USB3 or USB2 xHCI Supported Protocol 

Capability shall be set to ‘0’.  

7.3 HCI Extended Power Management Capability 

This capability is required for all xHC implementations that do not support PCI 

based system interfaces. 

The xHCI Extended Power Management Capability  shall utilize the format of the 

Power Management Register Block Definition  defined in section 3.2 of the PCI 

PM Specification with the following exception. For xHCI the definition of the 

“Next Capability Pointer” register field is modified from the PCI definition. A 

non-zero value in the “Next Capability Pointer” register indicates a rel ative 

offset, in 32-bit words, from this 32-bit word to the beginning of the first 

extended capability. 

Note: Refer to section 5.2.7 for details on register definition and structure organization. 

7.4 xHCI Extended Message Interrupt Capability 

Either this capability or the xHCI Message Interrupt Capability is required for all 

xHC implementations that do not support PCI based system interfaces. The 

choice is xHC implementation dependent.  

The xHCI Extended Message Interrupt Capability  shall utilize the format of the 

MSI-X Capability and Table Structures defined in section 6.8.2 of the PCI 

Specification with the following exception. For xHCI the definition of the “Next 

Capability Pointer” register field is modified from the PCI definition. A non-zero 

value in the “Next Capability Pointer” register indicates a relative offset, in 32-

bit words, from this 32-bit word to the beginning of the first extended capability.  

                                                   

generated to address some shortcomings of the original ECN, which redefined the HIRD field of the LPM Token to 
be Best Effort Service Latency (BESL). The BESL LPM Capability flag in the xHCI Supported Protocol Capability 

identifies whether an xHCI implementation supports the pre- or post-errata USB2.0 LPM definition.A key aspect 
of the LPM Errata is that it makes a distinction between the Best Effort Service Latency that a device should 
expect, and the Host Initiated Resume Delay that will be signaled on the bus to exit the L1 state. 
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Note: Refer to section 5.2.8 for details on register definition and structure organization. 

7.5 xHCI Message Interrupt Capability 

Either this capability or the xHCI Extended Message Interrupt Capability  is 

required for all xHC implementations that do not support PCI based system 

interfaces. The choice is xHC implementation dependent.  

The xHCI Message Interrupt Capability shall utilize the format of the MSI 

Capability Structure defined in section 6.8.1 of the PCI Specification with the 

following exception. For xHCI the definition of the “Next Capability Pointer” 

register field is modified from the PCI definition. A non-zero value in the “Next 

Capability Pointer” register indicates a relative offset, in 32-bit words, from this 

32-bit word to the beginning of the first extended capability.  

Note: Refer to section 5.2.8 for details on register definition and structure organization. 

7.6 Debug Capability (DbC) 

The USB Debug Capability provided by the xHC is optional functionality that 

enables low-level system debug over USB. The xHCI debugging capability 

provides a means of connecting two systems where one system is a Debug Host 

and the other a Debug Target (System Under Test). 

This section describes the xHCI USB Debug Capability used by a Debug Target to 

present a Debug Device to a Debug Host. A Debug Device is fully compliant with 

the USB Framework. A Debug Device provides the equivalent of a very high 

performance full-duplex serial link between a Debug Host and a Debug Target.  

The USB Debug Capability provides an interface that is completely independent 

of the xHCI interface described in the other sections of this specificat ion. This 

section describes the required implementation and behavior of a USB3 Debug 

Capability as part of an xHCI compatible controller. Specific features of the xHCI 

USB Debug Capability are: 

•  The interface provided by the xHCI USB Debug Capability is independent of the 

standard xHCI interface utilized by the Operating System, e.g The USBCMD register 

R/S flag has no effect on the operation of the Debug Capability. 

•  If DbC System Bus Reset (SBR) = ‘0’, then a Chip Hardware Reset or the assertion of 

Host Controller Reset (HCRST = ‘1’) or Light Host Controller Reset (LHCRST = ‘1’) shall 

reset the Debug Capability, or optionally if SBR = ‘1’, then a Chip Hardware Reset, a 

System Bus (e.g. the assertion of PCI RST#), or a transition from the PCI PM D3hot 

state to the D0 state shall reset the DbC. 

•  Only works with a SuperSpeed capable host. 
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•  The Debug Capability is automatically assigned to the first xHCI Root Hub Port on 

that detects an attach of the downstream facing port of a SuperSpeed capable Root 

Hub or an external Hub. 

•  The Root Hub port assigned to the Debug Capability appears through the xHCI as a 

fully functional Root Hub port that never sees a device attach. 

•  The Debug Capability is operational anytime the port is not suspended AND the host 

controller is in D0 power state. 

•  The Debug Capability works through standard USB3 Hubs, allowing large numbers 

of systems to be debugged with a single host. 

•  High bandwidth data transfers are supported. 

This capability is chained through the xHCI Extended Capabilities Po inter (xECP) 

field and resides in MMIO space. 

Wherever possible, the Debug Capability attempts to reuse logic blocks defined 

for the xHCI architecture. For instance, the operation and definition of the Debug 

Capability Event Ring Management register block is identical to the xHCI Event 

Ring Registers defined in section 5.5.2.3, except that it provides an Event Ring 

that is dedicated to the Debug Capability.  

Because the Debug Capability presents a “device side” interface to USB, which is 

used to manage the upstream facing port of a device rather than the 

downstream facing port of a Root Hub, some of the register definitions in the 

Debug Capability may appear to be very similar to those in the xHCI, however 

they may have subtle differences to support “device side” operation. e.g. Many 

of the fields in the Debug Capability DCPORTSC Register are named the same as 

fields in the xHCI PORTSC register, however they work differently because the 

DCPORTSC register shall manage “device side” operation.  

The Debug Capability also utilizes xHCI Endpoint Context data structures, 

however their organization is different than the xHCI’s.  

Note: Keep the “device side” difference of the Debug Capability in mind when reading 

the register definitions in the following sections. 

 

7.6.1 Debugging Topologies 

A Debug Target enumerates as “normal” USB device to the Debug Host, allowing 

a Debug Host to access a Debug Target through the standard USB software 

stack. Multiple Debug Targets may be attached to a Debug Host. Debug Targets 

may be connected to any downstream facing port below a Debug Host (i.e. 

anywhere in the fabric, refer to Figure 7-4). A Debug Target may only connect to 

a Debug Host through a Root Hub port of the target. Connection of a Debug 
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Target to a Debug Host through the ports of an external hub controlled by the 

Debug Target is not supported. 

Figure 7-4: Example Debugging Topology 
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In the example illustrated by Figure 7-4, System 1 is the Debug Host. It is 

attached to two Debug Targets; Systems 2 and 3. Port 1 (P1) of System 2 is 

attached to a Root Hub port of System 1 and Port 2 (P2) of System 3 is attached 

to the downstream facing port of a Hub controlled by System 1. Note that other 

(non-Debug Target) USB devices may also be attached to a Debug Host or Target 

system. Device A is attached to System 1, and Devices B and C are attached to 

System 3. All 3 systems support xHCI Debug Capability hardware, software 

distinguishes a Debug Target from a Debug Host by enabling the Debug 

Capability on Targets. 

The Debug Host provides a USB Debug Capability class driver, which will 

manage Debug Targets when they are enumerated and provide an API for 

debugger applications. 

The Debug Target provides software to manage communications between the 

Debug Device and the Debug Host. The Debug Target software interfaces to the 

xHCI Debug Capability to manage Debug Device emulation and service Debug 

Device Class specific requests from the Debug Host.  

Note: A Debug Target may only expose its USB Debug Capability through a Root Hub 

port. A Debug Target cannot connect to a Debug Host through the downstream 

facing port of a hub owned by the Debug Target. 
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7.6.2 Debug Stacks 

Figure 7-5 shows an example of the software stacks in the Debug Host and 

Debug Target, and their relationships. 

Figure 7-5: Example Debug Software Stacks 
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In Figure 7-5, the Debug Host provides a Debug Class Driver which 

communicates with the System Debug Hooks in the Debug Target, through the 

Debug Capability (blue path). 

On the Debug Target, the Debug Capability Driver is completely independent of 

the OS Stack (USB Bus Driver, xHCI driver, etc.). The Debug Capability Driver is 

expected to be loaded immediately after POST so that the OS stack can be 

debugged. The Debug Capability Driver manages the xHCI Debug Capability 

register set, and the standard USB OS stack manages all non-Debug USB devices 

attached to the system. 

On the Debug Host, the xHCI Debug Capability is disabled and there is no driver 

associated with it. And the standard USB OS stack manages all USB devices 

attached to the system, including the Debug device presented by the Debug 

Capability Driver on the Debug Target.  

The user interface through which a programmer enables a system’s xHCI USB 

Debug Capability or its features are outside the scope of this specification. The 

Debug Device Class is defined in section 7.6.10. 
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7.6.2.1 Debug Software Startup 

There are two general cases for debug software startup: 1) when the xHC has not been initialized 

by the system host controller driver, and 2) when the xHC has been initialized by the system host 

controller driver. Debug software generally knows what case it has to deal with (typically case 1), 

but can do further determination by examining the MaxSlotsEn field in the xHC CONFIG register. 

If the MaxSlotsEn field is non-zero, then the system host controller driver has already initialized 

the xHC. Generic startup procedures for the two cases are the same. Other than being linked into 

the xHCI Extended Capabilities list the Debug Capability is able to function completely 

independently of the xHCI interface used by a system host controller driver. As such, it can be 

initialized before or after the system host controller driver loads. The only effects that the system 

host controller driver sees is that one of its Root Hub ports will never generate a Port Status 

Change Event for a connect, and that port shall report no bandwidth available when querying for 

bandwidth with a Get Port Bandwidth Command. 

7.6.3 Memory Map 

The xHCI Debug Capability register set resides in the xHCI MMIO space. The 

MMIO space is located through the xHCI Extended Capability chain.  

A variety of data structures required by the Debug Capability reside in System 

Memory and are accessed by the xHC DMA mechanisms. The DbC Structure 

contains pointers to the memory based data structures that it utilizes.  

Figure 7-6: Debug Capability Memory Map 
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7.6.3.1 ERST and Event Ring 

The Debug Capability supports a dedicated Event Ring, which is managed 

through an Event Ring Segment Table  data structure. The format and use of the 

Debug Capability's Event Ring Segment Table data structure is identical to the 

xHCI Event Ring mechanism described in section 6.5. And the Event Ring 

Segments referenced by the Debug Capability Event Ring Segment Table work 

identically to those described in section 4.9.3. More information on the use of 

the Event Ring data structures by the Debug Capability is described in section 

Event Generation. 
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The Event Ring Segment Table is pointed to by the Debug Capability Event Ring 

Segment Table Base Address Register  described in section Event Ring Segment 

Table Base Address Register (ERSTBA). The number of entries in the Event Ring 

Segment Table is defined by the Debug Capability Event Ring Segment Table 

Size Register described in section Event Ring Segment Table Size Register 

(ERSTSZ). 

7.6.3.2 Endpoint Contexts and Transfer Rings 

The Debug Capability maps all its endpoints to two Transfer Rings. Endpoint 

Context data structures (as described in section 6.2.3) are used to define and 

manage these Transfer Rings. The Debug Capability Endpoint Contexts are 

organized as a two element array, where element ‘0’ defines an OUT Transfer 

Ring and the element ‘1’ defines an IN Transfer Ring. 

The IN and OUT Bulk endpoints presented by a Debug Device to a Debug Host 

are cross-coupled to the two OUT and IN Transfer Rings, respectively. This is 

because the USB Debug Device presented by the Debug Capability shall output 

data when it receives an IN TP from the Debug Host, and it shall input data when 

it receives an OUT DP from the Debug Host.  

The Debug Capability Endpoint Contexts are contained in the Debug Capability 

Context data structure (7.6.9) which is pointed to by the Debug Capability 

Context Pointer Register described in section 7.6.8.7. 

Note: xHCI power management effects the DbC. Software should shut down all DbC 

activity prior to transitioning the xHC a D3 state. If not, undefined behavior may 

occur. 

Software shall initialize the fields of the Endpoint Context as follows: 

Max Packet Size = 1024. 

Max Burst Size = Debug Max Burst Size120. 

EP Type = 2 for the OUT Bulk endpoint and 6 for the IN Bulk endpoint. 

TR Dequeue Pointer = for the OUT Bulk endpoint, a pointer to the Transfer Ring that 

will contain data to be sent to the Debug Host, and for the IN Bulk endpoint, a pointer 

to the Transfer Ring that will contain buffers which will receive data from the Debug 

Host 

Average TRB Length = initialized to software defined value. 

All other fields shall be initialized to ‘0’. 

The Endpoint Context Interval, LSA, MaxPStreams, Mult, HID, CErr, FE, and Max 

ESIT Payload fields do not apply to the DbC. 

                                                   

120 Note that a DbC implementation may utilize a smaller Max Burst Size than set by software. 
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The EP State field shall be updated as described in section 4.8.3.  

The DbC shall update the Endpoint Context TR Dequeue Pointer field, if the HOT 

or HIT flags are set to '1', the DbC Port State Machine exits the DbC-Configured 

state, or if SBR = ‘0’ and HCRST is set to '1'. 

7.6.4 Operational Model 

This section describes the general operational model for the xHCI Debug 

Capability (DbC) interface. This model is managed by the xHCI Debug Capability 

driver. Each significant operational feature of the Debug Capability is discussed 

in a separate subsection. Each subsection presents the operational model 

requirements for the Debug Capability hardware. Where appropriate, 

recommended system software operational models for features are also 

presented. 

The xHCI Debug Capability Structure (or DbC Structure) is located using the 

methods described at the beginning of section 7. The DbC Structure (section 

Debug Capability Structure) defines a set of registers that Debug Target 

software uses to emulate USB Debug Device to a Debug Host.  

The DbC Structure is divided into seven register sets; Capability, Doorbell, Event 

Ring Management, Control, Status, Port Management, and Endpoint 

Management. The Capability registers allow the DbC to be linked into the xHCI’s 

list of Extended Capabilities and define static features of the DbC. The Doorbell 

and Endpoint Management registers are used to define and manage the Control 

and Bulk pipes presented by the DbC. The Event Ring Management, Control, and 

Status registers provide the Debug Capability driver with the means to track and 

manage the execution of DbC operations. 

Note: The DbC shall respond with a ACK TP to a SetFeature(FUNCTION_SUSPEND) 

Setup Stage request. 

7.6.4.1 Debug Capability Initialization 

Typically the DbC will be initialized and enabled prior to the Operating System 

loading on the target system, however it may be enabled at any time. In this 

section “software” refers to the code that manages the DbC.  

In order to initialize the DbC software should perform the following steps:  

•  Allocate and initialize all DbC memory data structures 

•  The DbC Event Ring Segment Table and the Event Ring Segments that it points 

to. 

•  The DbC IN and OUT Endpoint Contexts and the Transfer Rings that they point 

to. 
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•  Initialize the Debug Capability Event Ring Segment Table Size Register (DCERSTSZ) 

with number of entries in the Event Ring Segment Table. 

•  Initialize the Debug Capability Event Ring Segment Table Base Address Register 

(DCERSTBA) with the physical memory address of the Event Ring Segment Table. 

•  Initialize the Debug Capability Event Ring Segment Table Dequeue Pointer Register 

(DCERDP) with the physical memory address of the Event Ring Segment pointed to 

by Event Ring Segment Table entry 0. 

•  Initialize the Debug Capability Context Pointer (DCCP) with the physical memory 

address of the Debug Capability Context. 

•  Set the Debug Capability Enable (DCE) bit to ‘1’ in the Debug Capability Control 

Register (DCCTRL). 

At this point, the Debug Capability is initialized, the Root Hub ports are looking 

for an attached Debug Host, and the DCPORTSC register is enabled to report a 

Debug Host connection. 

When a Debug Host connection is detected, a Port Status Change Event  will be 

generated on the DbC Event Ring. 

To detect the Debug Host connection, or any event generated by the DbC, 

software shall periodically poll the Event Ring Not Empty bit in the Debug 

Capability Status Register (DCST), or evaluate the DbC Event Ring for change in 

the Event Ring Enqueue Pointer (i.e. a Cycle bit change, refer to section 4.9.4 for 

more information on the Event Ring Enqueue Pointer).  

After the Debug Host connection is detected, software shall wait for the Debug 

Device to be configured by the Debug Host. The transition of the DbC Run (DCR) 

bit to ‘1’ indicates the successful configuration of the Debug Device.  

Software shall impose a timeout between the detection of the Debug Host 

connection and the DbC Run transition to ‘1’. If the DbC Run transition takes too 

long, software may toggle the DCE bit to disable then re-enable the DbC to retry 

the Debug Device enumeration process.  

Note: If a Debug Host attempts to attach to a Debug Target before the DCE flag is set, 

both ends of the link shall transition to the Inactive state. So a Debug Host should 

periodically issue a Warm Reset to ports that are Inactive to enable a connection 

to the DbC of the Debug Target. 

Note: If the OS code that is being debugged resets the xHC (e.g. asserts HCRST), then 

the Debug Capability will also be reset. This condition may be detected by the 

Debug Capability Driver if DCE = ‘0’, after having previously been enabled (set to 

‘1’). If this condition occurs, the Debug Capability Driver is required to re-initialize 

the Debug Capability to continue communication with the Debug Host. 

Note: The Debug Capability registers should not be accessed while the Controller Not 

Ready (CNR) bit is set. 
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7.6.4.2 Event Generation 

There are four DCPORTSC status change bits in the DCPORTSC register Connect 

Status Change (CSC), Port Reset Change (PRC), Port Link State Change (PLC), and 

Port Config Error Change  (CEC), refer to section 7.6.8.6 for more information on 

these bits. 

DCPORTSC status change bits may be set due to hardware or software initiated 

conditions. When set, these bits remain set until cleared by a system software 

write to the DCPORTSC register with the appropriate status change bit(s) set to 

‘1’, a Chip Hardware Reset, or disabling the Debug Capability (DCE = ‘0’). 

All DCPORTSC status change bits are ORed together to form an internal Debug 

Capability DCPORT Port Status Change Event Generation  variable (DCPSCEG). 

When a DCPORTSC status change bit is set, if the assertion of a status change 

bit results in a ‘0’ to ‘1’ transition of DCPSCEG, the Debug Capability responds by 

generating a Port Status Change Event (as described in section 6.4.2.3).  

The Port ID field of the Port Status Change Event TRB (shown in Figure 6-16) is 

always ‘0’ for Port Status Change Events  found on the Debug Capability’s Event 

Ring. 

System software shall acknowledge Debug Capability status change(s) by 

clearing the respective DCPORTSC status change bit(s). The acknowledgment 

clears the change state so future status changes may reported.  

Note: DbC Event Ring management is performed identically to xHCI Event Ring 

management, as described in section 4.9.4. 

Note: Possible Completion Codes for DbC Transfer Event are Success, Stall Error, USB 

Transaction Error, Babble Detected Error121, TRB Error, Short Packet, Undefined 

Error, Event Ring Full Error, and Vendor Defined Error (refer to Table 6-85). 

7.6.4.3 Halted DbC Endpoints 

If a bulk endpoint is transferring data when its Halt Out Transfer Ring (HOT) or 

Halt In Transfer Ring (HIT) flags is set to '1', the following actions shall occur:  

                                                   

121Section 8.11.3 of the USB3 spec defines a possible cause of a DPP Error as “Data length in the DPH does not match 

the actual data payload length”, i.e. a Packet Babble condition. And Table 8-27 states that if a device detects a 
DPP Error it shall “Discard DP, send an ACK TP with the sequence number of the DP expected (thereby 
indicating that the DP was not received), the Retry bit set and the number of DPs that the device can receive for 

this endpoint.” So for a USB3 device, a Packet Babble condition, is not fatal. The USB3 spec is silent in how a 
device should interpret a TD Babble condition. A DbC shall not generate Babble Detected Error due to a Packet 
Babble condition, however if a TD Babble condition is detected, it may treat it as fatal, generating a Babble 

Detected Error and STALLing the endpoint, or “silently”, i.e. sending an ACK TP with the sequence number of the 
DP expected and the Retry bit set, then waiting for the host to resend the DP in error. Refer to section 4.10.2.4 
for more information on Babble Errors. 
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•  The current value of the TR Dequeue Pointer for the endpoint should be written to 

its Endpoint Context. 

•  A Transfer Event shall be generated and: 

•  The TRB Pointer field of the Transfer Event shall reference the Transfer TRB that 

the error occurred on. 

•  The TRB Transfer Length field of the Transfer Event may indicate that the 

Transfer TRB had been partially completed. 

•  The Completion Code field of the Transfer Event shall indicate Stall Error. 

•  This Transfer Event shall be generated whether the IOC flag was set or not in the 

associated Transfer TRB. 

The HIT or HOT flags may be set by the DbC hardware if Data Buffer Error, 

Parameter Error, TRB Error, Vendor Defined Error, or Undefined Error is detected, 

or by software. 

The reception of a ClearFeature(ENDPOINT_HALT) request by the DbC shall 

clear the HIT or HOT flag for the respective endpoint, and shall clear any internal 

endpoint state, such that the address stored in the TR Dequeue Pointer field of 

the Endpoint Context shall point to the next TRB that shall be executed the next 

time the doorbell is rung, i.e. the DbC does not support Soft Retry.  

The DbC shall not support the Set Halt Feature option. Note, section 9.4.5 in the 

USB3 spec defines the Set Halt Feature option, with the statement "The Halt 

feature may optionally be set with the SetFeature(ENDPOINT_HALT) request", 

however it does not explicitly define a device's response (i.e. ACK or STALL) to a 

SetFeature(ENDPOINT_HALT) request if a device chooses not to set Halt feature 

when it receives the request. It is highly recommended that the DbC respond 

with an ACK because this is what the USB device compliance tests expect when a 

SetFeature(ENDPOINT_HALT) request is issued to a devce, irrespective of 

whether a device supports the Set Halt Feature option or not. 

Refer to Table 7-22 for more information on the HOT and HIT flags. 

Note: The DbC is not required to advance the Dequeue Pointer of an endpoint to the 

next TD boundary when the HIT or HOT flag is asserted. 

Note: The value of the Endpoint Context TR Dequeue Pointer field may not be equal to 

the value of the last Transfer Event TRB Pointer field when a halt condition 

occurs. 

7.6.4.4 DbC-Configured Exit Behavior 

There are several conditions which will cause the DbC to exit the DbC-

Configured state (i.e. causing the DCCTRL.DCR field to make a ‘1’ to ‘0’ transition 

and DCCTRL.DRC to be set to ‘1’):  

•  Debug Host initiates a Warm or Hot USB Reset  
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•  Debug Host issues a SetConfiguration(0) device request 

•  Timeout occurs in the DbC-Configured state 

•  USB cable is disconnected 

•  Debug Capability driver writes ‘0’ to DCPORTSC.PED 

•  Debug Capability driver writes ‘0’ to DCCTRL.DCE 

Note: A port transition from the DbC-Configured state to the DbC-Error state shall also 

cause the DbC endpoints to transition to the Error state. And when the Debug 

Host issues reset the endpoints shall transition to the Stopped state. 

When the DbC exits the DbC-Configured state or if the HIT or HOT flags are set 

to ‘1’, the following actions shall occur:  

•  If there is a valid Transfer TRB on the Transfer Ring, a Transfer Event shall be 

generated and: 

•  The TRB Pointer field of the Transfer Event shall reference the Transfer TRB that 

the event occurred on. 

•  The TRB Transfer Length field of the Transfer Event may indicate that the 

Transfer TRB had been partially completed. 

•  The Completion Code field of the Transfer Event shall indicate USB Transaction 

Error. 

•  This Transfer Event shall be generated whether the IOC flag was set or not in the 

associated Transfer TRB. 

•  The DbC shall advance its TR Dequeue Pointer to reference the next TRB. 

•  The Endpoint Context shall be written with: 

•  The TR Dequeue Pointer field set to the address of the next TRB that will be 

fetched. 

•  The Endpoint State field reflecting the current endpoint state. 

Software may detect the actions described above have occurred by reading the 

DCCTRL.DRC field as ‘1’ and the Endpoint State as Disabled.  In response, 

software may read the TR Dequeue Pointer field in the Endpoint Context to 

determine where the DbC will restart the Transfer Ring, or update the TR 

Dequeue Pointer field to point to the next TRB that shall be executed after 

software clears DCCTRL.DRC and rings the doorbell. 

Note: The DbC is not required to advance the Dequeue Pointer of an endpoint to the 

next TD boundary when exiting the DbC-Configured state. 

Normally while the DbC port is in the DbC-Configured state (DCCTRL.DCR = ‘1’) 

its endpoints are in the Running state. The exception is if the HIT or HOT flags 

are asserted, which shall cause a DbC endpoint to transition to the Halted state. 

And when the Debug Host issues ClearFeature(ENDPOINT_HALT) request, the 
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respective endpoint shall then transition to the Stopped state. When software 

rings the doorbell, the endpoint shall transition to the Running state.  

7.6.5 Port Routing and Control 

Figure 7-7 provides a detailed view of the state of the Debug Capability Port 

Multiplexing mechanism after a Root Hub port (P1) is assigned to the Debug 

Capability. 

Figure 7-7: Debug Port Multiplexing 
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The xHCI Driver accesses the xHCI Port Status and Control (PORTSC) registers 

(5.4.8) and the Debug Capability Driver accesses the Debug Capability Port 

Status and Control (DCPORTSC) register (Debug). When the Root Hub port (P1 in 

Figure 7-7) is assigned to the Debug Capability, the associated PORTSC register 

(PORTSC 1 in Figure 7-7) shall mimic operations as if no device is attached it. 

Refer to section 4.19.1.2.4.3 for the states presented by PORTSC register to 

system software during this condition.The remaining PORTSC registers are still 

associated with their respective Root Hub ports and are fully operational 

through the xHCI. 

After the Root Hub port is assigned to the DbC, the xHC shall begin emulating a 

USB Debug Class device, responding to enumeration related USB requests from 

the Debug Host, transitioning the Debug Device emulator through the standard 

USB Device States described in section 8.1 of the USB3 specification. 

7.6.6 DbC Port State Machine 

This section describes the DbC Port state machine. The following state ma chines 

utilize the following notation: 
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State Name

Port Link State

Signal State

 

Where the State Name is an informative name defined by the xHCI specification, 

the Port Link State identifies the possible values for the DCPORTSC PLS field, 

and Signal State values are: 

DCCTRL Debug Capability Enable (DCE), DCPORTSC Current Connect Status (CCS), 

DCPORTSC Port Enabled/Disabled (PED), DCPORTSC Port Reset (PR), and DCCTRL 

DbC Run (DCR), respectively, e.g. 0,0,0,0,0 all signals are ‘0’. 

Figure 7-8: DbC Port State Machine 
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Note that in all states except for DbC-Off and DbC-Disconnected, the Root Hub 

port is assigned to the Debug Capability (Debug Port Number > ‘0’) and in 

operating in a Upstream facing mode. 

The PLS values cited in Figure 7-8 are not comprehensive. Refer to the 

respective state descriptions below for the more details on the specific PLS 

values that may be presented while in a state.  

7.6.6.1 DbC-Off 

This is the initial state after a Chip Hardware Reset or the assertion of HCRST. 

In this DbC port state: 
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•  The DbC Capability is off. 

•  All Root Hub ports act as normal downstream facing ports, i,e, only assert the 

Downstream Direction flag in the Port Capability LMPs that they generate and the 

Debug Capability Port Multiplexing mechanism will not switch the link to the DbC 

Port if a Downstream Direction flag is detected in a received Port Capability LMP. 

•  The Debug Port Number = ‘0’. 

•  The DbC Capability shall be in the Attached USB Device State. 

•  The ports’ LTSSM is not applicable. 

A write to the DCCTRL register with DCE cleared to ‘0’ or a write to the USBCMD 

register with the HCRST flag set to ‘1’ shall transition from the DbC port from 

any state to the DbC-Off state (Wr(DCE=0)). 

A write to the DCCTRL register with DCE set to ‘1’ shall transition from the DbC 

port to the DbC-Disconnected state (Wr(DCE=1)). 

7.6.6.2 DbC-Disconnected 

In this DbC port state: 

•  The DbC Capability shall be in the Attached USB Device State. 

•  The ports’ LTSSM state may be in the RxDetect, Polling, or U0 state. 

•  The Debug Port Number = ‘0’. 

A transition of the USB3 Root Hub Port Polling substate machine  (4.19.1.2.4.2) 

from the CfgExg state to the DbC state shall transition the DbC port to the DbC-

Enabled state (DbC Port Capability LMP Exchange Successful). This transition 

shall set the CSC flag to ‘1’. 

A Disconnect Detect in the any state, except DbC-Off, shall transition the DbC 

port to the DbC-Disconnected state (Disconnect Detect). This transition shall set 

the CSC flag to ‘1’. 

7.6.6.3 DbC-Enabled 

In this DbC port state: 

•  The Debug Host enumerates the DbC Capability, and the USB Device State of the 

DbC Capability attempts to advance from the Powered state, through the Default and 

Address states, to the Configured state. Refer to section 9.1 of the USB3 spec for 

more information on USB Device States. 

•  The ports’ LTSSM shall not be in the SS.Inactive or SS.Disabled states. 

•  The Debug Port Number > ‘0’. 
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If the USB Device State of the DbC Capability successfully advances to the 

Configured state, the DbC Port shall transition to the DbC-Configured state 

(Set_Config Successful). 

If the USB Device State of the DbC Capability fails to enumerate successfully (i.e. 

the DbC USB Device State fails to advance to the Configured state), the DbC Port 

shall transition to the DbC-Error state (Enum Error). Note that this transition 

occurs only if an internal DbC resource or other issue caused an enumeration 

failure. Normally the Debug Host gives up if there is an external error (e.g. link, 

retry, etc.) that prevents the enumeration process from completing successfully, 

not vice versa. The DbC does not maintain any timers, retry counts, etc. related 

to external enumeration errors. 

If any LTSSM Polling substate times out or if a tPortCongfigurationTimeout 

occurs, the DbC Port shall transition to the DbC-Disabled state (Error). An 

LTSSM Polling timeout shall set the PLC flag to ‘1’ (PLC Condition: Training  Error 

or Error). A tPortCongfigurationTimeout shall set the CEC flag to ‘1’. 

If a Hot or Warm Reset is detected, the DbC Port shall transition to the DbC-

Resetting state (Reset Rcvd). 

7.6.6.4 DbC-Configured 

In this DbC port state: 

•  DCR is asserted (‘1’). 

•  The USB Device State of the DbC Capability is the Configured state. 

•  The ports’ LTSSM may be in the U0, U1, U2, U3, or Recovery states. 

If the Debug Host deconfigures the device (i.e. issues a SET_CONFIGURATION(0) 

request), the DbC Port shall transition to the DbC-Enabled state (Deconfigure). 

If the LTSSM exits the Recovery state after a timeout, the DbC Port shall 

transition to the DbC-Error state (Timeout). This transition shall set the PLC flag 

to ‘1’ (PLC Condition: Error).  

If a Hot or Warm Reset is detected, the DbC Port shall transition to the DbC-

Resetting state (Reset Rcvd). 

Note: While in this state the PLC flag shall be set to ‘1’ if the DbC enters or exits the 

suspend state (PLC Condition: U0 -> U3 or U3 -> U0). 

7.6.6.5 DbC-Resetting 

In this DbC port state: 

•  The Debug Host is signaling a Hot or Warm reset. 

•  PED = ‘0’ and PR = ‘1’. 
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•  The USB Device State of the DbC Capability is the Powered state. 

•  The ports’ LTSSM may be in the RxDetect, Recovery, Polling, U0, or Hot Reset state. 

When the reset signaling is complete, the DbC Port shall transition to the DbC-

Enabled state, and PED and PRC shall be asserted (‘1’) (Reset Cmp). 

Note: Reset Cmp is true for a Hot Reset when the LTSSM Exit from Hot Reset.Active 

conditions described in section 7.5.12.3.2 of the USB3 spec are met. 

Reset Cmp is true for a Warm Reset after a Port Capability LMP Exchange is 

successful. 

7.6.6.6 DbC-Disabled 

Software may place the DbC Port in this state to disconnect from the Debug 

Host but maintain ownership of the Root Hub Port (i.e. the USB3 Root Hub Port 

Polling substate machine remains in the DbC state). 

In this DbC port state: 

•  The USB Device State of the DbC Capability is the Attached state. 

•  The ports’ LTSSM shall be in the SS.Disabled state. 

A write to the DCPORTSC register with PED cleared to ‘0’ shall transition from 

the DbC port from the DbC-Enabled, DbC-Configured, DbC-Resetting, or DbC-

Error state to the DbC-Disabled state (Wr(PED=0)). 

A write to the DCPORTSC register with PED set to ‘1’ shall transition the DbC 

port to the DbC-Enabled state (Wr(PED=1)). 

7.6.6.7 DbC-Error 

This state is entered due to the detection of an error condition in the DbC port 

DbC-Enabled or Configured states. 

In this DbC port state: 

•  The PED flag shall maintain the value asserted by the previous state. 

•  The USB Device State of the DbC Capability shall maintain the value asserted by the 

previous state. 

•  The ports LTSSM shall be in the SS.Inactive state. 

If a Hot or Warm Reset is detected, the DbC Port shall transition to the DbC-

Resetting state (Reset Rcvd). 

7.6.7 The USB Debug Device 

A DbC is a standard USB device, in the sense that it supports a Default Control 

Endpoint, which responds to standard USB requests, e.g. SET_ADDRESS, 

GET_DESCRIPTOR, GET_CONFIGURATION, etc. Additionally, the DbC supports a 



 

 

 

  523 

single configuration with a single interface that contains a pair of bulk endpoints 

(one IN and one OUT). The xHC hardware provides the necessary logic to 

enumerate a DbC to a Debug Host and advance the Debug Device to the 

Configured state, where the two bulk endpoints are enabled. When the Debug 

Device is configured and the bulk endpoints are operational, the DbC Run bit in 

the DCCTRL register shall transition to ‘1’.  

The Debug Host will expect the DbC to be ready to accept standard requests 

(GET_DESCRIPTOR, SET_ADDRESS, etc.) as soon as an attach is detected. 

The USB descriptors presented by the Debug Device during the enumeration 

process are defined in section 7.6.10. 

The protocol used to move debugger information between a Debug Host and a 

Debug Target is outside the scope of this specification.  

7.6.7.1 Enumeration Mode 

The transition of the Debug Capability Enable flag from ‘0’ to ‘1’ sets the Debug 

Capability into Enumeration Mode. 

While in Enumeration Mode, debug capability logic services the standard USB 

enumeration related requests from the Debug Host (GET_DESCRIPTOR, 

SET_ADDRESS, SET_FEATURE, CLEAR_FEAURE, and SET_CONFIGURATION) 

though its Default Control Endpoint. 

In Enumeration Mode, the IN and OUT Transfer Rings of the Debug Capability 

are disabled. 

After the Debug Device software successfully completes a SET_CONFIGURATION 

request, the DbC Run bit in the DCCTRL register shall transition to ‘1’.  

7.6.7.2 Run Mode 

When the DbC Run bit is ‘1’, the Debug Capability is in Run Mode. 

While in Run Mode, Debug Capability software services Debug Capability IN and 

OUT data transfer requests from the Debug Host through the Data Endpoints of 

the Debug Capability. A Debug Device always declares a pair of Data endpoints, 

one bulk IN and one bulk OUT endpoint, which respond to TPs and DPs 

addressed to Endpoint Number 1. 

In Run Mode, the IN and OUT Transfer Rings of the Debug Capability are 

dedicated to the OUT and IN Bulk endpoints of the Debug Device, respectively. 

Any IN TP or OUT DP targeted at a Data Endpoint of the Debug Device while it is 

in Run Mode, shall automatically be flow controlled, e.g. transmit a NRDY TP if 

the target Transfer Ring is empty. 
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Software rings the Debug Capability  Doorbell Register with the DB Target field 

set to Data EP 1 OUT Enqueue Pointer Update  to inform the xHC that data is 

available to transfer to the Debug Host. And sets the DB Target field set to Data 

EP 1 IN Enqueue Pointer Update to inform the xHC that buffers are available to 

receive data from the Debug Host. 

7.6.7.2.1 Data Transfers 

Software use Normal TRBs on the IN and OUT Transfer Rings to transfer data 

from/to the Debug Host. Software rings the Debug Capability Data IN or OUT 

doorbells to notify the xHC that work items are available on the respective 

Transfer Ring. 

The operation of a Debug Capability Data endpoint is identical to a standard 

xHCI bulk endpoint, with the following exception: The Debug Capability Transfer 

Ring direction is the opposite of the TP/DP direction responded to by the Debug 

Capability. i.e. the Debug Capability IN Transfer Ring is used to receive data 

transferred by OUT DPs from the Debug Host, and the OUT Transfer Ring is used 

to send data transferred by Debug Host IN TPs.  

If a DbC Bulk pipe had previously sent an NRDY, a doorbell ring shall cause the 

xHC to generate an ERDY. If an IN TP or OUT DP had not been received, the xHCI 

shall wait for the TP/DP transaction from the Debug Host. Software may use the 

TRB IOC flag to generate a Transfer Event on the Debug Event Ring when a Data 

TD completes. 

Note: The Debug Capability software shall not set the Immediate Data (IDT) flag to ‘1’ 

in any TRB. 

7.6.7.3 Event Generation 

7.6.7.3.1 Data Transfers 

Software shall use the TRB IOC flag to generate Transfer Events on the Debug 

Event Ring when a TD completes. 

7.6.7.3.2 Debug Capability Status Changes 

The Debug Capability automatically generates Port Status Change Events  to 

report Debug Capability port state changes. Refer to section Event Generation 

for a discussion on Event Generation, and section Debug for more information 

on the individual Debug Capability status change flags.  

7.6.7.4 Port Reset 

Detection of Reset Signaling from the Debug Host by the Debug Device shall set 

the Port Reset (PR) flag to ‘1’ and clear the DbC Run bit, the DbC Port 

Enabled/Disabled (DCPORTSC:PED) bit, and the DbC Device Address field to ‘0’. 

When the Reset Signaling completes the Port Reset (PR) bit shall be cleared to 
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‘0’ and the DbC Port Enabled/Disabled bit shall be set to ‘1’ in the DBPORTSC 

register. When the DbC Port Enabled/Disabled bit transitions to ‘1’, the Debug 

Device shall be ready to receive standard USB requests and enumerate itself.  

When the Debug Capability reports a port reset operation by the Debug Host to 

software, software is responsible for resetting the state of its USB Debug Device 

emulator. 

When the port assigned to the Debug Capability is reset by the Debug Host (i.e. a 

transition to the DbC-Resetting state), the Debug Capability Transfer Rings shall 

be automatically disabled, and shall remain disabled until a 

SET_CONFIGURATION() request is received from the Debug Host. Any Debug 

Host generated TP or DP will not be responded to by the Debug Capability while 

the Transfer Rings are disabled and will time out. This action allows software to 

remove TDs that were pending before the port reset, reinitialize its internal 

Debug Device state, and cleanly restart Transfer Ring operation. The endpoints 

are re-enabled when the SET_CONFIGURATION() request is received from the 

Debug Host, after which the DbC bulk endpoints shall respond to any Debug 

Host generated TP or DP with an NRDY until software notifies the DbC that the 

respective Transfer Rings have been initialized by ringing their doorbells.  

7.6.8 Debug Capability Structure 

The xHCI Extended Capability List is used to provide a standard method for 

software to find and use the xHCI Debug Capability. Figure 7-9 illustrates the 

Debug Capability register layout, which consists of seven register sets; 

Capability, Doorbell, Event Ring Management, Control, Status, Port Management, 

and Endpoint Management. 

Figure 7-9: Debug Capability Register Layout 
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Table 7-16: Debug Capability Structure 

Register Name Offset Size (B) Mnemonic Section 

Capability ID 0x00h 4 DCID 7.6.8.1 

Doorbell 0x04h 4 DCDB 7.6.8.2 

Event Ring Management     

 Event Ring Segment Table Size 0x08h 4 DCERSTSZ 7.6.8.3.1 

 Event Ring Segment Table  Base Address 0x10h 8 DCERSTBA 7.6.8.3.2 

 Event Ring Dequeue Pointer 0x18h 8 DCERDP 7.6.8.3.3 

Control 0x20h 4 DCCTRL 7.6.8.4 

Status 0x24h 4 DCST 7.6.8.5 

Port Management     

 Port Status and Control 0x28h 4 DCPORTSC 7.6.8.6 

Endpoint Management     

 Debug Capability Context Pointer 0x30h 8 DCCP 7.6.8.7 

Device Descriptor Information     

 Device Descriptor Info Register 1 0x38h 4 DCDDI1 7.6.8.8 

 Device Descriptor Info Register 2 0x3Ch 4 DCDDI2 7.6.8.9 

 

 

7.6.8.1 Debug Capability ID Register (DCID) 

Address: Debug Capability Base + 0h 

Default Value: Refer to Table 7-17. 

Attribute: RO 

Size: 32 bits 

The Debug Capability ID Register links the USB Debug Capability into the xHCI 

list of Extended Capabilities and defines its basic capabilities.  
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Table 7-17: Offset 00h - Debug Capability Field Definitions (DCID) 

Bits Description 

7:0 Capability ID – RO. Refer to Table 7-2 for the value that identifies that the function supports a 
Debug Device. 

15:8 Next Capability Pointer – RO. Default = Implementation defined. This field indicates the 
location of the next capability with respect to the effective address of this capability. Refer to 

Table 7-1 for more information on this field. 

20:16 Debug Capability Event Ring Segment Table Max (DCERST Max) – RO. Default = 
implementation dependent. Valid values are 0 – 15. This field determines the maximum value 
supported the Debug Capability Event Ring Segment Table Base Size registers (5.5.2.3.1), where: 

              The maximum number of Event Ring Segment Table entries = 2 DCERST Max. 

e.g. if DCERST Max = 7, then the Debug Capability Event Ring Segment Table(s) supports up to 
128 entries, 15 then 32K entries, etc. 

31:21 RsvdP. 

 

 

7.6.8.2 Debug Capability Doorbell Register (DCDB) 

Address: Debug Capability Base + 04h 

Default Value: 0000 0000 

Attribute: RW 

Size: 32 bits 

Table 7-18: Offset 04h - Debug Capability Field Definitions (DCDB) 

Bits Description 

7:0 RsvdP. 

15:8 Doorbell Target (DB Target) – RW. This field defines the target of the doorbell reference. The 

table below defines the Debug Capability notification that is generated by ringing the doorbell. 

 Value Definition 

 0 Data EP 1 OUT Enqueue Pointer Update 

 1 Data EP 1 IN Enqueue Pointer Update 

 2:255 Reserved 

This field returns ‘0’ when read and the value should be treated as undefined by software. 

23:16 RsvdP. 
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7.6.8.3 Debug Capability Event Ring Registers 

7.6.8.3.1 Debug Capability Event Ring Segment Table Size Reg (DCERSTSZ) 

Address: Debug Capability Base + 08h 

Default Value: 0000 0000h 

Attribute: RW 

Size: 32 bits 

The Debug Capability Event Ring Segment Table Size Register defines the 

number of segments supported by the Debug Capability Event Ring Segment 

Table. 

Table 7-19: Offset 08h - Debug Capability Bit Definitions (DCERSTSZ) 

Bit Description 

15:0 Event Ring Segment Table Size – RW. Default = ‘0’. This field identifies the number of valid 

Event Ring Segment Table entries in the Event Ring Segment Table pointed to by the Debug 
Capability Event Ring Segment Table Base Address register. The maximum value supported by 
an xHC implementation for this register is defined by the DCERST Max field in the DCID register 

(7.6.8.1). 

Software shall initialize this register before setting the Debug Capability Enable field in the 
DCCTRL register to ‘1’. 

31:16 RsvdP. 

 

 

7.6.8.3.2 Debug Capability Event Ring Segment Table Base Address Register (DCERSTBA) 

Address: Debug Capability Base + 10h 

Default Value: 0000 0000 0000 0000h 

Attribute: RW 

Size: 64 bits 

The Debug Capability Event Ring Segment Table Base Address Register  

identifies the start address of the Debug Capability Event Ring Segment Table.  

Table 7-20: Offset 10h - Debug Capability Bit Definitions (DCERSTBA) 

Bit Description 

3:0 RsvdP. 



 

 

 

  529 

63:4 Event Ring Segment Table Base Address Register – RW. Default = ‘0’. This field defines the high 

order bits of the start address of the Debug Capability Event Ring Segment Table. 

Software shall initialize this register before setting the Debug Capability Enable field in the 
DCCTRL register to ‘1’. 

 

 

7.6.8.3.3 Debug Capability Event Ring Dequeue Pointer Register (DCERDP) 

Address: Debug Capability Base + 18h 

Default Value: 0000 0000 0000 0000h 

Attribute: RW 

Size: 64 bits 

The Debug Capability Event Ring Dequeue Pointer Register  is written by software 

to define the Debug Capability Event Ring Dequeue Pointer location to the xHC. 

Software updates this pointer when it has finished the evaluation of an Event(s) 

on the Debug Capability Event Ring. 

Table 7-21: Offset 18h - Debug Capability Bit Definitions (DCERDP) 

Bit Description 

2:0 Dequeue ERST Segment Index (DESI) - RW. Default = ‘0’. This field may be used by the xHC to 
accelerate checking the Event Ring full condition. This field is written with the low order 3 bits of 

the offset of the ERST entry which defines the Event Ring segment that the Event Ring Dequeue 
Pointer resides in. 

3 RsvdP. 

63:4 Dequeue Pointer - RW. Default = ‘0’. This field defines the high order bits of the 64-bit address of 
the current Debug Capability Event Ring Dequeue Pointer. 

Software shall initialize this register before setting the Debug Capability Enable field in the 

DCCTRL register to ‘1’. 

 

7.6.8.4 Debug Capability Control Register (DCCTRL) 

Address: Debug Capability Base + 20h 

Default Value: 0000 0000. 

Attribute: RO, RW, RW1S, RW1C 

Size: 32 bits 

The Debug Capability Control Register is used to manage the Debug Capability.  
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Table 7-22: Offset 20h - Debug Capability Field Definitions (DCCTRL) 

Bits Description 

0 DbC Run (DCR) – RO. Default = 0. When ‘0’, Debug Device is not in the Configured state. When 
‘1’, Debug Device is in the Configured state and bulk Data pipe transactions are accepted by 

Debug Capability and routed to the IN and OUT Transfer Rings. A ‘0’ to ‘1’ transition of the Port 
Reset (DCPORTSC:PR) bit will clear this bit to ‘0’. 

1 Link Status Event Enable (LSE) - RW. Default = ‘0’. Setting this bit to a ‘1’ enables the Debug 
Capability to generate Port Status Change Events due the Port Link Status Change bit 

transitioning from a ‘0’ to a ‘1’. Refer to section 4.19.2 for more information. 

2 Halt OUT TR (HOT) - RW1S. Default = 0. While this bit is ‘1’ the Debug Capability shall generate 
STALL TPs for all IN TPs received for the OUT TR. The Debug Capability shall clear this bit when 
a ClearFeature(ENDPOINT_HALT) request is received for the endpoint. This field is valid only 

when the Debug Capability is in Run Mode (DCR = ‘1’). When not in Run Mode, this field shall 
return ‘0’ when read, and writes will have no effect. Refer to section 7.6.4.3. 

3 Halt IN TR (HIT) - RW1S. Default = 0. While this bit is ‘1’ the Debug Capability shall generate 
STALL TPs for all OUT DPs received for the IN TR. The Debug Capability shall clear this bit when 
a ClearFeature(ENDPOINT_HALT) request is received for the endpoint. This field is valid only 

when the Debug Capability is in Run Mode (DCR = ‘1’). When not in Run Mode, this field shall 
return ‘0’ when read, and writes will have no effect. Refer to section 7.6.4.3. 

4 DbC Run Change (DRC) - RW1C. Default = 0. This bit shall be set to '1' when DCR bit is cleared 

to '0', i.e. by any DbC Port State transition that exits the DbC-Configured state. While this bit is 
‘1’ the Debug Capability Doorbell Register (DCDB) is disabled. Software shall clear this bit to re-
enable the DCDB. 

15:5 RsvdP. 

23:16 Debug Max Burst Size - RO. Default = xHC Vendor defined. This field identifies the maximum 
burst size supported by the bulk endpoints of this DbC implementation. 

30:24 Device Address – RO. Default = 0. This field reports the USB device address assigned to the 
Debug Device during the enumeration process. This field is valid when the DbC Run bit is ‘1’. 

31 Debug Capability Enable (DCE) – RW. Default = 0. Setting this bit to a ‘1’ enables xHCI USB 
Debug Capability operation. This bit is a ‘0’ if the USB Debug Capability is disabled. Clearing this 
bit releases the Root Hub port assigned to the Debug Capability, and terminates any Debug 

Capability Transfer or Event Ring activity. Note that DCE may be cleared to ‘0’ by the assertion of 
a reset condition. Refer to the definition of SBR in Table 7-23 for more information on DbC reset 
conditions. 
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7.6.8.5 Debug Capability Status Register (DCST) 

Address: Debug Capability Base + 24h 

Default Value: 0000 0000 

Attribute: RO 

Size: 32 bits 

The Debug Capability Status Register reports capability related status 

information to software. 

Table 7-23: Offset 24h - Debug Capability Field Definitions (DCST) 

Bits Description 

0 Event Ring Not Empty (ER) – RO. Default = ‘0’. When ‘1’, this field indicates that the Debug 
Capability Event Ring has a Transfer Event on it. It is automatically cleared to ‘0’ by the xHC 
when the Debug Capability Event Ring is empty, i.e. the Debug Capability Enqueue Pointer is 

equal to the Debug Capability Event Ring Dequeue Pointer register. 

1 DbC System Bus Reset (SBR) - RO. When ‘1’, this field indicates that the assertion of Chip 
Hardware Reset, a System Bus (e.g. the assertion of PCI RST#), or a transition from the PCI PM 
D3hot state to the D0 state shall reset the DbC. When ‘0’, this field indicates that a Chip 

Hardware Reset or the assertion of Host Controller Reset (HCRST = '1') or Light Host Controller 
Reset (LHCRST = '1') shall reset the DbC. Resetting the DbC shall clear DCE to ‘0’. 

23:2 RsvdP. 

31:24 Debug Port Number – RO. Default = 0. This field provides the ID of the Root Hub port that the 

Debug Capability has been automatically attached to. The value is ‘0’ when the Debug Capability 
is not attached to a Root Hub port. 

 

7.6.8.6 Debug Capability Port Status and Control Register (DCPORTSC) 

Address: Debug Capability Base + 28h 

Default Value: 0000 0000 (field dependent) 

Attribute: RO, RW, RW1C (field dependent) 

Size: 32 bits 
 

The fields of the Debug Capability PORTSC Register are defined below and 

provide information about the state of the Root Hub port that is assigned to the 

Debug Capability. Note that the fields in this register function differently than 

those in a normal Port Status and Control Register (described in section 5.4.8) 

because the Root Hub port assigned to the Debug Capability is acting as an 

Upstream Facing Port, not a Downstream Facing Port.  
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Table 7-24: Offset 28h - Debug Capability Field Definitions (DCPORTSC) 

Bits Description 

0 Current Connect Status (CCS) – RO. Default = ‘0’. ‘1’ = A Root Hub port is connected to a Debug 
Host and assigned to the Debug Capability. ‘0’ = No Debug Host is present. This value reflects 

the current state of the port, and may not correspond to the value reported by the Connect 
Status Change (CSC) field in the Port Status Change Event that was generated by a ‘0’ to ‘1’ 
transition of this bit. 

This flag is ‘0’ if Debug Capability Enable (DCE) is ‘0’. 

1 Port Enabled/Disabled (PED) – RW. Default = ‘0’. ‘1’ = Enabled. ‘0’ = Disabled. This flag shall be 
set to '1' by a '0' to '1' transition of CCS or a '1' to '0' transition of the PR. When PED transitions 
from '1' to '0' due to the assertion of PR, the port's link shall transition to the Rx.Detect state. 

This flag may be used by software to enable or disable the operation of the Root Hub port 
assigned to the Debug Capability. The Debug Capability Root Hub port operation may be 
disabled by a fault condition (disconnect event or other fault condition, e.g. a LTSSM Polling 

substate timeout, tPortConfiguration timeout error, etc.), the assertion of DCPORTSC PR, or by 
software. 

 0 = Debug Capability Root Hub port is disabled. 

 1 = Debug Capability Root Hub port is enabled. 

When the port is disabled (PED = ‘0’) the port’s link shall enter the SS.Disabled state and remain 
there until PED is reasserted ('1') or DCE is negated ('0'). Note that the Root Hub port is remains 

mapped to Debug Capability while PED = '0'. While PED = '0' the Debug Capability will appear to 
be disconnected to the Debug Host. 

This field is ‘0’ if DCE or CCS are ‘0’. 

3:2 RsvdZ. 

4 Port Reset (PR) – RO. Default = ‘0’. ‘1’ = Port is in Reset. ‘0’ = Port is not in Reset. This bit is set to 
‘1’ when the bus reset sequence as defined in the USB Specification is detected on the Root Hub 

port assigned to the Debug capability. It is cleared when the bus reset sequence is completed by 
the Debug Host, and the DbC shall transition to the USB Default state. 

A ‘0’ to ‘1’ transition of this bit shall clear DCPORTSC PED (‘0’). 

This field is ‘0’ if DCE or CCS are ‘0’. 
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8:5 Port Link State (PLS) – RO. Default = undefined. This field reflects its current link state. This 

field is only relevant when a Debug Host is attached (Debug Port Number > ‘0’). 

 

 Value Meaning 

 0 Link is in the U0 State 

 1 Link is in the U1 State 

 2 Link is in the U2 State 

 3 Link is in the U3 State (Device Suspended) 

 4 Link is in the Disabled State 

 5 Link is in the RxDetect State 

 6 Link is in the Inactive State 

 7 Link is in the Polling State 

 8 Link is in the Recovery State 

 9 Link is in the Hot Reset State 

 15:10  Reserved 

Note: Transitions between different states are not reflected until the transition is complete. 

9 RsvdZ. 

13:10 Port Speed (Port Speed) – RO. Default = ‘0’. This field identifies the speed of the port. This field 
is only relevant when a Debug Host is attached (CCS = ‘1’) in all other cases this field shall 

indicate Undefined Speed. 

 Value Meaning 

 0 Undefined Speed 

 1-15 Protocol Speed ID (PSI), refer to section 7.2.1 for the definition of PSIs. 

Note: The Debug Capability does not support LS, FS, or HS operation. 

16:14 RsvdZ. 

17 Connect Status Change (CSC) – RW1C. Default = ‘0’. ‘1’ = Change in Current Connect Status. ‘0’ 
= No change. Indicates a change has occurred in the port’s Current Connect Status. The xHC sets 

this bit to ‘1’ for all changes to the Debug Device connect status, even if system software has not 
cleared an existing DbC Connect Status Change. For example, the insertion status changes twice 
before system software has cleared the changed condition, hardware will be “setting” an 

already-set bit (i.e., the bit will remain ‘1’). Software shall clear this bit by writing a ‘1’ to it. 

This field is ‘0’ if DCE is ‘0’. 

20:18 RsvdZ. 

21 Port Reset Change (PRC) – RW1C. Default = ‘0’. This bit is set when reset processing on this port 

is complete (i.e. a '1' to '0' transition of PR). ‘0’ = No change. ‘1’ = Reset complete.Software shall 
clear this bit by writing a '1' to it. 

This field is ‘0’ if DCE is ‘0’. 
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22 Port Link Status Change (PLC) = RW1C. Default = ‘0’. This flag is set to ‘1’ due to the following 

PLS transitions: 

 Transition Condition 

 U0 -> U3 Suspend signaling detected from Debug Host 

 U3 -> U0 Resume complete 

 Polling -> Disabled Training Error 

 Ux or Recovery -> Inactive Error 

Software shall clear this bit by writing a '1' to it. 

This field is ‘0’ if DCE is ‘0’. 

23 Port Config Error Change (CEC) – RW1C. Default = ‘0’. This flag indicates that the port failed to 
configure its link partner. 0 = No change. 1 = Port Config Error detected. Software shall clear this 

bit by writing a '1' to it. 

31:24 RsvdZ. 

 

Note: If the Debug Capability Event Ring is full, the xHC will be unable to generated 

Port Status Change Events due to transitions in the Change bits. In this case, a 

Change bit will remain set until cleared by software. 

 

7.6.8.7 Debug Capability Context Pointer Register (DCCP) 

Address: Debug Capability Base + 30h 

Default Value: 0000 0000 0000 0000 

Attribute: RW 

Size: 64 bits 

The Debug Capability Context Pointer Register identifies the start address of the 

array of data structures that are used to manage the Debug Capability Transfer 

Rings. 

Table 7-25: Offset 30h - Debug Capability Context Pointer Field Definitions (DCCP) 

Bits Description 

3:0 RsvdP. 

63:4 Debug Capability Context Pointer Register – RW. Default = ‘0’. This field defines the high order 

bits of the start address of the Debug Capability Context data structure (refer to section 7.6.9) 
associated with the Debug Capability. 

Software shall initialize this register before setting the Debug Capability Enable bit in the Debug 

Capability Control Register to ‘1’. 
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7.6.8.8 Debug Capability Device Descriptor Info Register 1 (DCDDI1) 

Address: Debug Capability Base + 38h 

Default Value: 0000 0000 

Attribute: RW 

Size: 32 bits 

The Debug Capability Device Descriptor Register 1  identifies the Device Protocol 

and Vendor ID values that shall be reported by DbC in its Device Descriptor 

when it is enumerated by a Debug Host. Refer to section 9.6.1, Table 9-8 in the 

USB3 spec. 

This register shall be initialized before enabling the DbC (DCE = ‘1’).  

Table 7-26: Offset 38h - Debug Capability Device Descriptor Info Field Definitions (DCDDI1)  

Bits Description 

7:0 DbC Protocol – RW. This field is presented by the Debug Device in the USB Interface Descriptor 

bInterfaceProtocol field. 

 Value Function 

 0 Debug Target vendor defined. 

 1 GNU Remote Debug Command Set supported. 

 2-255  Reserved. 

15:8 RsvdZ. 

31:16 Vendor ID – RW. This field is presented by the Debug Device in the USB Device Descriptor 
idVendor field. 

 

7.6.8.9 Debug Capability Device Descriptor Info Register 2 (DCDDI2) 

Address: Debug Capability Base + 3Ch 

Default Value: 0000 0000 

Attribute: RW 

Size: 32 bits 

The Debug Capability Device Descriptor Register 2  identifies the Device Revision 

and Product ID values that shall be reported by DbC in its Device Descriptor 

when it is enumerated by a Debug Host. Refer to section 9.6.1, Table 9-8 in the 

USB3 spec. 

This register shall be initialized before enabling the DbC (DCE = ‘1’).  
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Table 7-27: Offset 3Ch - Debug Capability Device Descriptor Info Field Definitions (DCDDI2) 

Bits Description 

15:0 Product ID – RW. This field is presented by the Debug Device in the USB Device Descriptor 
idProduct field. 

31:16 Device Revision – RW. This field is presented by the Debug Device in the USB Device Descriptor 
bcdDevice field. 

 

 

7.6.9 Data Structures 

The Debug Capability Context Pointer Register (DCCP) references the Debug 

Capability Context, which is a data structure that contains a Debug Capability 

Info Context (DbC Info) data structure followed by 2 Endpoint Context data 

structures. The Endpoint Context entry at offset 40h defines the Endpoint 

Context for the OUT Transfer Ring, and the entry at offset 80h defines the 

Endpoint Context for the IN Transfer Ring. The Transfer Rings referenced by the 

Endpoint Contexts are Bulk endpoints as described in section Endpoint Contexts 

and Transfer Rings. 

Figure 7-10: Debug Capability Context Data Structure 

DbC Info Context

OUT EP Context

IN EP Context

Offset

000h

0CFh

040h

080h

 

Note: Figure 7-10 illustrates the Debug Capability Context, which includes 64 byte DbC 

Info and Endpoint Contexts. The Context Size (CSZ) field in the HCCPARAMS1 

register does not apply to DbC related contexts. All DbC data structure consume 

64 bytes. Refer to section 6.2.3 for more information on the Endpoint Context 

data structure. 

The Debug Capability Event Ring Registers  work identically to the normal Event 

Ring Registers described in section 4.9.4. i.e. the Debug Capability Event Ring 

Segment Table Base Address Register references an Event Ring Segment Table 

data structure as described in section 6.5.  

Normally if the Debug Capability Enable  (DCE) bit in the Debug Capability 

Control Register (DCCTRL) is ‘1’, the xHC maintains ownership of the data 

structures, except while an endpoint is in the Stopped state where the 

ownership of the Transfer Ring is relinquished by the xHC, allowing software to 

add, delete, or modify any TD on the ring.  
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7.6.9.1 Debug Capability Info Context (DbCIC) 

The 64 byte Debug Device Info Context data structure defines parameters that 

are presented by the Debug Device when it is enumerated.  

Note: Software sets the values in the DbCIC to reflect the specific debugging 

environment that it supports, e.g. if software supported the GDB Remote Debug 

protocol, then the Manufacturer String may = “Linux”, the Product String may = 

“Remote GDB”. If a vendor does not have a USB-IF assigned Vendor ID, then they 

could use the development reserved Vendor ID = FFFFh. The Device Revision 

field would reflect the revision of remote debug protocol, etc. 

Figure 7-11: Debug Capability Info Context Data Structure (DbCIC) 

Manufacturer String Length String 0 LengthSerial Number String Length Product String Length

RsvdZ

RsvdZ

03-00H

07-04H

0B-08H

0F-0CH

14-10H

17-14H

Product String Descriptor Address Lo

Product String Descriptor Address Hi

Serial Number String Descriptor Address Lo

Rsvd

Z

Serial Number String Descriptor Address Hi

Rsvd

Z
1B-18H

1F-1CH

31 16 15 8 7 1 0

Manufacturer String Descriptor Address Lo

Manufacturer String Descriptor Address Hi

Rsvd

Z

String 0 Descriptor Address Lo

String 0 Descriptor Address Hi

Rsvd

Z

RsvdZ

23-20H

27-24H

3B-28H

3F-2CH

24 23

 

 

The String referenced by this field shall be returned when the Debug Device 

receives a GET_DESCRIPTOR(STRING, 0) request.  

Table 7-28: Offset 00h - Debug Capability Info Context Field Definitions (DbCIC) 

Bits Description 

0 RsvdZ. 

63:1 String 0 Descriptor Address. This field represents the high order bits of the 64-bit pointer to a 
USB String Descriptor that contains which specifies the Languages Supported by the DbC. 

 

 

The String referenced by this field shall be returned when the Debug Device 

receives a GET_DESCRIPTOR(STRING, 1) request.  
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Table 7-29: Offset 08h - Debug Capability Info Context Field Definitions (DbCIC) 

Bits Description 

0 RsvdZ. 

63:1 Manufacturer String Descriptor Address. This field represents the high order bits of the 64-bit 
pointer to a USB String Descriptor that contains which describes the manufacturer. 

 

 

The String referenced by this field shall be returned when the Debug Device 

receives a GET_DESCRIPTOR(STRING, 2) request.  

Table 7-30: Offset 10h - Debug Capability Info Context Field Definitions (DbCIC) 

Bits Description 

0 RsvdZ. 

63:1 Product String Descriptor Address. This field represents the high order bits of the 64-bit pointer 
to a USB String Descriptor that contains which describes the product. 

 

 

The String referenced by this field shall be returned when the Debug Device 

receives a GET_DESCRIPTOR(STRING, 3) request.  

Table 7-31: Offset 18h - Debug Capability Info Context Field Definitions (DbCIC) 

Bits Description 

0 RsvdZ. 

63:1 Serial Number String Descriptor Address. This field represents the high order bits of the 64-bit 
pointer to a USB String Descriptor that contains which describes the device’s serial number. 

 

Note: If a string is not defined for a specific attribute (Manufacture, Product, or Serial 

Number), software shall point the respective String Length to ‘0’ and the String 

Descriptor Address field shall be ignored by the xHC. 
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Table 7-32: Offset 20h - Debug Capability Info Context Field Definitions (DbCIC) 

Bits Description 

7:0 String 0 Length. The size of String 0 in bytes. 

15:8 Manufacturer String Length. The size of Manufacturer String in bytes. 

23:16 Product String Length. The size of Product String in bytes. 

31:24 Serial Number String Length. The size of Serial Number String in bytes. 

 

 

7.6.9.2 Debug Capability Endpoint Context 

The Debug Device utilizes the Endpoint Context data structure defined in 

section 6.2.3 with following exceptions: 

•  The DbC does not support Streams, so the MaxPStreams, LSA, and HID fields are 

reserved and shall be set to ‘0’. 

•  The DbC endpoints are bulk, so the Interval, Mult, and Max ESIT Payload fields are 

reserved and shall be set to ‘0’. 

•  Figure 6-3 illustrates a 32 byte Endpoint Context data structure. When used by the 

DbC it is always a 64 byte data structure, where bytes (14-1Fh) are dedicated for 

exclusive use by the DbC and shall be treated by system software as Reserved and 

Opaque (RsvdO). 

7.6.10 USB Descriptors for Debug Class Device 

This section defines the USB descriptors that shall be returned by a USB Debug 

Device when it receives GET_DESCRIPTOR requests.  

The Debug Device is built using one interface which declares 2 Bulk endpoints, 

an IN and an OUT. Refer to section 8 of the USB3 specification for more 

information on the following descriptor types.  

7.6.10.1 Device Descriptor 

This section defines the USB Device Descriptor that shall be returned by a USB 

Debug Device when it receives a GET_DESCRIPTOR(DEVICE) request.  
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Table 7-33: DbC Device Descriptor 

Part 
Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the 
size of this descriptor in bytes. 

12h 

bDescriptorType 1 1 Device Descriptor Type (assigned 
by USB) 

01h 

bcdUSB 2 2 USB 3.0 Specification 0300h 

bDeviceClass  4 1 Class code (Defined in the Interface 
descriptor). 

00h122 

bDeviceSubClass 5 1 Subclass code (Defined in the 
Interface descriptor). 

00h 

bDeviceProtocol 6 1 Protocol code (Defined in the 
Interface descriptor). 

00h 

bMaxPacketSize0 7 1 Maximum packet size for endpoint 

zero. 

09h 

idVendor 8 2 Vendor ID (assigned by USB). DCDDI1 
Vendor ID123 

idProduct 10 2 Product ID. DCDDI2 

Product ID124 

bcdDevice 12 2 Device release number DCDDI2 Device 

Revision124 

iManufacturer 14 1 Index of String descriptor 
describing manufacturer. xHCI 

vendor defined. 

01h 

iProduct 15 1 Index of String descriptor 
describing the product. 

02h 

                                                   

122The DbC declares its Class Code, Subclass Code, and Protocol values in the Interface Descriptor to enable 

implementation in a composite device refer to section 7.6.10.3. 

123Refer to section 7.6.8.8, Table 7-26. 

124Refer to section 7.6.8.9, Table 7-27. 
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iSerialNumber 16 1 Index of String descriptor 

describing the device’s serial 
number. xHCI vendor defined. 

03h 

bNumConfigurations 17 1  Number of possible configurations. 01h 

 

7.6.10.2 Configuration Descriptor 

The USB Configuration Descriptor declared by a USB Debug Device.  

Table 7-34: DbC Configuration Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) 

Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

09h 

bDescriptorType 1 1 Configuration Descriptor Type (assigned by 

USB) 

02h 

wTotalLength 2 2 Total length of data returned for this 

configuration. Includes the combined 
length of all returned descriptors 
(configuration, interface, and endpoint) 

returned for this configuration. 

002Ch 

bNumInterfaces 4 1 Number of interfaces supported by this 
configuration. 

01h 

bConfigurationValue 5 1 Value to use as an argument to Set 
Configuration to select this configuration. 

01h 

iConfiguration 6 1 Index of string descriptor describing this 
configuration. (None defined) 

00h 

bmAttributes 7 1 Configuration characteristics 
 Bit  Function 

 7 Reserved (set to one) 

 6 Self Powered 

 5 Remote Wakeup 

 4-0  Reserved (reset to 0) 

C0h 
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bMaxPower 8 1 Maximum power consumption of USB 

device from bus in this specific 
configuration when the device is fully 
operational. 

xHCI 

vendor 
defined 

 

 

7.6.10.3 Interface Descriptor 

The USB Interface Descriptor declared by a USB Debug Device.  

Table 7-35: DbC Interface Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) 

Description Value 

bLength 0 1 Numeric expression specifying the 
size of this descriptor in bytes. 

09h 

bDescriptorType 1 1 Interface Descriptor Type (assigned 
by USB) 

04h 

bInterfaceNumber 2 1 Number of interfaces. 00h 

bAlternateSetting 3 1 Value used to select alternate 
setting for the interface identified in 
the prior field. 

00h 

bNumEndpoints 4 1 Number of endpoints used by this 
interface (excluding endpoint zero). 

02h 

bInterfaceClass  5 1 Class code. DCh125 

bInterfaceSubClass 6 1 Subclass code. 02h126 

bInterfaceProtocol 7 1 Protocol code. DCDDI1 DbC 
Protocol 
field127 

                                                   

125“Diagnostic Device” class, assigned by USB-IF. 

126“Debug Device” SubClass, assigned by USB-IF. 

127Refer to section 7.6.8.8, Table 7-26. 
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iInterface 8 1 Index of string descriptor describing 

this interface. 

00h 

 

7.6.10.4 Endpoint Descriptor 1 (Bulk OUT) 

The USB Endpoint Descriptor declared for the Bulk OUT endpoint by a USB 

Debug Device. 

Table 7-36: DbC Endpoint Descriptor 1 OUT 

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the size of this 

descriptor in bytes. 

07h 

bDescriptorType 1 1 Endpoint Descriptor Type (assigned by USB) 05h 

bEndpointAddress 2 1  The address of the endpoint on the USB device 
described by this descriptor. 

01h 

bmAttributes 3 1 This field describes the endpoint’s attributes 
when it is configured using the 
bConfigurationValue. Transfer Type = Bulk, 

Direction = OUT. 

02h 

wMaxPacketSize 4 2 Maximum packet size this endpoint is capable 
of sending or receiving when this configuration 
is selected. Size = 1KB. 

0400h 

bInterval 6 1 Interval for polling endpoint for data transfers 00h 

 

7.6.10.5 SuperSpeed Endpoint Companion Descriptor 1 (Bulk OUT) 

The USB SuperSpeed Endpoint Companion Descriptor declared for the Bulk 

OUT endpoint by a USB Debug Device. 
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Table 7-37: DbC SuperSpeed Endpoint Companion Descriptor 1 OUT 

Part 
Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

06h 

bDescriptorType 1 1 SuperSpeed Endpoint Companion 
Descriptor Type (assigned by USB) 

30h 

bMaxBurst 2 1 The maximum number of packets the 
endpoint can send or receive as part of a 
burst. Valid values are from 0 to 15. 

DCCTRL 
Debug Max 
Burst Size128 

bmAttributes 3 1 This field describes the endpoint’s 
SuperSpeed attributes when it is 
configured using the bConfigurationValue. 

Mult = 0, MaxStreams = 0. 

0 

wBytesPerInterval 4 2 The total number of bytes this endpoint 

will transfer every service interval. This 
field is only valid for periodic endpoints. 

0000h 

 

 

7.6.10.6 Endpoint Descriptor 2 (Bulk IN) 

The USB Endpoint Descriptor declared for the Bulk IN endpoint by a USB Debug 

Device. 

Table 7-38: DbC Endpoint Descriptor 2 IN 

Part Offset 
(Byte) 

Size 
(Bytes) 

Description Value 

bLength 0 1 Numeric expression specifying the size of this 
descriptor in bytes. 

07h 

bDescriptorType 1 1 Endpoint Descriptor Type (assigned by USB) 05h 

                                                   

128Refer to section 7.6.8.4, Table 7-22. 
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bEndpointAddress 2 1 The address of the endpoint on the USB device 

described by this descriptor. 

81h 

bmAttributes 3 1 This field describes the endpoint’s attributes 
when it is configured using the 

bConfigurationValue. Transfer Type = Bulk, 
Direction = IN. 

02h 

wMaxPacketSize 4 2 Maximum packet size this endpoint is capable 
of sending or receiving when this configuration 

is selected. Size = 1KB. 

0400h 

bInterval 6 1 Interval for polling endpoint for data transfers 00h 

 

7.6.10.7 SuperSpeed Endpoint Companion Descriptor 2 (Bulk IN) 

The SuperSpeed Endpoint Companion Descriptor declared for the Bulk IN 

endpoint by a USB Debug Device. 

Table 7-39: DbC SuperSpeed Endpoint Companion Descriptor 2 IN 

Part Offset 
(Byte) 

Size 
(Bytes) 

Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

06h 

bDescriptorType 1 1 SuperSpeed Endpoint Companion 
Descriptor Type (assigned by USB) 

30h 

bMaxBurst 2 1 The maximum number of packets the 

endpoint can send or receive as part of a 
burst. Valid values are from 0 to 15. 

DCCTRL 

Debug Max 
Burst Size129 

bmAttributes 3 1 This field describes the endpoint’s 

SuperSpeed attributes when it is 
configured using the bConfigurationValue. 
Mult = 0, MaxStreams = 0. 

0 

                                                   

129Refer to section 7.6.8.4, Table 7-22. 
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wBytesPerInterval 4 2 The total number of bytes this endpoint 

will transfer every service interval. This 
field is only valid for periodic endpoints. 

0000h 

 

7.6.10.8 Binary Object Store (BOS) Descriptor 

This section defines the BOS descriptor and Device Capability Descriptors that 

shall be returned by a USB Debug Device when it receives a 

GET_DESCRIPTOR(BOS) request. 

Table 7-40: BOS Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) 

Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

5h 

bDescriptorType 1 1 BOS Descriptor Type (assigned by USB) 0Fh 

wTotalLength 2 2 Length of this descriptor and all of its sub 

descriptors. 

0Fh 

bNumDeviceCaps 4 1 The number of separate device capability 

descriptors in the BOS. 

01h 

 

Table 7-41: BOS SS Device Capability Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the 

size of this descriptor in bytes. 

0Ah 

bDescriptorType 1 1 Device Capability Descriptor Type 
(assigned by USB) 

10h 

bDeviceCapabilityType 2 1 Capability Type: 
SUPERSPEED_USB. 

03h 

bmAttributes 3 1 Not LTM Capable. 00h 

wSpeedsSupported 4 2 This device only supports 
operation at 5 Gbs. 

0008h 
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bFunctionalitySupported 6 1 All functionality available only at 

5Gbs. 

03h 

bU1DevExitLat 7 1 U1 Device Exit Latency. Worst case 

latency to transition from U1 to U0. 

xHC 

Vendor 
Defined 

wU2DevExitLat 8 2 U2 Device Exit Latency. Worst case 

latency to transition from U2 to U0. 

xHC 

Vendor 
Defined 

 

7.6.10.9 String Descriptors 

Refer to the String Descriptor section (9.6.8) in the USB3 spec. 

Note: Only a single LANGID definition is supported by the DbC in String 0. 

7.7 xHCI I/O Virtualization (xHCI-IOV) Capability 

The xHCI-IOV Extended Capability Structure  defines required parameters for 

managing xHC instances in a virtualized environment. The xHCI-IOV Extended 

Capability Structure is an optional normative capability defined for the xHCI. The 

registers defined by the xHCI-IOV capability complement those defined by the 

PCIe SR-IOV Extended Capability Structure . Both capability structures shall be 

defined if the xHC supports virtualization. Refer to section 8.2.1 for more 

information on the PCIe SR-IOV Extended Capability. 

The xHCI-IOV Extended Capability Structure  consists of two arrays of registers: 

the VF Interrupter Range and the VM Device Slot Assignment . 

This capability is chained through the xHCI Extended Capabilities Pointer (xECP) 

field and resides in MMIO space. 

An xHC implementation shall provide one VF Interrupter Range Register for 

each Virtual Function (VF) (as defined by the SR-IOV Extended Capabilities 

structure TotalVFs field). Each VF Interrupter Range Register defines Interrupter 

Base Offset and Interrupter Count fields. These fields allow the Virtual Machine 

Manager (VMM) to assign a specific subset of the available Interrupters to a VF. 

After hardware reset all VF Interrupter Range Registers = ‘0’, i.e. no Interrupters 

are owned by VFs. 
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Figure 7-12: xHCI-IOV Capability Structure 
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Note: No VF Interrupter Range Register 0 is defined. VM Interrupter Range Register 0 

would logically reference Physical Function 0 (PF0), however PF0 provides the 

pool from which all Interrupters are allocated. 

Note: The xHCI limits the maximum number of VFs supported to 63, i.e. the SR-IOV 

Extended Capabilities structure TotalVFs field shall be <= 63 for xHCI 

implementations. 

For example, Logically the PF0 Interrupter Base Offset and Interrupter Count are 

initialized to ‘0’ and MaxIntrs, respectively. As Interrupters are allocated to VFs, 

the number of Interrupters available to PF0 are reduced accordingly. At any 

time, the number of Interrupters available to PF0 is equal to the MaxIntrs – 

SUM(Interrupter Count 1-1024). 

Interrupter 0 shall not be assigned to a VF.  

An xHC implementation shall provide MaxSlots  VF Device Slot Assignment 

Registers. Each VF Device Slot Assignment Register defines a Slot Emulated and 

Device Slot n VF field. The VM Device Slot Assignment Registers  shall be used 

by the VMM to assign a Device Slot to a VF. The Device Slot n VF field contains 

the VF ID of the PF or VF that owns the Device Slot. After hardware reset all 

Device Slots are assigned the Physical Function 0 (Device Slot n VF = 0). The Slot 

Emulated field identifies whether a Device Slot is being emulated by the VMM 

for a VM or direct-assigned to a VM. Refer to section 8.1.1 for more information 

on device emulation. 

 IMPLEMENTATION NOTE 

Page Size Management 

This version of the xHCI spec only allows an implementation to support a single page 

size, as reported by the PAGESIZE register. The page size affects the following registers: 

•  The RTSOFF and DBOFF registers - If virtualization is enabled, then the PF and VF 

Capability/Operational, Runtime, and Doorbell register sets are each required to 
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reside on separate memory pages, so that the VF Capability/Operational register sets 

may be trapped and emulated by a VMM. The boundaries between the register sets 

shall depend on the page size and affect the size of the required PF/VF MMIO space. 

If virtualization is not supported (i.e. no SR-IOV or xHCI-IOV Capabilities are defined), 

the xHCI register sets may be packed on a single page. 

•  PCI Configuration Space BAR0 register - If virtualization is supported, the page size 

affects the size of the MMIO space declared by the BAR0 register. Refer to section 

6.2.5 of the PCI spec for information on the operation of the BAR0 register. 

•  SR-IOV Supported Page Size register - This register shall indicate support for single 

page size, and its size shall be identical the page size defined in the Page Size 

(PAGESIZE) register. Refer to section 3.3.12 in the SR-IOV spec. 

•  SR-IOV Page Size register - This register shall be written by software with a value 

identical the page size defined in the Operational Page Size (PAGESIZE) register. 

Refer to section 3.3.13 in the SR-IOV spec. 

 

 

7.7.1 Capability Header 

Offset: xECP + 00h 

Default Value: Implementation Dependent 

Attribute: RO 

Size: 32 bits 

This register is an xHCI Extended Capability register. It includes a specific 

function section and a pointer to the next xHCI Extended Capability. This 

register is used by a VMM to configure and manage the xHC virtual functions. 

Figure 7-13: xHCI-IOV Capability Header 

Next Capability Pointer Cap IDRsvdP

31 16 15 8 7 0

 

 

Table 7-42: xHCI_IOV Capability Header Field Definitions 

Bits Description 

7:0 Capability ID – RO. Refer to Table 7-2 for the value that identifies the capability as xHCI I/O 

Virtualization. 

15:8 Next Capability Pointer – RO. This field indicates the location of the next capability with respect 

to the effective address of this capability. Refer to Table 7-1 for more information on this field. 
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31:16 RsvdP. 

 

 

7.7.2 VF Interrupter Range Registers 

Offset: xECP + (4 * VF ID) 

 where: VF ID is 1, 2, 3, … TotalVFs 

Default Value: 0000 0000h 

Attribute: RW 

Size: 32 bits 

One VF Interrupter Range Register exists for each VF supported by the xHC. The 

number of VFs supported by an xHC implementation is defined by the TotalVFs 

field in the SR-IOV Extended Capability Structure. These registers are addressed 

by the VF ID. They are used by a VMM to assign physical Interrupters to VFs. 

After hardware reset, all Interrupters are assigned to PF0. The VMM shall use the 

Interrupter Count and Interrupter Offset fields of this register to allocate the PF0 

Interrupters to the associated VF. 

Figure 7-14: VF Interrupter Range Register 

RsvdP VFHVFR Interrupter OffsetInterrupter Count

31 22 21 20 19 10 9 0

 

 

For a particular VF: 

The Interrupter Count field establishes the number of Interrupters that shall 

be mapped to the VF. The value of the Interrupter Count field shall be 

identical to the value of the MaxIntrs field in the emulated HCSPARAMS1 

register presented by the VMM to a VM. 

The Interrupter Offset field defines the physical to virtual Interrupter 

mapping. The value of the Interrupter Offset field shall be used by the xHC 

to map the set of PF0 Interrupter Registers from  Interrupter Offset to 

Interrupter Offset + Interrupter Count – 1, to VF Interrupters 0 to Interrupter 

Count – 1. 

The xHC uses these register values to translate and filter VM references to the 

Interrupter Registers. For example, if the xHC supports 16 interrupters and 3 

VFs. VF Interrupter Range registers 4-63 would be invalid. If the Interrupter 

Count fields for VF Interrupter Range Registers 1-3 were set to 4 and the 

Interrupter Offset fields were 4, 8, and 12, respectively. Then PF0 would own 

Interrupters 0-3, VF 1 Interrupters 4-7, VF 2 Interrupters 8-11, and VF 3 
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Interrupters 12-15. The VMM would be required to present MaxIntrs = 4 in the 

HCSPARAMS1 registers that it emulates to each VM. 

Software uses these registers to manage the state and Interrupter resources of a 

VF. Software shall not modify the Interrupter Count and Interrupter Offset fields 

if VFH = ‘0’.  

Table 7-43: VM Interrupter Range Register Field Definitions 

Bit Description 

9:0 Interrupter Offset (IRROFF) – RW. Default = ‘0’. This field specifies the index of the starting PF0 
Interrupter allocated to the VF. Valid values set by software are ‘0’ to MaxIntrs-1. Writing a value 

of ‘0’ “unmaps” the Interrupters from a VF back to PF0. 

19:10 Interrupter Count (IRRCNT) – RW. Default = ‘0’. This field identifies the number of PF0 
Interrupters allocated to the VF. Valid values set by software are ‘1’ to MaxIntrs-1. 

20 VF Run (VFR) – RW. Default = ‘0’. ‘1’ = Run. ‘0’ = Stop. When set to ‘1’, the Host Controller places 
endpoints associated with this VF on its Pipe Schedule. When this bit is cleared to ‘0’, the xHC 
completes the current and any actively pipelined transactions on the USB associated with this 

VF, then removes all endpoints associated with this VF from its Pipe Schedule. The Host 
Controller shall halt VF endpoints within 16 microframes after software clears the VFR bit. The 
VF Halted bit indicates when the xHC has finished its pending pipelined transactions and has 

entered the stopped state for this VF. Software shall not write a ‘1’ to this field unless the VF is 
in the Halted state (i.e. VF Halted is a ‘1’). Doing so will yield undefined results. 

21 VF Halted (VFH) – RO. Default = ‘1’. This bit is a ‘0’ whenever the VF Run bit is a ‘1’. The xHC sets 

this bit to ‘1’ after it has stopped executing as a result of the VF Run bit being cleared to ‘0’, 
either by software or by the xHC hardware (e.g. internal error). 

31:22 RsvdP. 

 

Note: Interrupter 0 is always owned by PF0. 

7.7.3 VF Device Slot Assignment Registers 

Offset: xECP + (04h + (4 * TotalVFs)) + (4 * Slot ID)) 

 where: Slot ID is 1, 2, 3, … MaxSlots 

Default Value: 0000 0000h 

Attribute: RW 

Size: 32 bits 

These registers are used by the VMM to assign a Doorbell Register (i.e. Device 

Slot) to a VF. All device slots are assigned to the PF0 (0) after reset.  
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Figure 7-15: VF Device Slot Assignment Register 

SERsvdP Device Slot 1 VF ID

31 6 057

22 21  

Table 7-44: VF Device Slot Assignment Register Field Definitions 

Bit Description 

5:0 Device Slot VF ID (DSAVFID) – RW. Default = ‘0’ (all slots are assigned to PF0). This field specifies 
the ID of VM that the respective Device Slot is allocated. Valid values set by software are ‘0’ to 

NumVFs (defined in the SR-IOV Capability). A value of ‘0’ reassigns this Device Slot to PF0. 

6 Slot Emulated (DSASE) – RW. Default = ‘0’. This field specifies if the Device Slot is emulated or 
direct-assigned. A value of ‘1’ shall cause the host controller to generate a Doorbell Event to the 
PF0 Primary Event Ring when the doorbell is rung. A value of ‘0’ shall cause the host controller to 

process the DB Target code when the doorbell is rung. 

31:7 RsvdP. 

 

Note: The USB Device Address for the slot shall be cleared to ‘0’ by the xHC when this 

register is written. 

Note: The VMM shall issue a Slot Enable Command to obtain an emulated (DSASE = 

‘1’) Device Slot to assign to a VF. 

7.8 xHCI Local Memory Capability 

An xHCI implementation may define this optional normative xHCI Extended 

Capability to provide RAM for debug port execution prior to initializing system 

memory. 

Figure 7-16: xHCI Local Memory Capability 

RsvdZ LME Next Capability Pointer Capability ID

31 16 15 8 7 017

Memory Dword 1

03-00H

07-04H

......

(Size*256)

+(0C-08)H
Memory Dword (Size*256)

Size

0C-08H
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Table 7-45: Offset 00h - xHCI Local Memory Capability Field Definitions 

Bits Description 

7:0 Capability ID – RO. Refer to Table 7-2 for the value that identifies the capability as Local 
Memory Protocol.  

15:8 Next Capability Pointer – RO. This field indicates the location of the next capability with respect 

to the effective address of this capability. Refer to Table 7-1 for more information on this field. 

16 Local Memory Enable (LME) - RW. Default = ‘0’. Setting this bit to a ‘1’ enables the Local 

Memory Capability. Clearing this bit to a ‘0’ disables the Local Memory Capability. 

31:17 RsvdZ. 

 

Table 7-46: Offset 04h - xHCI Local Capability Field Definitions 

Bits Description 

31:0 Size – RO. This field identifies the size of the Local Memory space exposed by this capability in 
1KB blocks. 

 

Table 7-47: Offset 08h - xHCI Local Capability Field Definitions 

Bits Description 

(Size*256) 
31:0 

Local Memory – RW. This field is a byte addressable array of read/write memory 
locations that is exposed by the xHCI Local Memory Capability. 

 

Note: The xHCI Debug Capability requires that the data structures necessary to manage 

it (Debug Capability Data Structure, Transfer Rings, Event Ring, etc.) are set up in 

read/write memory. This is problematic if attempting to debug the code that 

initializes the system memory controller, and system memory is not available. 

This capability allows the xHC to temporarily map a portion of its internal SRAM 

in to MMIO space for use by the debugger prior to system memory being 

available. 
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8 Virtualization 

Virtualization allows multiple Operating System Instances (OSI) to concurrently 

run within a platform. The default interface (i.e. virtualization is disabled) 

presented by the xHC to the host system is a single Physical Function (PF or 

PF0) or eXtensible Host Controller Interface (e.g.  Figure 3-3). When the xHC 

virtualization capabilities are turned on, multiple Virtual Functions (VF) are 

enabled. To minimize hardware requirements, the physical interface presented 

by an xHC VF is a subset of that presented by the PF and the virtualization 

software shall emulate portions of the VF interface to fill the gaps.  

Only the PF shall present xHC virtualization capabilities, i.e. SR-IOV and xHCI-

IOV Capability Structures. All VFs appear as non-virtualization capable xHC 

instances. 

Note that the xHC virtualization capabilities discussed in this document rely 

heavily on the virtualization concepts and mechanisms defined in the PCIe 

Single Root – I/O Virtualization (SR-IOV) specification. 

This specification assumes three principal classes of software are supported 

under the virtual machine architecture: 

•  Virtual Machine Manager (VMM): The VMM acts as a host and has full control of the 

processor(s) and other platform hardware. The VMM presents guest software (refer 

to the Virtual Machine (VM) description below) with an abstraction of a virtual 

processor and allows it to execute directly on a logical processor. There is only one 

instance of a VMM in a virtualized environment, and it is able to retain selective 

control of platform resources: processor resources, physical memory, interrupt 

management, I/O, etc. A VMM may own a physical resource and provide services to 

share that resource across multiple VMs. Or it may Direct-Assign a physical resource 

exclusively to a VM. 

•  Virtual Machine (VM): Each Virtual Machine (VM) is a guest software environment 

that supports a stack consisting of operating system (OS) and application software. 

Each VM operates independently of other VMs and uses the same interface to 

processor(s), memory, storage, graphics, and I/O provided by a physical platform. 

The VM software stack (or OSI) may act as if it were running on a platform with no 

VMM. Software executing in a VM shall operate with reduced privilege so that the 

VMM can retain control of platform resources. 

•  Hypervisor: The hypervisor is a transport mechanism, which provides a 

communication path between VMs and the VMM. Features of the hypervisor allow it 

to trap VM requests for platform resources and forward those requests to the VMM. 

Some virtualization environments combine the VMM and Hypervisor 

functionality into a single entity. 
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To reduce hardware requirements, the xHC architecture depends on the VMM to 

emulate the PCI Configuration Space, the xHCI Capability and Operational 

Registers, and several other features of a Virtual Function (VF).  

To minimize the hardware requirements associated with a VF the xHCI 

architecture partitions its registers in to “low touch” and “high touch”. Low touch 

registers are referenced infrequently, i.e. only at initialization time or when a 

USB device is enumerated. High touch registers are referenced regularly during 

the normal operation of the xHC. 

Low touch registers can be trapped and emulated by the VMM because the 

performance impact of VMM intervention is minimal. The xHCI Capability 

Registers and Operational Registers are considered to be Low Touch registers. 

The Capability Registers are generally only referenced at initialization time, and 

the Operational Registers are referenced infrequently during runtime, i.e. during 

initialization or when a USB device is attached or detached.  

The high touch registers are the Interrupt and Event Ring management registers, 

and the Doorbell registers. The Interrupt and Event Ring registers reside in the 

Runtime Register Space . The Runtime and Doorbell Registers are physically 

presented by the xHC to each VF. 

The xHCI is designed such that the interface presented by a combination of xHC 

hardware and VMM hardware emulation to a VM may be indistinguishable fr om 

the interface that the VM would see through the PF if it exclusively owned the 

xHC. This is accomplished through VMM emulation of the Capability and 

Operation registers, and xHC hardware support for filtering VF access to the 

physical Doorbell and Runtime register sets. The result allows a VMM to handle 

the emulation of the xHCI registers associated with device enumeration and 

other non-time critical xHCI operations, and the xHC to present hardware 

registers to a VM for the time critical USB device control and data transfer 

management. 

The xHCI defines independent base addresses in MMIO space for the Runtime 

and Doorbell Registers so that they can be positioned on page boundaries to 

allow easy mapping to a VM. 

Additionally, the xHCI supports the ability for the VMM to emulate a USB device 

to a VM. In cases were the resources of single USB device needs to be shared 

across multiple VMs, the VMM may own the physical device and emulate the 

operation of that device to multiple VMs. For example, the VMM would own the 

Device Slot assigned to a USB keyboard, and create emulated versions of that 

keyboard for each of the VM. The VMM will manage switching the keystroke 

stream to the VM that currently has user focus. The USB device emulation 

support of the xHCI also allows the VMM to emulate external USB hubs to VMs, 

the importance of which will be discussed below.  
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8.1 Operation 

For the VMM to provide xHCI functionality to a VM, it shall present an xHC VF in 

the VM’s address space. To enable the xHC virtualization capabilities the VMM 

shall perform the following basic steps: 

•  Create the VFs by enabling and configuring the PCIe Single Root – IO Virtualization 

(SR-IOV) capability. 

•  Assign xHC resources to a VF (Interrupters and Device Slots) by enabling and 

configuring the xHCI – IO Virtualization (xHCI-IOV) capability. 

•  Allocate PCI Configuration Space and Memory Mapped I/O (MMIO) Space in the VMs 

address space for the VF. 

•  Establish Hypervisor traps for VM references to the emulated VF registers. 

These steps allow the combination of xHC hardware and VMM register-level 

emulation to present a fully functional xHC to a VM, without requiring hardware 

support for every feature of a VF. They also allow the VMM to act as an 

intermediary, managing the shared xHC resources across many VMs. 

8.1.1 Resource Assignment 

To minimize VMM overhead, Device Slots and Interrupters may be “direct -

assigned” to Virtual Functions.  

The VMM shall always own PF0. And only PF0 shall present the SR-IOV and 

xHCI-IOV Extended Capabilities Structures. 

8.1.1.1 MMIO Space 

The PCI Configuration space BAR0 and BAR1 fields contain a 64 bit address that 

points to the base of the xHC PF0 MMIO space. This pointer will be referred to 

as PBAR0. 

The SR-IOV VF Enable field shall be set to ‘1’ to enable xHC virtualization 

support. 

The SR-IOV TotalVFs field identifies the maximum number of VFs that can be 

associated with the PF. 

The SR-IOV NumVFs field identifies the number of VFs that shall be visible in the 

MMIO space after both NumVFs is set to a valid value and VF Enable is set to ‘1’. 

Valid values for NumVFs are 1 to TotalVFs, SR-IOV VF BAR0 and VF BAR1 fields 

contain a 64 bit address that points to the base of the xHC VF MMIO space. This 

pointer will be referred to as VFBAR0. These fields behave as normal PCI BARs, 

as described in the PCI specification section 6.2.5. They can be sized by writing 

all 1’s and reading back the contents of the BARs as described in the PCI 

Specification, complying with the low order bits that define the BAR type fields. 
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The size decoded by VFBAR0 is referred to as VFBAR0.Size. The amount of 

address space decoded by VFBAR0 shall be an integral multiple of SR-IOV 

System Page Size field. VFBAR0 determines the alignment requirement and size 

(VFBAR0.Size) for a single VF. The total MMIO space consumed by the xHC is 

VFBAR0.Size * NumVFs. The MMIO space associated with each VF begins on a 

page boundary as defined by the System Page Size field of the SR-IOV Extended 

Capability structure. 

i.e. if VFBAR0.size = 16KB and NumVFs = 4, then the MMIO space allocated to all 

VFs is 64KB (16K * 4) bytes. 

PF0 MMIO Register locations: 

•  Capability Registers reside at PBAR0. 

•  Operational Registers reside at PBAR0 + CAPLENGTH. 

•  Runtime Registers reside at PBAR0 + RTSOFF. 

•  Doorbell Register Array resides at PBAR0 + DBOFF. 

VF n MMIO Register locations, where n = 1 to NumVFs:  

•  Capability Registers reside at VFBAR0 + (VFBAR0.Size * (n-1)). 

•  Operational Registers reside at VFBAR0 + (VFBAR0.Size * (n-1)) + CAPLENGTH. 

•  Runtime Registers reside at VFBAR0 + (VFBAR0.Size * (n-1)) + RTSOFF. 

•  Doorbell Register Array resides at VFBAR0 + (VFBAR0.Size * (n-1)) + DBOFF. 

 



 

 

 

  559 

Figure 8-1: VF MMIO Space 
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Figure 8-1 illustrates an xHC implementation that supports two VFs. Note that 

the MMIO address space allocated for VFs is a contiguous array. Each 

VFBAR0.Size space may also be referred to as an “aperture”. 

Note: The SR-IOV VF MSE field shall be set to ‘1’ for the xHC to respond to VF MMIO 

memory space accesses. 

8.1.1.2 Device Slots 

The VF Device Slot Assignment Registers  allow the VMM to map specified 

Doorbell Registers out of its (PF0) Doorbell Array and into a VFs Doorbell Array. 

Virtualization is not enabled (default Doorbell Register addressing):  

n = Slot ID, valid values = 1 to MaxSlots 

Address of Doorbell n = PBAR0 + DBOFF + (n * 4) 

If Virtualization is enabled: 

x = VF Device Slot Assignment Register:Device Slot VF ID, valid values = 0 to NumVFs 
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n = VF Device Slot Assignment Register index, valid values = 1 to MaxSlots 

If x = 0: 

 Address of Doorbell n = PBAR0 + DBOFF + (n * 4) 

If x > 0: 

 Address of Doorbell n = VFBAR0 + (VFBAR0.Size * (x-1)) + DBOFF + (n * 4) 

Note: All Doorbell addresses are physical addresses. 

When a Device Slot n is remapped from PF0 MMIO space to a VF’s MMIO space, 

the associated Doorbell Register shall be inaccessible by the VMM through the 

PF0 Doorbell Array. Device Slot n shall be accessible to the VM through the 

Doorbell Register n of the VF assigned to the VM. 

8.1.1.3 Interrupters 

The VF Interrupter Range Registers  (section 7.7.2) allow the VMM to map 

specified Interrupters out of its (PF0) Runtime Register space and into a VFs 

Runtime Register space. The Primary Interrupter Register Set (0) is always 

assigned to PF0. Only secondary Interrupter Register Sets (1 to MaxIntrs-1) may 

be assigned to a VF. Assignment of an Interrupter Register Set to a VF is 

exclusive. 

Virtualization is not enabled (default Interrupter Register Set addressing):  

n = Physical Interrupter Register Set ID (0 to MaxIntrs-1) 

Interrupter Register Set n shall be located at physical address: 

 PBAR0 + RTSOFF + (n * 32), where 32 is the size of the Interrupter Register Set. 

If Virtualization is enabled: 

IRROFF = VF Device Interrupter Range Register:Interrupter Offset, valid values = 1 to 

MaxIntrs-1 

IRRCNT = VF Device Interrupter Range Register:Interrupter Count, valid values = 1 to 

MaxIntrs-1 

IRRINDX = VF Device Interrupter Range Register index, valid values = 0 to TotalVFs 

np = Physical Interrupter Register Set ID, valid values = 0 to MaxIntrs 

nv = VM Interrupter Register Set ID, valid values = 0 to IRRCNT-1 

Interrupter Register Set np + IRROFF shall be located at physical address: 

 VFBAR0 + (VFBAR0.Size * (IRRINDX -1)) + RTSOFF + (nv * 32) 

The sum of IRRCNT values for all VF Device Interrupter Range Registers shall not 

exceed MaxIntrs -1. 

Note: Interrupter Register Sets are mapped exclusively. i.e. If virtualization is enabled 

and Interrupter Register Set np is remapped via a VF Interrupter Range Register, 
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then Interrupter Register Set np is no longer accessible at PBAR0 + RTSOFF + (np 

* 32). 

Note: The Event Ring of physical Interrupter Register Set 0 shall receive all non-

Transfer Events generated by the xHC. And until reassigned by the VMM or a VM, 

the Event Ring of physical Interrupter Register Set 0 shall also receive all Transfer 

Events generated by the xHC. 

Note: A minimum of one Interrupter Register Set shall be implemented per supported 

VF. System software is responsible for mapping the Interrupter Register Sets to 

VFs when VFs are enabled. 

Note: Only secondary Interrupter Register Sets may be assigned to VFs, therefore only 

Transfer Events may be redirected to an Interrupter owned by a VF, including its 

Interrupter Register Set 0. All other Event types presented on the VFs’ (“Primary”) 

Interrupter Register Set 0 Event Ring are generated by the VMM through Force 

Event Commands. 

Note: All Events generated by a Force Event Command are automatically directed to 

Interrupter Register Set 0 Event Ring of the VF specified in the Force Event 

Command. e.g. if the Interrupter Offset field for VF Interrupter Range Register 1 = 

4, then the Event Ring of Interrupter 4 shall receive the Event TRBs pointed to by 

all Force Event Commands targeted at VF 1. 

If more than one Interrupter Register Set is available to a VF, a VM can direct the 

Transfer Events of selected device slots to the alternate Interrupters (1-n), using 

the Interrupter Target field in Transfer TRBs. The xHC shall translate the 

Interrupter Target field of TRBs associated with Device Slots owned by a VF with 

the following formula: 

Physical Interrupter Register Set index = VF Interrupter Target + IRROFF 

8.1.2 Device Enumeration and Handoff 

The enumeration of a USB device in virtualized environment is a four step 

process: The VMM, 1) enumerates a device when it detects an attach event, 2) 

determines the VM that the device will be assigned to, 3) emulates an attach 

event of the same device to the VM, and 4) the VM enumerates the device 

following the steps described in section 4.3.  

By default, all Device Slots are assigned to PF0, hence they are all owned by the 

VMM. Since the VMM owns PF0, it also has access to the physical Root Hub ports 

of the xHC. When a device is attached on a Root Hub Port, the VMM also follows 

the steps described in section 4.3, up to the point of configuring the device. The 

VMM only needs to retrieve enough information from a USB device to determine 

how it should be managed. That is, whether the device is to be owed by the VMM 

and emulated to VMs, direct-assigned to a VM, or simply owned and used by the 

VMM itself. 
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In the latter case, the VMM will configure the device and manage it like any other 

USB device in a non-virtualized environment. 

In the direct-assigned case the VMM, which is emulating the PORTSC registers 

and Command Ring of the VM, shall emulate an attach event for the device to 

the VM, then map the Device Slot that it used to enumerate the device to the VF 

owned by the VM. 

If the device is to be emulated to VMs, then the VMM should load a “master” 

driver that is capable of sharing the resources of the device across multiple VMs, 

and for each VF that the device will be shared with, emulate an attach event for 

the device to the VM, establish an emulated Device Slot, and map that slot to 

the VF owned by the respective VM. Subsequent work items generated by VFs 

will be processed by VMM’s master driver for the  device and forwarded to the 

physical USB device owned by the VMM. 

Note: Undefined behavior may occur if the VMM does not ensure that no more than 

one VM has a USB device in the Default state. 

8.1.2.1 Root Hub Attach Emulation 

The device enumeration process of non-virtualized environments is described in 

section 4.3. Much of that process also applies in virtualized environments. The 

VMM owns the physical Root Hub so when a device is attached; it is the entity 

that receives the notification. When a device is attached the VMM should decide 

which VM to allocate it to. The device allocation policies are outside the scope 

of this specification, however the VMM will be required to retrieve the Device 

Descriptor and possibly Configuration Descriptors from the device to determine 

the target VM. The VMM hub driver will follow the steps described in section 4.3 

up to but not including, configuring the device (step 8).  

Once the target VM has been identified, the following steps should be 

performed to pass the device to the VM: 

1. The VMM generates a Port Status Change Event to the VM. 

a. Issue a Force Event Command on its Command Ring. The Force Event 

Command points to a Port Status Change Event TRB, and identifies the 

VM whose Event Ring will receive the TRB. 

2. Upon reception of the Port Status Change Event TRB, the VM will begin initiating 

the steps described in section 4.3. The first step requires the VM to reset the 

device. 

a. Reset a USB2 device by setting the Port Reset (PR) bit to ‘1’ in the PORTSC 

register that was indicated by the Port Status Change Event. Not 

necessary for USB3 devices because they are implicitly reset. 

3. The VMM traps the VM’s reference to its PORTSC register. 

a. When the VMM detects the PR bit set in the VM reference to the 
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emulated PORTSC register it will assert the PR bit in the physical PORTSC 

register. 

Note that the VMM may filter VM references to physical PORTSC 

registers, e.g. in a case where the VM is attempting to reset a Root Hub 

Port attached to a hub, as some of the devices attached to that hub are 

owned by other VMs. 

4. After the appropriate timeout the VM will obtain a Device Slot for the “newly” 

attached device. 

a. It does this by placing an Enable Slot Command on its Command Ring, 

and writing the Host Controller (VM Device Slot 0) Doorbell register with 

a DB Target code of Host Controller Command. 

5. The VM reference to the Doorbell register generates a Doorbell Event to the 

VMM. 

a. The VMM parses the Doorbell Event and determines that the Command 

Ring has been modified. 

b. The VMM retrieves the Command TRB from the VM’s Command Ring, 

updating the VM Command TRB Status field and advancing the Ring 

Indices appropriately. 

6. The VMM examines the retrieved Command TRB, decoding the Enable Slot 

Command, and processes it for the VM. 

a. The VMM uses the appropriate VM Slot Assignment Register to map the 

Device Slot that it used to enumerate the device to the VF owned by the 

VM. 

b. Releases any data structures that it was using to manage the device. 

c. Generates a Command Completion Event to the VM by issuing a Force 

Event Command. The Force Event Command points to a Command 

Completion Event TRB. The Command Response field of the Command 

Completion TRB will include the ID of the Device Slot that the VMM had 

assigned to the VM. 

7. Upon reception of the Command Completion Event, the VM will proceed to 

initialize its Device Context data structures, Device Context Base Address Array, 

etc., finally issuing an Address Device Command to enable the control endpoint 

of the device. 

8. When the VMM examines VM’s Command Ring it finds the Address Device 

Command and processes it for the VM. The Address Device Command informs 

the xHC that the Device Context data structures associated with the Device Slot 

have changed. 

a. The VMM forwards the Address Device Command to the xHC by placing 

the identical command on the PF0 Command Ring. 

b. Then returns the PF0 Command Completion Event to the VM using a 
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Force Event Command. 

9. After receiving the Command Completion Event, the VM will then issue several 

requests directly to the device’s control endpoint, reading Device and 

Configuration Descriptors to determine the configuration that it wants to select. 

10. When a decision has been made, the VM shall issue a Configure Endpoint 

Command to enable the endpoints defined by the target configuration. 

11. Again, the VMM which is trapping VM Command Ring operations simply forwards 

the Configure Endpoint Command to the xHC on the PF0 Command Ring and 

returns the returned Command Completion Event to the VM using a Force Event 

Command. This operation also informs the xHC that the Endpoint Context data 

structures associated with the Device Slot have changed. 

From this point on, unless the device is detached or the VM attempts to power 

manage or reconfigure the device, the VMM is not involved. The direct-

assignment feature of the xHCI allows the VM to communicate directly with the 

xHC hardware interface and the device.  

8.1.2.2 External Hub Attach Emulation 

All external hubs shall be owned and managed by the VMM, which enables the 

VMM to manage the overall USB bus topology.  

A VMM implementation may choose whether or not it exposes external hubs to a 

VM. For instance, a VMM could present a “flat” topology to a VM, where a VM 

never sees an attach event for a hub and the number of Root Hub Ports that the 

VMM declares for the emulated xHC instance is equal to the Number of Device 

Slots (i.e. MaxSlots = MaxPorts). In this case the VM will power manage a device 

by manipulating the PORTSC registers. The VMM would have to translate the VM 

PORTSC register references into Root Hub or external hub port registers. Note 

that a VMM shall provide “flattened” devices with a means of asserting the 

correct values for their Slot Context Route String, MTT, TT Port Number, and TT 

Hub Slot ID fields (e.g.    reflect the physical topology). This mechanism is 

outside the scope of this specification. The advantage of this approach is that 

Device Slots are not consumed by emulating external hubs to VMs.  

If the VMM does present external hubs to a VM, then the physical hub shall be 

assigned to the VMM and the VMM shall present an emulated instance of the 

hub to VMs. As described above, when a device is attached the VMM shall 

evaluate it and selectively assign it to a VM, however in this case the VMM will 

emulate an attach event on the VM’s emulated external hub instance, rather 

than generating a Port Status Change Event on the VMs Event Ring.  

The VMM uses an additional feature of the xHCI to emulate external hubs to 

VMs. An external hub is enumerated to a VM by the VMM the same way that any 

other USB device is (as described above). To emulate a hub (or device) to a VM, 

the VMM utilizes the Doorbell Event TRB . To enable Doorbell Events the VMM 

shall set the Slot Emulated (SE) flag in the VM Slot Assignment Register when it 
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assigned the Device Slot to the VM. If the Slot Emulated flag is ‘1’, the xHC shall 

not process the DB Target field when the VM rings the doorbell associated with 

an emulated slot, but shall generate a Doorbell Event to Event Ring 0, which is 

owned by the VMM. The Slot ID, VM ID, and DB Reason fields of the Doorbell 

Event TRB will indicate the source VM and value of the DB Target written to the 

Doorbell register. 

The VMM shall manage all Transfer Rings associated with an emulated device, 

retrieving information from them when the doorbell is rung, and emulating their 

operation. The VMM shall use the Force Event Command to generate Transfer 

Events to the VM. The device interface presented to a VM by the xHC/VMM 

emulation shall be indistinguishable from the interface presented by the xHC for 

the equivalent direct-assigned device. 

Note, that to eliminate VMM involvement for direct-assigned devices, all Event 

Rings are managed by xHC hardware. Transfer Events for direct-assigned and 

emulated Device Slots are placed on an Event Ring. To ensure Event Ring 

consistency, the xHCI provides the Force Event Command for a VMM to insert a 

Transfer Event generated for an emulated slot on the same Event Ring that is 

used by the xHC hardware for Transfer Events generated by direct-assigned 

slots. 

The VMM is also responsible for hiding a USB device assigned to one VM from 

another. Consider a case where Device A is attached to Port 1 of a physical hub 

and Device B is attached to Port 2 of the same hub, however the devices are 

assigned to VMs A and B, respectively. Figure 8-1 illustrates the views of the 

USB topology seen by the VMM and each of the VMs. Each VM sees an emulated 

instance of the physical hub. But the VMM will have generated an attach e vent 

for Device A on Port 1 to VM A, and an attach event for Device B on Port 2 to VM 

B. As far as VM A is concerned, Port 2 of its emulated hub has no device 

attached, and VM B thinks that Port 1 has no device attached. The Devices 

themselves are direct-assigned to the respective VMs. 

Figure 8-2: Emulated Hub Device Attachment Example 
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If VM B decides to place the Device B into suspend mode, it will generate the 

appropriate requests to its emulated hub. Since as far as VM B is concerned 
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there are no other devices attached to the hub, it will attempt to propagate the 

power state up the topology by placing the hub in suspend mode as well. The 

VMM shall filter these requests to ensure that Device A remains operational for 

VM A. Since the VMM owns the physical external hub, it determines whether the 

hub will be placed in the suspend state or not. The VMM can fake a response 

back to VM B for the emulated hub, allowing the VM to think that it has placed 

the emulated hub in the suspend state. 

8.2 SR-IOV Extended Capability 

This section defines how the PCIe Single Root-I/O Virtualization (SR-IOV) 

capability is interpreted in an xHC implementation.  

The SR-IOV capability structure is used to discover and configure a Physical 

Function’s (PF) virtualization capabilities. These virtualization capabilities 

include the number of Virtual Functions (VF) the PCIe Device will associate with 

a PF and the type of BAR mechanism supported by those VFs.  

When VFs are enabled, the PF MMIO space pointed to by a BAR is replicated for 

each VF. The replication of the PF MMIO space is in the form of an array of 

MMIO Apertures. The base of the VF Aperture array is pointed to by a VF BAR in 

the SR-IOV capability. The size of an MMIO Aperture is defined by the standard 

BAR sizing mechanism. The number of MMIO Apertures is defined by the 

NumVFs field in the SR-IOV capability structure. The Aperture ID is the index of 

a specific MMIO Aperture in the array. Valid Aperture ID values are 1 to NumVFs. 

The VMM emulates a PF-like Configuration Space to each VM. The SR-IOV 

specification defines the mapping between the PCI defined Configuration Space 

Header and the SR-IOV defined PF/VF Configuration Space Headers  (SR-IOV 

spec, section 3.4). The SR-IOV specification requires that a subset of the fields in 

the PFs Configuration Space Header be replicated in the VF Configuration Space 

Headers by xHC hardware. The xHCI VF Configuration Space is used by the VMM 

to manage VFs and not accessed by VMs. Refer to the SR-IOV specification for 

details. 



 

 

 

  567 

Figure 8-3: xHCI BAR Space Example 
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Figure 8-3 illustrates the VF MMIO Aperture configuration for the xHC. To 

minimize the hardware requirements for virtualization, many of the xHC MMIO 

registers are emulated by the VMM. The SR-IOV and xHCI-IOV Extended 

Capability structures (blue bordered) exists only for PF0. The SR-IOV capability 

defines the starting memory space address of VF1 MMIO Aperture. The xHCI-IOV 

Extended Capability defines the xHC registers needed to manage the individual 

Virtual Functions. The (orange bordered) xHCI Capability Registers, Operational 

Registers, and Extended Capabilities presented by a VF are emulated by the 

VMM. The (green bordered) xHCI Extended Runtime Registers and Doorbell 

arrays are physical registers presented by a VF. The (orange bordered)  PCI 

Configuration Space as seen by the VMs is emulated by the VMM.  

The physical VF register spaces (Operational, Runtime, etc.) reside on System 

Page Size boundaries. The details of their mapping are described below.  
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8.2.1 SR-IOV Extended Capability Structure 

The xHC PF and each VF requires a unique Requester Identifier (RID) to 

distinguish its respective DMA activity. The First VF Offset and VF Stride fields 

in the SR-IOV Capability Structure shall define the xHC RID to PF0/VFn 

assignment. Refer to the SR-IOV spec for the definition and use of RIDs and all 

other SR-IOV Capability Structure fields. 

xHCI support for VF Migration is outside the scope of this specification, and left 

to definition by specific implementations.  

Note: The PCI Express Capability Structure is required by the SR-IOV capability. 

8.2.2 xHCI-IOV Extended Capability Structure 

The xHCI-IOV Extended Capability Structure  defines required parameters for 

managing xHC instances in a virtualized environment. The xHCI-IOV Extended 

Capability Structure is an optional normative capability defined for the xHCI. 

Refer to section 7.7 for detailed information on the xHCI-IOV Extended 

Capability Structure. 

8.3 Doorbell Registers and Virtualization 

This section describes how an xHC implementation shall interpret Doorbell 

Register References when virtualization is enabled. The VM Device Slot 

Assignment Register Device Slot VF ID field allows a Device Slot to be assigned 

to a VF. If a Device Slot is assigned to a VF, then the Slot Emulated flag 

determines whether the xHC interprets references to a Device Slot’s Doorbell 

Register as direct-assigned or emulated. 

A Valid VF Doorbell Register Reference  is defined as a Doorbell Register 

reference through an MMIO Aperture, where the Aperture ID is equal to the value 

of the Device Slot VF ID field for the referenced Device Slot (n).  

The xHC shall respond to Valid VF Doorbell Register References  through MMIO 

Apertures. 

The xHC shall not respond to Doorbell Register references through MMIO 

Apertures, if the value of a VM Device Slot Assignment Register Device Slot VF ID 

field is equal to ‘0’ or if the value is greater than NumVFs. 

The Doorbell Register of any Device Slot not assigned to a VF by the VM Device 

Slot Assignment Register Device Slot VF ID field, shall be accessible by through 

the PF0 Doorbell Array. 
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8.3.1 Direct-Assigned Device Slot 

System software rings the Doorbell Register of a Device Slot to indicate to the 

xHC that it has changed the slot’s Device Context or the added work items to a 

Transfer Ring. 

If for a Valid VF Doorbell Register Reference the Slot Emulated flag equals ‘0’, 

then the xHC shall process the Doorbell Register reference normally. i.e. process 

the Doorbell Register DB Target field. 

8.3.2 Emulated Device Slot 

If for a Valid VF Doorbell Register Reference  the Slot Emulated flag equals ‘1’, 

then the xHC shall not process the Doorbell Register DB Target field, but 

capture the value of the field and pass it to the VMM through Event Ring 0 in the 

DB Reason field of a Doorbell Event. 

8.4 Interrupter Mapping 

If virtualization is supported, then the following requirements shall be met:  

•  The Max Interrupters (MaxIntrs) field shall be equal to or greater than TotalVFs + 1. 

•  The VM Interrupter Range Registers shall be implemented. 

A minimum of one Interrupter shall be assigned to each VF. The VMM may 

allocate remaining Interrupters to VFs as desired by presenting the appropriate 

values in the Interrupter Range Registers, and the emulated Structural 

Parameters 2 (HCSPARAMS2) register MaxIntrs field.  

If Interrupter Mapping is provided to a VF, the VMM shall emulate the 

Interrupter Mapping Enable bit in the Configure (CONFIG) register (section 

5.4.7) to enable or disable it. If Interrupter Mapping is disabled for VF, the VMM 

shall set the Interrupter Count field to ‘1’. If the Interrupter Count field is set to 

‘1’, the xHC shall ignore the Transfer TRB Interrupter Target field and all 

Transfer Events for the VF are targeted at the Interrupter identified by the 

Interrupter Offset field.Refer to section 6.4.1 for more information on the 

Interrupter Target field. 

Interrupter Mapping may be used to facilitate distribution of interrupts across 

cores in a multi-core platform. 

8.5 Register Space Emulation 

The VMM traps and emulates all xHCI Capability and Operational registers for all 

VFs. 

The VF Run (VFR) and VF Halted (VFH) bits in the VM Interrupter Range Register 

provide the VMM with ability to manage the state of each VF. These bits provide 
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for a VF, what the Run/Stop (R/S) and HCHalted (HCH) bits provide for the xHC as 

a whole. When the VMM detects a VM manipulating the Run/Stop (R/S) bit in 

their emulated USBCMD register, it shall reflect that state in the VFR bit for the 

respective VF. 

The VMM shall monitor the associated VFH bit and reflect its status in HCHalted 

(HCH) bit of the emulated USBSTS register.  

 



 

 

 

  571 

Appendix A xHCI PCI Power Management 

Interface 

An advanced power management capabilities interface compliant with PCI Bus 

Power Management Interface Specification (PCI PM) is incorporated into the 

xHCI. This interface allows the xHCI to be placed in various power management 

states offering a variety of power savings for a host system.  

Table A-1 highlights the xHCI support for power management states and 

features supported for each of the power management states. An xHC 

implementation may internally gate-off USB clocks and suspend the USB 

transceivers (low power consumption mode) to provide these power savings. 

The methods utilized by each xHC vendor to achieve the required behavior, is 

implementation specific. The xHC will assert PME# and retain chip context in 

accordance with the rules defined in the PCI PM Specification and this 

specification. 

The controller software driver shall place all enabled downstream USB ports of 

the xHC in the USB suspended state before exiting the D0 state. This is to ensure 

all downstream devices are in an inactive, low-power mode. 

Table A-1: xHCI Support for Power Management States 

PCI Power 
Management 

State 

State 
Required/ 

Optional by 
Spec 

Comments 

D0 Required Fully awake backwards compatible state. All logic in full power 
mode. 

D1 Optional USB Sleep state with xHC bus master capabilities disabled. All 

USB ports in suspended state. All logic in low latency power 
savings mode because of low latency returning to D0 state. 

D2 Optional USB Sleep state with xHC bus master capabilities disabled. All 

USB ports in suspended state. 

D3hot Required Deep USB Sleep state with xHC bus master capabilities 
disabled. All USB ports in suspended state. 

D3cold Required Fully asleep backwards compatible state. All downstream 
devices are either suspended or disconnected based on the 

implementation’s capability to supply downstream port power 
within the power budget. 
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A.1 PCI Power Management Register Interface 
xHC implementations follow the PCI Power Management register interface 

specified in the PCI PM Specification. Specific requirements and clarifications for 

xHCI implementations are: 

•  The host controller should be capable of asserting PME# when in any supported 

device state. However, if the host controller supports systems in which the PME# 

assertion from D3cold is not possible (i.e. insufficient or non-existent Aux Power), 

then the “PME_Support” bit for D3cold (bit 15 of the PCI PM PMC Register) shall be 

modifiable. Motherboard-down devices may use a software (BIOS) scheme for 

modifying the value reported in this read-only bit, while other devices may use a pin-

strapping to determine the value that is reported. 

•  The PCI PM PMC.Aux_Current field or Data register value reported by the xHC should 

represent the maximum current that the host controller device will consume. It shall 

not include power consumed by devices connected to the downstream USB ports. 

Note that if the host controller has been configured to not generate PME# from 

D3cold, then the PMC.Aux_Current field or Data register (D3 Power Consumed, D3 

Power Dissipated) shall report “000”. 

All other registers and field should follow the PCI PM specification. 

A.1.1 Power State Transitions 

The xHC enters the D0 power state from the D3cold power state when Vcc is 

applied and a hardware or software reset occurs. A software reset shall not 

affect the PCI power management registers. The hardware reset may be either a 

PCI reset input or an optional power-on reset input. 

Power management software transitions the xHC through D0, D1, D2, and D3hot 

power states via xHC-owned PCI Power Management register accesses. 

Additional power management policy may be implemented to switch or 

continuously apply an Aux Power well voltage supply (e.g. PCIe 3.3Vaux power), 

to the xHC when Vcc (i.e. the Core Power well voltage supply) is removed. While 

in this power state, referred to as D3cold, the xHC exhibits identical behavior as 

the D3hot power state (except that configuration space accesses are not 

supported) and no additional xHC hardware is required to distinguish between 

the D3hot and D3cold states. 

Per the PCI PM specification, the xHC function asserts an internal reset during 

the D3hot to D0 transition. The host controller shall retain all relevant wake 

context when transitioning from D3hot to D0 in order for system software to 

process a wake request. In PCI configuration space, this means that the 

PMCSR.PME_Status and PMCSR.PME_En bits shall be maintained. Additionally, 

the PMC.PME_Support(D3cold) bit shall be maintained. 
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Additionally, the xHC shall retain function-specific context that meets any of the 

following criteria: 

1. BIOS-configured registers that are programmed during system 

initialization 

2. Context needed to avoid USB re-enumeration 

3. Context needed for properly generating wake events 

4. Status bits for software to determine the source of a wake event  

Specifically, the following xHC registers shall not be reset during the D3hot to 

D0 transition and shall be maintained in the Aux Power well (refer to section 

Power State Definitions): 

•  USB Legacy Support Registers 

•  Port Status and Control Registers 

Note that all of the registers described above are only reset upon initial Aux 

Power-up or software reset. Software should specifically clear any of these bits 

during subsequent initialization sequences, if desired. The memory-space bits 

may also be cleared using the Host Controller Reset (HCRST) mechanism in the 

USB Command Register. 

A.1.2 Power State Definitions 

This section defines the xHC behavior per power state when programmed using 

PMCSR.PowerState. Power management software may use alternate register 

mechanisms to place the xHC in similar states. The xHC shall support the D0, 

D3hot, and D3cold power states and is recommended that the D1, D2 power 

states are also supported. 

Any wakeup events as specified in Table A-2 will set PMCSR.PME_Status when 

the xHC is programmed with PMCSR.PowerState set to D0, and a PCI PME# 

wake-up shall be signaled if enabled via PMCSR.PME_En. It is possible for one 

interrupt event, which is also a wakeup event to cause the xHC, to signal both a 

PCI interrupt and a PME# to the host. Power management software shall either 

be designed to handle this condition or to mask the PME# signal when the xHC 

is in D0. 

Software shall place each downstream USB port with power enabled into the 

Suspend or Disabled state before it attempts to move the xHC out of the D0 

power state. 

All xHC contexts are retained in all power states except D3cold. For D3cold, the 

same context that is described in the previous section relative to the D3hot-to-

D0 internal reset shall be retained. 



 

 

574    

The functional and wake-up characteristics for the xHC power states are 

summarized in Table A-2. 

Table A-2: xHCI Power State Summary 

Power 
State Functional Characteristics 

Wake-up Characteristics 
(Associated Enables shall be Set) 

D0 Fully functional xHC device state. 

Unmasked interrupts are fully functional. 

Resume Detected on suspended 
port. 

Connect or Disconnect detected on 
port. 

Over Current detected on port. 

D1 xHC shall preserve PCI configuration. 

xHC shall preserve USB configuration. 

Hardware masks functional interrupts. 

All ports are disabled or suspended. 

Resume Detected on suspended 

port. 

Connect or Disconnect detected on 
port. 

Over Current detected on port. 

D2 xHC shall preserve PCI configuration. 

xHC shall preserve USB configuration. 

Hardware masks functional interrupts. 

All ports are disabled or suspended. 

Resume Detected on suspended 

port. 

Connect or Disconnect detected on 
port. 

Over Current detected on port. 

D3hot xHC shall preserve PCI configuration. 

xHC shall preserve USB configuration. 

Hardware masks functional interrupts. 

All ports are disabled or suspended. 

Resume Detected on suspended 
port. 

Connect or Disconnect detected on 

port. 

Over Current detected on port. 

D3cold PME Context in PCI Configuration space is 
preserved. 

Wake Context in xHC Memory Space is 

preserved. 

All ports are disabled or suspended. 

Resume Detected on suspended 
port. 

Connect or Disconnect detected on 

port. 

Over Current detected on port. 

 

Note: Software is responsible for placing root hub ports associated with devices that 

have been enabled for Remote Wakeup into the suspend before transitioning to 

a non-D0 state. 

A.2 PCI PME# Signal 
The PCI PME# signal shall be implemented as an open drain, active low signal 

that is driven low by the xHC to request a change in its current power 

management state. PME# has additional electrical requirements over and above 
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standard open drain signals that allow it to be shared between devices that are 

powered off and those which are powered on. Refer to the PCI PM specification 

for more details. 
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Appendix B High Bandwidth Isochronous 

Rules 

B.1 High-speed 
High-speed High Bandwidth isochronous streams utilize addition PIDs in the 

USB2 protocol. The tables in this appendix completely enumerate all of the 

required responses an xHC shall make in the execution of a high-bandwidth 

isochronous data stream. 

Each table is organized with the following fields:  

•  Inputs: lists the inputs or initial conditions for the behavioral data point. The input 

values are: 

•  Burst: this is the value of the Max Burst Size field in an instantiation of an 

Endpoint Context. This is a constant value for the lifetime of the Endpoint 

Context. It serves as the initial value for Cnt (see below). This field is set based on 

USB framework parameters provided by the device. It is not set relative to buffer 

size, etc. 

•  Cnt: this is the transaction iterator. It is the current value of an internal 

transaction counter that for an OUT, is initially loaded with the contents of Burst. 

For an IN, Cnt is initially set from the first bus transaction’s PID response (see 

below). 

•  Remaining Buffer: the amount of buffer remaining is indicated by the current 

value of the Transaction X Length field in the current transaction record. The 

initial value of this field is set by software to indicate the amount of buffering 

available for this transaction record. It is adjusted by the xHC as transactions are 

executed and data is moved. 

•  Response: lists the response from the device (PID code and data size) and the effects 

on the Transfer Event Completion Code field and transaction iterator (Cnt). 

•  PID/(data size): indicates the host stimulus, data PID or other response from the 

device. 

•  Maxpacket = value of Endpoint Context Max Packet Size field. 

•  Result: list the effects of the response on the bits in the Status field and the iterator. 

•  Advance = Advance Dequeue Pointer to the next TD. Refer to section 4.10.1 for 

more information on advancement rules. 

•  Babble = The assertion of a Babble Detected Error. Refer to section 4.10.2.4. 

•  BufErr = The assertion of a Data Buffer Error. Refer to section 4.10.2.5. 
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•  XactEr = The assertion of a USB Transaction Error for the TRB associated with 

the error. Refer to section 4.10.2.3. 

Each row in each table illustrates the required xHC behavior for al l of the 

inputs/response combinations for a HS high-bandwidth isochronous transaction. 

There are two tables in this appendix. The first enumerates the required 

behavior for OUT transactions and the second enumerates the required 

behavior for IN transactions. 

 Table B-1: HS High-Bandwidth Behavior for OUT Transactions 

Inputs Response 

Results Explanation 

Burst Cnt Remaining 
Buffer PID (data size) 

1 

2 

3 

1 ≥ 

Maxpacket 

PID → 

DATA0(Maxpacket) 

PID → 
DATA1(Maxpacket) 

PID → 
DATA2(Maxpacket) 

Advance Normal completion (for micro-

frame) of 1, 2 or 3 high bandwidth 
transaction; send Maxpacket 
bytes.130 

1 

2 

3 

1 < 
Maxpacket 

PID → DATA0(Xfer 
Length) 

PID → DATA1(Xfer 
Length) 

PID → DATA2(Xfer 

Length) 

Advance Normal completion (for frame) of 
1, 2, or 3 high-bandwidth 

transaction; send as many bytes 
as are available in the buffer. 

2,3 2 > 

Maxpacket 

PID → 

MDATA(Maxpacket) 

No 

Advance 

Intermediate transaction in high-

bandwidth sequence; send 
Maxpacket bytes with an MDATA 
PID. 

2 

3 

2 ≤ 

Maxpacket 

PID → DATA0(Xfer 

Length) 

PID → DATA1(Xfer 
Length) 

Advance Software did not have 

Burst*Maxpacket bytes to send 
for this transaction (microframe). 

3 3 > 
Maxpacket 

PID → 
MDATA(Maxpacket) 

No 
Advance 

Intermediate transaction in high-
bandwidth sequence; send 

Maxpacket bytes with an MDATA 
PID. 

                                                   

130Note that the ≥ Maxpacket where the > applies is just to account for the case where software has incorrectly 

programmed Burst or Max Packet Size. 
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3 3 ≤ 

Maxpacket 

PID → DATA0(Xfer 

Length) 

Advance Software did not have 

Burst*Maxpacket bytes to send 
for this transaction (microframe). 

3,2,1 >1 ≥ 
Maxpacket 

PID → MDATA(buffer 
error) 

Advance 

BufErr 

xHC experienced a buffer error 
before being able to deliver all of 

the data. It shall not execute any 
further requests on this endpoint. 

 

Any time there is a buffer error (in this case a buffer under-run), the host 

controller will abandon the remaining portions of a high-bandwidth transaction. 

For example, if the current PID was an MDATA, and there was a buffer error on 

getting the data from main memory to the HC in a timely fashion, then the host 

controller will set the Buffer Error status bit to a ‘1’ and immediately clear the 

Active status bit to ‘0’. This will cause the host controller to effectively skip the 

remaining bus transactions (if there was any pending, based on the value of Cnt).  

The xHC’s requirements for managing a high-bandwidth IN bus transaction 

sequence are described using a state machine model. The model is summarized 

in the state-transition table Table B-2. This is only an example state machine 

whose intent is to define the operational requirements of the host controller.  

The intent of this section is to clearly define the appropriate data PID sequences 

for a high bandwidth isochronous data stream and set a priority on detection 

and reporting of errors that are detectable during a high-bandwidth transaction 

sequence. 

The premise of the high-bandwidth PID tracking state machine is that the 

sequence of DATA PIDs for the current microframe is determined by the device’s 

response to the first IN of the microframe. Based on PID response, the host 

controller sets an internal count variable (Cnt) that is used to drive the state 

machine through the remaining phases (states) of the high-bandwidth 

transaction sequence. 

Each microframe, the machine is initialized to the Start state. In this state, the 

value of the internal counter is a don’t care (X). The host controller issues the 

initial IN, and then sets the internal counter (Cnt) to the value number (Y) of the 

data PID received. For example, if the PID response is DATA2, then Cnt is loaded 

with the value ‘2’. When the PID is a DATA1 or DATA2, then two additional 

checks are performed. If neither of these checks fail, then the host controller 

transitions to the Next state. 

1. The size of the data payload shall be equal to maximum packet length 

(Maxpacket), and 
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2. The host controller shall check that the starting PID response is in the 

range configured for this endpoint, as specified in Mult. If the PID value 

number (Y) is less than the value of Burst, then the received data  PID is in 

the appropriate range. For example, if Burst is 2 and the device returns a 

DATA1, then Y=1 is less than Burst so the received PID is acceptable.  

When the PID received in the Start state is DATA0, then the high-bandwidth 

transaction is complete for this microframe and the host controller shall set the 

Active to Inactive. A valid DATA0 PID is allowed to have a data payload size less 

than or equal to Maxpacket. If a babble error is detected, then the host 

controller will additionally set the Babble bit to a ‘1’. 

 Table B-2: HS High-Bandwidth Behavior for IN Transactions 

Current 
State Endpoint Response 

Results 
Next 
State Explanation 

Cnt PID[Y] 

Start X PID← 
DATA[2,1] 

Y < 
Burst 

= 
Maxpacket 

 Cnt = 
[2,1] 

Acceptable PID response. 
If no babble error, then go 
to Next state. 

< 

Maxpacket 

Advance, 

XactErr 

Done Data payload shall be 

equal to maximum packet 
size. 

> 
Maxpacket 

Advance, 
Babble 

Done Data payloads larger than 
maximum packet size are 

a babble condition. 

Y ≥ 
Burst 

Don’t care Advance, 
XactErr 

Done Starting DATA PID is 
larger than allowed for 
this 

endpoint. 

PID← DATA0 ≤ 
Maxpacket 

Advance Done Acceptable PID response. 
If no babble error, then go 
to Next state. 

> 

Maxpacket 

 

Advance, 

Babble 

Done Data payloads larger than 

maximum packet size are 
a babble condition. 

Next 2 PID← DATA2 Don’t care Advance, 

XactEr 

Done Endpoint responded 

twice with DATA2 PID. 



 

 

580    

PID← DATA1 = 

Maxpacket 

 Cnt = 

1 

Acceptable PID response. 

If no babble error, then go 
to Next state. 

< 
Maxpacket 

Advance, 
XactErr 

Done Data payload shall be 
equal to maximum packet 

size. 

> 
Maxpacket 

Advance, 
Babble 

Done Data payloads larger than 
maximum packet size are 
a babble condition. 

PID← DATA0 Don’t care Advance, 

XactErr 

Done Device went from DATA2 

to DATA0; invalid 
transition. 

1 PID← DATA[2,1] Don’t care Advance, 
XactErr 

Done Endpoint repeated a 
DATA2 or DATA1 PID. 

PID← DATA0 ≤ 
Maxpacket 

Advance Done Acceptable PID response. 
If no babble error, 
transaction sequence 

completed normally. 

> 
Maxpacket 

Advance, 
Babble 

Done Data payloads larger than 
maximum packet size are 
a babble condition. 

 

In the Next state, the xHC issues an IN token and checks the value number (Y) of 

the PID response against the value of the internal counter (Cnt). If the value 

number (Y) is equal to (Cnt – 1), then the PID response is correct and the host 

controller sets the internal counter (Cnt) to the value number of the data PID 

received. 

When the received PID response is acceptable and is a DATA1, then the xHC 

shall also check that the size of the data payload is equal to the configured 

maximum packet length (Maxpacket). If the length check passes, the PID check 

has passed and the xHC does a final babble check. If no babble error, the xHC 

remains in the Next state and executes another bus transaction. If there was an 

error, the xHC flags the error and advances to the next TD. If the length check 

fails, the xHC generates a Transaction Error (XactErr) for the TD. If the babble 

check fails, the xHC shall generate a Babble Error (Babble) for the TD.  

When the received PID response is acceptable and is a DATA0, then the high-

bandwidth transaction is complete for this microframe and the xHC shall 

advance to the next TD and wait for the next Interval. The data payload is 

allowed to be less than or equal to the configured maximum packet size. If a 
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babble error is detected, then the xHC shall generate a Babble Error (Babble) for 

the TD. 

Any time the individual transaction completes in a Timeout, the xHC shall 

Advance to the next TD and generate a Transaction Error (XactErr) for the TD.  

Note that this state machine is for illustrative purposes . Implementations may 

optimize appropriately to avoid arithmetic operations where possible, as long as 

the resultant behavior is correct. 
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Appendix C Stream Usage Models 

The Stream Protocol may be used by USB disk drives to provide Command 

Queuing and First-party DMA (FPDMA) support through the xHCI. By tying a disk 

command with a particular Stream ID, the data associated with the command 

may be directed by the device to specific buffers in host memory.  

Figure C-1: Mass Storage Stream Usage Model 
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USB Mass Storage devices utilize a three phase command execution sequence; 

Command, Data, And Status. Figure C-1 illustrates an example where 4 USB 

pipes are employed to support read and write commands to the disk; a 

Command OUT (Cmd) pipe, Data IN and OUT pipes, and a Status IN pipe. All are 

Bulk pipes, however the Data pipes also support Streams. 

Consider a disk read: Before posting a disk command to the Cmd pipe, system 

software would first post a buffer to the Status pipe to receive the completion 

status for the command, and set up a Stream to receive the data associated with 

the command. Once both the Data and Status were set up for the command, 

software would post the Command to the Cmd pipe.  

To post the Status buffer, software simply adds a TD to the Status IN Transfer 

Ring. 

To set up the Stream associated with the Read Data transfer, software would 

select an available Stream ID, initialize a Transfer Ring to point to the host 

memory that will receive the read data, load a pointer to the Transfer Ring into 

the TR Dequeue Pointer field of the Stream Context in the Stream Array 

associated with the selected Stream ID, and ring the doorbell for the Data IN 

Endpoint. Note that the selected Stream ID is written to the Doorbell register 
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when software rings the Data IN doorbell, however it is not necessary f or basic 

Stream Protocol operation. 

To post the Command, software adds a TD to the Cmd OUT Transfer Ring. The 

data portion of the Command packet will include the Stream ID allocated for the 

Command. 

When the Device returns the Read Data for the Command, it  uses the Stream ID 

provided by the Command to set the Current Stream in the xHC for the pipe, 

then moves the Read Data. The xHC uses the Current Stream to select a Stream 

Context in the Stream Array. The Transfer Ring referenced by the Stream 

Context will be used to move the Read Data into host memory.  

When the Data transfer is complete, the Device sends the completion Status up 

the waiting Status pipe. After software receives the completion Status for the 

command it can free the associated Stream ID for reuse by another disk 

command. 

Disk Command Queuing allows software to queue multiple Commands to a 

drive and the drive to decide on their order of execution. Due to the physical 

geometry of the disk or other internal parameters, the disk reorders Commands 

to minimize latency and maximize throughput. The ability for the drive to 

complete commands out of order is critical for Command Queuing to work. 

Because the disk can control Stream selection in the xHC and a different Stream 

ID is associated with each Command, the disk may set the Current Stream in xHC 

as function of the Command that it is currently completing.  

FPDMA is enabled by the fact that separate data buffers may be assigned to 

each Stream. This allows the disk, as the “First Party”, to direct the data 

associated with a particular Command to specific buffers in host memory as a 

function of the Stream ID. 

Streams may also be used for Core Targeting. Core Targeting is the ability to 

direct the interrupt associated with a transfer (or Command) to a spec ific core in 

a multi-core system. The fact that separate Transfer Rings may be specific for 

each Stream and that the Transfer Event for a TRB in a Transfer Ring can be 

directed at any Interrupter via the Interrupter Target field allows the device to 

direct completions at specific cores as function of the Current Stream that it 

selects. 
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Appendix D Port to Connector Mapping 

This section describes an ACPI method that allows a platform to communicate to 

the operating system, certain USB host controller capabilities that are not 

provided for through the xHCI specification (e.g. If implemented, software may 

examine these characteristics at boot time in order to gain knowledge about the 

platform USB topology, mapping of xHC root hub ports to platform connectors, 

etc. This method is also applicable to topologies that include USB hubs that are 

integrated with the xHC silicon or implemented as discrete components on the 

motherboard. 

This method utilizes the ACPI USB Port Capabilities (_UPC, refer to section 9.14 

in the ACPI spec) and Physical Device Location (_PLD, refer to section 6.1.6 in 

the ACPI spec) objects. 

Note: The _UPC declarations for LS/FS/HS and Enhanced SS ports that are grouped to 

form a USB3 compatible connector. A “group” is defined by two or more ports 

that declare _PLDs with identical Panel, Vertical Position, Horizontal Position, 

Shape, Group Orientation, Group Position and Group Token parameter values. 

D.1 Example 
The following is an example of the ACPI objects defined for an xHC that 

implements a High-speed and SuperSpeed Bus Instance, that are associated 

with USB2 and USB3 Protocol Root Hub Ports, respectively. The xHC also 

supports an integrated High-speed hub to provide Low- and Full-speed 

functionality. The External Ports defined by the xHC implementation prov ide 

either a USB2 data bus (i.e. a D+/D- signal pair) or an Enhanced SuperSpeed data 

bus (e.g. SSRx+/SSRx- and SSTx+/SSTx- signal pairs). 

Where: 

•  The motherboard presents 5 user visible connectors C1 – C5. 

•  Motherboard connectors C1 and C2 support USB2 (LS/FS/HS) devices. 

•  Motherboard connectors C3, C4 and C5 support USB3 (LS/FS/HS/SS) devices. 

•  The xHC implements a High-speed Bus Instance associated with USB2 Protocol Root 

Hub ports, e.g. HCP1 and HCP2 are High-speed only, i.e. they provide no Low- or Full-

speed support. 

•  The xHC presents 7 External Ports (P1 – P7). 

•  External Port 1 (P1) is HS only and is not visible or connectable. 

•  External Ports 2 – 5 (P2 – P5) support LS/FS/HS devices. 

•  P2 is attached to motherboard USB2 connector C1. 

•  P3 is attached to motherboard USB2 connector C2. 

•  P4 is attached to the USB 2.0 logical hub of the Embedded USB3 Hub on the 



 

 

 

  585 

motherboard. The USB 2.0 logical hub supports the LS/FS/HS connections 

for 2 ports (EP1 – EP2). 

•  The USB 2.0 connections of motherboard hub ports EP1 and EP2 are 

attached to motherboard connectors C3 and C4 respectively, providing 

the LS/FS/HS support for the USB3 connectors. 

•  P5 is attached to motherboard connector C5, providing the LS/FS/HS 

support to the motherboard USB3 connector C5. 

•  External Port 6 (P6) is attached to the SuperSpeed logical hub of the 

Embedded USB3 Hub on the motherboard. The SuperSpeed logical hub 

supports the SS connections of 2 ports (EP1 – EP2). 

•  The SuperSpeed connections of motherboard hub ports EP1 and EP2 

are attached to motherboard connectors C3 and C4 respectively, 

providing the SS support for the USB3 connectors. 

•  External Port 7 (P7) is attached to motherboard connectors C5, providing the SS 

support for the USB3 connector. 

•  The xHC implements 4 internal HS Root Hub ports (HCP1 – HCP4), 2 High-speed and 

2 SuperSpeed. 

•  Internal Port 1 (HCP1) maps directly to External Port 1 (P1). 

•  Internal Port 2 (HCP2) is attached to a HS Integrated Hub. The Integrated Hub 

supports 4 ports (IP1 – IP4). 

•  Ports 1 to 4 (IP1-IP4) of the Integrated Hub attach to External Ports 2 to 5 

(P2-P5), respectively. 

•  Internal Ports 3 and 4 (HCP3, HCP4) attach to External Ports 6 and 7 (P6, P7), 

respectively. 

•  All connectors are located on the back panel and assigned to the same Group. 

•  Connectors C1 and C2 are USB2 compatible and their color is not specified. 

Connectors C3 to C5 are USB3 compatible and their color is specified. 

•  External Ports P1 - P5 present a USB2 data bus (i.e. a D+/D- signal pair). External 

Ports P6 and P7 present a SuperSpeed data bus (i.e. SSRx+/SSRx- and SSTx+/SSTx- 

signal pairs). 
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Figure D-1: Root Hub Port to USB Connector Mapping Example 
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D.1.1 ACPI Code Example 

Note: In the Intel ASL (iASL) compiler an ACPI Buffer takes a list of bytes (not Dwords). 

In the following example Dwords were used to permit a more compact 

description, where the general notation is 0xmmxxxxll, mm = the Most significant 

byte and ll = the least significant byte of the Dword. 

 

Scope( \_SB ) { 

… 

Device( PCI0 ) { 

… 

// Host controller ( xHCI ) 

Device( USB0 ) { 
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// PCI device#/Function# for this HC. Encoded as specified in the ACPI 

// specification 

Name( _ADR, 0xyyyyzzzz ) 

// Root hub device for this HC #1. 

Device( RHUB ) { 

Name( _ADR, 0x00000000 ) // must be zero for USB root hub 

// Root Hub port 1 ( HCP1 ) 

Device( HCP1 ) { // USB0.RHUB.HCP1 

Name( _ADR, 0x00000001 ) 

// USB port configuration object. This object returns the system 

// specific USB port configuration information for port number 1 

Name( _UPC, Package() { 

0x01,  // Port is connectable but not visible 

0xFF,  // Connector type (N/A for non-visible ports) 

0x00000000, // Reserved 0 – must be zero 

0x00000000} ) // Reserved 1 – must be zero 

} // Device( HCP1 ) 

// Root Hub port 2 ( HCP2 ) 

Device( HCP2 ) { // USB0.RHUB.HCP2 

Name( _ADR, 0x00000002 ) 

Name( _UPC, Package() { 

0xFF,  // Port is connectable 

0x00,  // Connector type – (N/A for non-visible ports) 

0x00000000, // Reserved 0 – must be zero 

0x00000000} ) // Reserved 1 – must be zero 

// provide internal connection point info 

Name( _PLD, Buffer( 0x10) { 

0x00000081, // Revision 1, Ignore color 

// Color (ignored), width and height not 

0x00000000, // required as this is not a user visble 

// connector 

0x00808000, // Not user visible, Group Token = 1, 

// Group Position 1 (This is the group for all 

// internal connections. Each connection should 

// have a unique position in this group) 

0x00000000} ) // Ignored for not visible connectors 

// Integrated hub port 1 ( IP1 ) 

Device( IP1 ) { // USB0.RHUB.HCP2.IP1 

// Address object for the port. Because the port is 

// implemented on integrated hub port #1, this value must be 1 

Name( _ADR, 0x00000001 ) 

Name( _UPC, Package() { 

0xFF,  // Port is connectable 

0x00,     // Connector type – Type ‘A’ 

0x00000000,     // Reserved 0 – must be zero 

0x00000000} )  // Reserved 1 – must be zero 

// provide physical connector location info 

Name( _PLD, Buffer( 0x10) { 

0x00000081, // Revision 1, Ignore color 

  // Color (ignored), width and height not 

0x00000000, // required as this is a standard USB ‘A’ type 

  // connector 
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0x00800c69,// User visible, Back panel, Center, left, 

  // shape = vert. rect, Group Token = 0, 

  // Group Position 1 (i.e. Connector C1) 

0x00000003} )// ejectable, requires OPSM eject assistance 

} // Device( IP1 ) 

// Integrated Hub port 2 ( IP2 ) 

Device( IP2 ) {// USB0.RHUB.HCP2.IP2 

// Address object for the port. Because the port is 

// implemented on integrated hub port #2, this value must be 2 

Name( _ADR, 0x00000002 ) 

Name( _UPC, Package() { 

0xFF,   // Port is connectable 

0x00,   // Connector type – Type ‘A’ 

0x00000000,  // Reserved 0 – must be zero 

0x00000000} )  // Reserved 1 – must be zero 

// provide physical connector location info 

Name( _PLD, Buffer( 0x10) { 

0x00000081, // Revision 1, Ignore color 

  // Color (ignored), width and height not 

0x00000000, // required as this is a standard USB ‘A’ type 

  // connector 

0x01000c69, // User visible, Back panel, Center, Left, 

  // Shape = vert. rect, Group Token = 0, 

  // Group Position 2 (i.e. Connector C2) 

0x00000003} ) // ejectable, requires OPSM eject assistance 

} // Device( IP2 ) 

// Integrated Hub port 3 ( IP3 ) 

Device( IP3 ) {// USB0.RHUB.HCP2.IP3 

// Address object for the port. Because the port is implemented 

// on integrated hub port #3, this value must be 3 

Name( _ADR, 0x00000003 )// Must match the _UPC declaration for  

   // USB0.RHUB.HCP3 as this port shares 

   // the same connection point. 

Name( _UPC, Package() { 

0xFF, // Port is connectable 

0x00, // Connector type – (N/A for non-visible ports) 

0x00000000, // Reserved 0 – must be zero 

0x00000000} )// Reserved 1 – must be zero 

// provide internal connection point info 

Name( _PLD, Buffer( 0x10) { 

0x00000081, // Revision 1, Ignore color 

  // Color (ignored), width and height not 

0x00000000, // required as this is not a user visble 

  // connector 

0x01008000, // Not user visible, Group Token = 1, 

  // Group Position 2 

0x00000000} )// Ignored for not visible connectors 

// Motherboard Embedded Hub 2.0 Logical Hub port 1 ( EP1 ) 

Device( EP1 ) { // USB0.RHUB.HCP2.IP3.EP1 

Name( _ADR, 0x00000001 ) 

// Must match the _UPC declaration for 

// USB0.RHUB.HCP3.EP1 as this port provides  
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// the LS/FS/HS connection for C3 

Name( _UPC, Package() { 

0xFF, // Port is connectable 

0x03, // Connector type – USB 3 Type ‘A’ 

0x00000000, // Reserved 0 – must be zero 

0x00000000} ) // Reserved 1 – must be zero 

// provide physical connector location info 

Name( _PLD, Buffer( 0x10) { 

0x0072C601, // Revision 1, Color valid  

  // Color (0072C6h), width and height  

0x00000000, // not required as this is a standard  

  // USB ‘A’ type connector 

0x01800c69, // User visible, Back panel, Center, 

  // Left, shape = vert. 

  // rect, Group Token = 0, 

  // Group Position 3 

  //(i.e. Connector C3) 

0x00000003} ) // ejectable, requires OPSM eject 

  // assistance 

} // Device(EP1) 

// Motherboard Embedded Hub 2.0 Logical Hub port 2 ( EP2 ) 

Device( EP2 ) { //USB0.RHUB.HCP2.IP3.EP2   

Name( _ADR, 0x00000002 ) 

// Must match the _UPC declaration for 

// USB0.RHUB.HCP3.EP2 as this port provides  

// the LS/FS/HS connection for C4 

Name( _UPC, Package() { 

0xFF, // Port is connectable 

0x03, // Connector type – USB 3 Type ‘A’ 

0x00000000, // Reserved 0 – must be zero 

0x00000000} ) // Reserved 1 – must be zero 

// provide physical connector location info 

Name( _PLD, Buffer( 0x10) { 

0x0072C601, // Revision 1, Color valid  

  // Color (0072C6h), width and height  

0x00000000, // not required as this is a standard  

  // USB ‘A’ type connector 

0x02000c69, // User visible, Back panel, Center, 

  // Left, Shape = vert. 

  // rect, Group Token = 0, 

  // Group Position 4 (i.e. Connector C4) 

0x00000003} ) // ejectable, requires OPSM eject 

   // assistance 

} // Device( EP2 ) 

} // Device( IP3 ) 

 

// Integrated hub port 4 ( IP4 ) 

Device( IP4 ) { // USB0.RHUB.HCP2.IP4 

Name(_ADR, 0x00000004) 

// Must match the _UPC declaration for USB0.RHUB.HCP4 as 

// this port provides the LS/FS/HS connection for C5 

Name( _UPC, Package() { 
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0xFF,  // Port is connectable 

0x03,  // Connector type – USB 3 Type ‘A’ 

0x00000000, // Reserved 0 – must be zero 

0x00000000} ) // Reserved 1 – must be zero 

// provide physical connector location info 

Name( _PLD, Buffer(0x10) { 

0x0072C601, // Revision 1, Color valid  

      // Color (0072C6h), width and height not 

0x00000000, // required as this is a standard USB  

      // ‘A’ type connector 

0x02800c69, // User visible, Back panel, Center, Left, 

      // Shape = vert. rectangle, Group Token = 0, 

      // Group Position 5 (i.e. Connector C5) 

0x00000003} )// ejectable, requires OPSM eject  

       // assistance 

} // Device( IP4 ) 

} // Device( HCP2 ) 

 

// Root Hub port 3 ( HCP3 ) 

Device( HCP3 ) { 

Name( _ADR, 0x00000003 ) 

// Must match the _UPC declaration for USB0.RHUB.HPC2.IP3 as 

// this port shares the connection point 

Name( _UPC, Package() { 

0xFF, // Port is connectable 

0x00, // Connector type – (N/A for non-visible ports) 

0x00000000, // Reserved 0 – must be zero 

0x00000000} )// Reserved 1 – must be zero 

// Internal connection points require a _PLD that identifies 

// the shared connection point info      

Name( _PLD, Buffer( 0x10) { 

0x00000081, // Revision 1, Ignore color 

  // Color (ignored), width and height not 

0x00000000, // required as this is not a user visible 

  // connector 

0x01008000, // Not user visible, Group Token = 1, 

  // Group Position 2 

0x00000000} )// Ignored for not visible connectors 

// Motherboard Embedded Hub SS Logical Hub port 1 ( EP1 ) 

Device( EP1 ) {// USB0.RHUB.HCP3.EP1 

Name( _ADR, 0x00000001 ) 

// Must match the _UPC declaration for 

// USB0.RHUB.HCP2.IHUB.IP3.EHUB.EP1 as this port 

// provides the SS connection for C3 

Name( _UPC, Package() { 

0xFF,  // Port is connectable 

0x03,  // Connector type – USB 3 Type ‘A’ 

0x00000000, // Reserved 0 – must be zero 

0x00000000} ) // Reserved 1 – must be zero 

// provide physical connector location info 

Name( _PLD, Buffer( 0x10) { 

0x0072C601, // Revision 1, Color valid 



 

 

 

  591 

   // Color (0072C6h), width and height  

0x00000000, // not required as this is a standard  

   // USB ‘A’ type connector 

0x01800c69, // User visible, Back panel, Center, 

   // Left, shape = vert. 

   // rect, Group Token = 0, 

   // Group Position 3 

   //(i.e. Connector C3) 

0x00000003} )  // ejectable, requires OPSM eject 

   // assistance 

} // Device(EP1) 

// Motherboard Embedded Hub SS Logical Hub port 2 ( EP2 ) 

Device( EP2 ) {// USB0.RHUB.HCP3.EP2 

Name( _ADR, 0x00000002 ) 

// Must match the _UPC declaration for 

// USB0.RHUB.HCP2.IHUB.IP3.EP2 as this port 

// provides the SS connection for C4 

Name( _UPC, Package() { 

0xFF,  // Port is connectable 

0x03,  // Connector type – USB 3 Type ‘A’ 

0x00000000, // Reserved 0 – must be zero 

0x00000000} ) // Reserved 1 – must be zero 

// provide physical connector location info 

Name( _PLD, Buffer( 0x10) { 

0x0072C601, // Revision 1, Color valid  

   // Color (0072C6h), width and height  

0x00000000, // not required as this is a standard  

   // USB ‘A’ type connector 

0x02000c69, // User visible, Back panel, Center, 

   // Left, Shape = vert. 

   // rect, Group Token = 0, 

   // Group Position 4 (i.e. Connector C4) 

0x00000003} ) // ejectable, requires OPSM eject 

   // assistance 

} // Device( EP2 ) 

} // Device( HCP3 ) 

// Root Hub port 4 ( HCP4 ) 

Device( HCP4 ) { // USB0.RHUB.HCP4 

Name( _ADR, 0x00000004 ) 

// Must match the _UPC declaration for USB0.RHUB.HCP2.IP4  

// as this port provides the SS connection for C5 

Name( _UPC, Package() { 

0xFF,  // Port is connectable 

0x03,  // Connector type – USB 3 Type ‘A’ 

0x00000000, // Reserved 0 – must be zero 

0x00000000} ) // Reserved 1 – must be zero 

// provide physical connector location info 

Name( _PLD, Buffer( 0x10) { 

0x0072C601,  // Revision 1, Color valid 

   // Color (0072C6h), width and height  

0x00000000,  // not required as this is a standard  

   // USB ‘A’ type connector 



 

 

592    

0x02800c69, // User visible, Back panel, Center,  

   // Left, 

   // Shape = vert. rect, Group Token = 0, 

   // Group Position 5 (i.e. Connector C5) 

0x00000003} )  // ejectable, requires OPSM eject  

   // assistance 

} // Device( HCP4 ) 

} // Device( RHUB ) 

… 

} // Device( USB0 ) 

// 

// Define other control methods, etc 

… 

} // Device( PCIO ) 

… 

} // Scope( \_SB ) 

 

Note: The USB spec recommends that USB 3.0 specific connectors are identified with 

a standardized blue color (Pantone 300C). In this example Pantone 300C is 

mapped to the RGB value of 0(R), 114(G), 198(B) (0072C6h). 
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Appendix E State Machine Notation 

State diagrams should not be taken as a required implementation, but to specify 

the required behavior. 

Figure 8-25 shows the legend for the state machine diagrams. A circle with a 

three line border indicates a reference to another (hierarchical) state machine. A 

circle with a two line border indicates an initial state. A circle with a single line 

border is a simple state. 

The Entry and Exit symbols are used by lower lever state machines to indicate 

an entry from, or an exit to, a higher level state machine.  

A diamond (joint) is used to join several transitions to a common point. A joint 

allows a single input transition with multiple output transitions or multiple input 

transitions and a single output transition. All conditions on the transitions of a 

path involving a joint must be true for the path to be taken. A path is simply a 

sequence of transitions involving one or more joints.  

A transition is labeled with a block with a line in the middle separating the 

(upper) Conditions and the (lower) Actions. If no line is displayed the transition 

label is a Condition. The Condition is required to be true to take the transition. 

The Actions are performed if the transition is taken. The syntax for actions and 

conditions is VHDL. A circle includes a state name in bold and optionally 

additional state information, e.g. one or more actions that are performed upon 

entry to the state, signal states, etc.  
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Figure E-1: Legend for State Machines 

- Contains other state machines
State 

Hierarchy

State

&

Conditions

Actions

- Initial state of state machine

- State in a state machine

- Entry and exit of state machine

- Joint used to connect transitions

- Transition: Take when condition is true

   and performs actions

Initial 

State

 

Note: The xHCI state machines describe the exit conditions from a state, and entry 

conditions to a state. Only conditions specifically described as an entry or exit 

condition shall result in a state transition. 
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Appendix F SS Bus Access Constraints 

The following tables calculate the transaction limits for transfers on a 

downstream link, with the assumption that the upstream link is idle.  

Refer to 7.2.1.2.3 in the USB3 spec for the overhead (32 symbols) associated 

with a SS DP (DPH + DPP). 

Refer to 7.2.2.1 in the USB3 spec for the symbol overhead associated with a SS 

Link Command. Two Link Commands (an GOOD_n and an L_CRD) are 

transmitted on the downstream link for every header (TP or DPH) received on 

the upstream link. 

Refer to 7.2.1.1.1 in the USB3 spec for the overhead (20 bytes) associated with 

each SS TP (Header Packet). 

 

Table Labels 

Protocol Overhead 

The downstream link overhead in bytes. The components of overhead are 

described by the cell to the right. 

TD Transfer Size 

TD Transfer Size in bytes. 

Max Bandwidth 

The maximum achievable bandwidth given the TD Transfer Size in 

KBytes/second. 

% Microframe Bandwidth per TD 

The percentage of microframe bandwidth consumed by a single TD. 

Max TDs  

The maximum number of TD Transfer Size TDs than may be scheduled per 

microframe. 

Bytes Remaining  

The remaining byte times in a microframe after transferring one TD. 

Bytes/Microframe Useful Data 

TD Transfer Size * Max TDs 
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F.1 Bulk Transfer Bus Access Constraints 
Refer to section 5.8.4 of the USB2 spec for a general overview of USB bulk 

transfer access constraints, and for the Full-speed and High-speed Transaction 

Limits. 

The bus frequency and microframe timing limit the maximum number of 

SuperSpeed bulk DPs within a microframe for any USB3 system to less than 905 

one-byte data payloads. Table F-1 lists information about different-sized 

SuperSpeed bulk transactions and the maximum number of transactions 

possible in a microframe, for the downstream link of a bulk OUT pipe while the 

upstream link is saturated with bulk IN traffic.  

The Protocol Overhead is calculated for the downstream link as follows: For 

each DP moved for a TD in the OUT direction (32B), there is  one ACK TP for the 

DP in the IN direction, which requires 1 LGOOD_n and 1 L_CRD Link Command 

(8B each) to be transmitted in the OUT direction for a total of 48 bytes.  

 Table F-1: SuperSpeed Bulk OUT Transaction Limits 

Protocol Overhead (48B) 1 DP, 2 Link Commands 

TD 
Transfer 

Size 

Max Bandwidth 
(KBytes/second) 

% Microframe 
Bandwidth per 

TD 

Max 
TDs 

Bytes 
Remaining 

Bytes/Microframe 
Useful Data 

1 10200 1 1275 25 1275 

2 20000 1 1250 0 2500 

4 38432 1 1201 48 4804 

8 71424 1 1116 4 8928 

16 124928 1 976 36 15616 

32 199936 1 781 20 24992 

64 285696 1 558 4 35712 

128 363520 1 355 20 45440 

256 419840 1 205 180 52480 

512 454656 1 111 340 56832 
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1024 475136 2 58 324 59392 

2048 475136 4 29 324 59392 

4096 458752 7 14 2468 57344 

8192 458752 14 7 2468 57344 

16384 393216 28 3 11044 49152 

32768 262144 55 1 28196 32768 

59392 475136 100 1 324 59392 

 

xHC implementations are free to determine how the individual bus transactions for specific bulk 

transfers are moved over the bus within and across microframes. An endpoint could see all bus 

transactions for a bulk transfer within the same microframe or spread across several 

microframes. An xHC, for various implementation reasons, may not be able to provide the above 

maximum number of transactions per (micro)frame. 

Note: For a given TD Transfer Size, simultaneous bulk IN and OUT transfers would incur 

an additional 36 bytes of Protocol Overhead per OUT TD, i.e. 1 for the IN DP’s 

ACK TP (20B) and 2 Link Commands for the IN DP (8B each). 

F.2 Interrupt Transfer Bus Access Constraints 
SuperSpeed endpoints can be allocated at most 90% of a microframe for 

periodic transfers. The bus frequency and microframe timing limit the maximum 

number of SuperSpeed interrupt DPs within a microframe for any USB3 system 

to less than 1025 one-byte data payloads. Table F-2 lists information about 

different-sized SuperSpeed interrupt transactions and the maximum number of 

transactions possible in a microframe. 

The Protocol Overhead is calculated identically to bulk transfers.  

No more than 3 Max Packet Size DPs (3KB or 3072B) may be scheduled for a 

single interrupt endpoint within a single microframe, i.e. the minimum ESIT. 

Interrupt TDs that exceed 3KB shall transfer over multiple ESITs at up to 3KB 

per ESIT. 
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 Table F-2: SuperSpeed Interrupt Transaction Limits 

Protocol Overhead (48B) 1 DP, 2 Link Commands 

TD 
Transfer 

Size 

Max Bandwidth 
(KBytes/second) 

% Microframe 
Bandwidth per 

TD 

Max 
TDs 

Bytes 
Remaining 

Bytes/Microframe 
Useful Data 

1 10200 1 1275 25 1275 

2 20000 1 1250 0 2500 

4 38432 1 1201 48 4804 

8 71424 1 1116 4 8928 

16 124928 1 976 36 15616 

32 199936 1 781 20 24992 

64 285696 1 558 4 35712 

128 363520 1 355 20 45440 

256 419840 1 205 180 52480 

512 454656 1 111 340 56832 

1024 475136 2 58 324 59392 

2048 475136 4 29 324 59392 

3072 466944 6 19 1396 58368 

 

Note: For a given TD Transfer Size, simultaneous interrupt IN and OUT transfers would 

incur an additional 36 bytes of Protocol Overhead on the downstream link per 

OUT TD, i.e. 1 for the IN DP’s ACK TP (20B) and 2 Link Commands for the IN DP 

(8B each). 

F.3 Isochronous Transfer Bus Access Constraints 
SuperSpeed endpoints can be allocated at most 90% of a microframe for 

periodic transfers. The bus frequency and microframe timing limit the maximum 

number of SuperSpeed Isoch DPs within a microframe for any USB3 system to 

less than 1025 one-byte data payloads. Table F-3 lists information about 
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different-sized SuperSpeed isochronous transactions and the maximum number 

of transactions possible in a microframe. 

For only Isoch OUT transfers the downstream Protocol Overhead is that 

associated with the transmission of a single DP (32B).  

No more that 48 Max Packet Size DPs (48KB or 49152B) may be scheduled for a 

single Isoch endpoint within a single microframe, i.e. the minimum ESIT. If an 

Isoch TD Transfer Size exceeds the Max ESIT Payload or the Maximum Allowed 

ESIT Payload (48KB), then a Bandwidth Overrun Error shall be generated. 

 Table F-3: SuperSpeed Isoch Transaction Limits 

Protocol Overhead (32B) 1 DP, 1 Link Command 

TD 
Transfer 

Size 

Max Bandwidth 
(KBytes/second) 

% Microframe 
Bandwidth per TD 

Max 
TDs 

Bytes 
Remaining 

Bytes/ Microframe 
Useful Data 

1 15144 1 1893 31 1893 

2 29408 1 1838 8 3676 

4 55552 1 1736 4 6944 

8 99968 1 1562 20 12496 

16 166656 1 1302 4 20832 

32 249856 1 976 36 31232 

64 333312 1 651 4 41664 

128 399360 1 390 100 49920 

256 444416 1 217 4 55552 

512 466944 1 114 484 58368 

1024 483328 2 59 196 60416 

2048 475136 4 29 1252 59392 

4096 458752 7 14 3364 57344 

8192 458752 14 7 3364 57344 

16384 393216 28 3 11812 49152 
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32768 262144 55 1 28708 32768 

49152 393216 82 1 11812 49152 

 

Note: For a given TD Transfer Size, simultaneous isoch IN and OUT transfers would 

incur an additional 16 bytes of Protocol Overhead on the downstream link per 

OUT TD, i.e. 2 Link Commands for the IN DP (8B each). 
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Appendix G 0.96 Exceptions 

This appendix defines the significant differences between 0.96 and 1.0 

implementations. See following exceptions:  

G.1 Skip Link TRB IOC flag 
Section 4.10.1.1 of the 0.96 release was silent on the handling Link TRBs while 

advancing to the next TD after the detection of a Short Packet. Some 0.96 

implementations may not generate an event if it encounters a Link TRB with its 

IOC flag set while advancing to the next TD.  

G.2 Force Stopped Event Optional 
Forced Stopped Event support was optional for 0.96 implementations, but is 

required in 1.0. Refer to section 4.6.9. In 0.96 implementations bit 8 of the 

HCCPARAMS1 register was defined as follows:  

 Table G-1: Forced Stopped Event (FSE) Option Flag 

Bit Description 

8 Force Stopped Event (FSE). This flag indicates whether the host controller implementation 

generates a Stopped Transfer Event when a Transfer Ring stops between TDs. A ‘1’ in this bit 
indicates that Forced Stopped Events are supported. A ‘0’ in this bit indicates that Forced Stopped 
Events are not supported. Refer to Section 4.6.9 for more information on the use of this flag. 

 

G.3 Secondary Bandwidth Domain Reporting Optional 
Secondary Bandwidth Domain Reporting support was optional for 0.96 

implementations, but is required in 1.0. Refer to section 4.16.2. In 0.96 

implementations bit 9 of the HCCPARAMS1 register was defined as follows:  
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 Table G-2: Secondary Bandwidth Domain Reporting (SBD) Option Flag 

Bits Description 

9 Secondary Bandwidth Domain Reporting (SBD). This flag indicates whether the host controller 
implementation is capable of reporting Secondary Bandwidth Domain information. A ‘1’ in this bit 

indicates that Secondary Bandwidth Domain reporting is supported. A ‘0’ in this bit indicates that 
Secondary Bandwidth Domain reporting is not supported. Refer to Section 4.16.2 for more 
information on the use of this flag. 

 

 

G.4 USB2 L1 Capability Optional 
L1 Capability support was optional for 0.96 implementations. Refer to section 

4.23.5.1.1. In 0.96 implementations bit 16 at Dword offset 08h of the xHCI 

Supported Protocol Capability  was defined as follows: 

 Table G-3: L1 Capability (L1C) Option Flag 

Bits Description 

16 L1 Capability (L1C) - RO. Default = Implementation dependent. If this bit is set to ‘1’ the xHC 
supports the USB2 Link Power Management L1 (Sleep) state and the associated USB2 protocol 
fields as defined in the PORTSC and USB2 PORTPMSC registers are valid, specifically USB2 

protocol functionality of the PLS and PLC fields in the PORTSC register, and the fields of the 
USB2 PORTPMSC register. 

Note that software is prohibited from using the PLS field initiate a transition to an L1 state or 

using the USB2 PORTPMSC fields unless this bit is set to ‘1’. 
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Appendix H Release 1.1 Notes 

H.1 Required 1.0 Capabilities/Features 
The following capabilities/features that were optional for xHCI 1.0 

implementations are now required in xHCI 1.1 implementations. 

H.1.1 Hardware LMP Capability 

The Hardware LMP Capability  (HLE = ‘1’) and BESL LMP Capability (BLC = ‘1’), 

refer to section 4.23.5.1.1. 

H.1.2 Contiguous Frame ID Capability 

The Contiguous Frame ID Capability  (CFC = ‘1’), refer to section 4.11.2.5.  

H.1.3 Stopped EDTLA Capability 

The Stopped EDTLA Capability  (SEC = '1'), refer to section 4.12. 

H.1.4 U3 Entry Capability 

The U3 Entry Capability (U3C = '1') refer to section 4.15.1. 

H.1.5 Stopped - Short Packet Capability 

The Stopped - Short Packet Capability (SPC = '1'), refer to section 4.6.9. 

H.1.6 Force Save Context Capability 

The Force Save Context Capability  (FSC = '1'), refer to section 5.3.9. 

H.1.7 Compliance Transition Capability 

The Compliance Transition Capability  (CTC = '1'), refer to section 4.19.1.2.4.1.  

H.1.8 Configuration Information Capability 

The Configuration Information Capability  (CIC = '1'), refer to section 6.2.5.1. xHC 

1.1 compliant drivers shall always set CIE = ‘1’ and provide extended 

Configuration Information. 
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H.2 New 1.1 Features 
The following capabilities/features are new features required in xHCI 1.1 

implementations. 

H.2.1 Ring Underrun/Overrun Transfer Event Handling 

Ring Underrun and Ring Overrun Transfer Events shall set the TRB Pointer field 

to the address of the invalid TRB, refer to section 4.11.3.1. 
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